A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics, vol.8, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093971

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua et al., Slic superpixels compared to state-of-theart superpixel methods, IEEE transactions on pattern analysis and machine intelligence, vol.34, pp.2274-2282, 2012.

D. Achlioptas, Database-friendly random projections: Johnson-lindenstrauss with binary coins, Journal of computer and System Sciences, vol.66, issue.4, pp.671-687, 2003.

A. Alaoui and M. W. Mahoney, Fast randomized kernel ridge regression with statistical guarantees, Advances in Neural Information Processing Systems, pp.775-783, 2015.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Structured sparsity through convex optimization, Statistical Science, pp.450-468, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00621245

P. Bachman, O. Alsharif, and D. Precup, Learning with pseudo-ensembles, Advances in Neural Information Processing Systems, pp.3365-3373, 2014.

D. M. Barch, G. C. Burgess, M. P. Harms, S. E. Petersen, B. L. Schlaggar et al., Function in the human connectome: task-fmri and individual differences in behavior, Neuroimage, vol.80, pp.169-189, 2013.

E. Bingham and H. Mannila, Random projection in dimensionality reduction: applications to image and text data, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp.245-250, 2001.

C. M. Bishop, Training with noise is equivalent to tikhonov regularization, Neural computation, vol.7, issue.1, pp.108-116, 1995.

X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic, , 2015.

M. Brett, M. Hanke, B. Cipollini, M. Côté, C. Markiewicz et al., , 2016.

P. Bühlmann, P. Rütimann, S. Van-de-geer, and C. Zhang, Correlated variables in regression: clustering and sparse estimation, Journal of Statistical Planning and Inference, vol.143, issue.11, pp.1835-1858, 2013.

T. I. Cannings and R. J. Samworth, Random-projection ensemble classification, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.79, issue.4, pp.959-1035, 2017.

.. G. Consortium, A global reference for human genetic variation, Nature, vol.526, issue.7571, p.68, 2015.

R. J. Durrant and A. Kabán, Random projections as regularizers: Learning a linear discriminant ensemble from fewer observations than dimensions, 2013.

J. Fan and R. Li, Statistical challenges with high dimensionality: Feature selection in knowledge discovery, 2006.

M. García-torres, F. Gómez-vela, B. Melián-batista, and J. M. Moreno-vega, High-dimensional feature selection via feature grouping: A variable neighborhood search approach, Information Sciences, vol.326, pp.102-118, 2016.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, 2012.

A. Hopper, The orl face database. at&t (olivetti) research laboratory cambridge, 1992.

A. Hoyos-idrobo, G. Varoquaux, J. Kahn, and B. Thirion, Recursive nearest agglomeration (rena): fast clustering for approximation of structured signals, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.41, issue.3, pp.669-681, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01366651

L. Jacob, G. Obozinski, and J. Vert, Group lasso with overlap and graph lasso, Proceedings of the 26th annual international conference on machine learning, pp.433-440, 2009.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network for modelling sentences, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol.1, pp.655-665, 2014.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning. Nature, vol.521, pp.436-444, 2015.

Y. Lecun, Lenet-5, convolutional neural networks, p.20, 2015.

A. Mccallum, K. Nigam, and L. H. Ungar, Efficient clustering of high-dimensional data sets with application to reference matching, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.169-178, 2000.

C. E. Mcculloch and J. M. Neuhaus, Generalized linear mixed models, 2001.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou et al., Playing atari with deep reinforcement learning, 2013.

B. Mwangi, T. S. Tian, and J. C. Soares, A review of feature reduction techniques in neuroimaging, Neuroinformatics, vol.12, issue.2, pp.229-244, 2014.

T. E. Oliphant, Python for scientific computing, Computing in Science & Engineering, vol.9, issue.3, 2007.

A. Paszke, S. Gross, S. Chintala, G. Chanan, and . Pytorch, , 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, Journal of machine learning research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. M. Plis, D. R. Hjelm, R. Salakhutdinov, E. A. Allen, H. J. Bockholt et al., Deep learning for neuroimaging: a validation study, Frontiers in neuroscience, vol.8, 2014.

J. S. Ren, L. Xu, Q. Yan, and W. Sun, Shepard convolutional neural networks, Advances in Neural Information Processing Systems, pp.901-909, 2015.

S. Rifai, X. Glorot, Y. Bengio, and P. Vincent, Adding noise to the input of a model trained with a regularized objective, 2011.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

H. Suk, C. Wee, S. Lee, and D. Shen, Statespace model with deep learning for functional dynamics estimation in resting-state fmri, NeuroImage, vol.129, pp.292-307, 2016.

A. Thalamuthu, I. Mukhopadhyay, X. Zheng, and G. C. Tseng, Evaluation and comparison of gene clustering methods in microarray analysis, Bioinformatics, vol.22, issue.19, pp.2405-2412, 2006.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

D. C. Van-essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub et al., The wu-minn human connectome project: an overview, Neuroimage, vol.80, pp.62-79, 2013.

G. Varoquaux and O. Grisel, Joblib: running python function as pipeline jobs. packages. python. org/joblib, 2009.

G. Varoquaux, A. Gramfort, and B. Thirion, Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering, International Conference on Machine Learning, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00705192

N. X. Vinh, S. Erfani, S. Paisitkriangkrai, J. Bailey, C. Leckie et al., Training robust models using random projection, Pattern Recognition (ICPR), 2016 23rd International Conference on, pp.531-536, 2016.

S. Wager, S. Wang, and P. S. Liang, Dropout training as adaptive regularization, Advances in neural information processing systems, pp.351-359, 2013.

S. V. Walt, S. C. Colbert, and G. Varoquaux, The numpy array: a structure for efficient numerical computation, Computing in Science & Engineering, vol.13, issue.2, pp.22-30, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00564007

R. Xu and D. Wunsch, Survey of clustering algorithms, IEEE Transactions on neural networks, vol.16, issue.3, pp.645-678, 2005.

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.68, issue.1, pp.49-67, 2006.

P. Zhao, G. Rocha, Y. , and B. , The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, pp.3468-3497, 2009.