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Abstract

In this paper we are interested in designing and analyzing a finite
element data assimilation method for laminar steady flow described by
the linearized incompressible Navier-Stokes equation. We propose a
weakly consistent stabilized finite element method which reconstructs
the whole fluid flow from velocity measurements in a subset of the
computational domain. Using the stability of the continuous problem
in the form of a three balls inequality, we derive quantitative local
error estimates for the velocity. Numerical simulations illustrate these
convergences properties and we finally apply our method to the flow
reconstruction in a blood vessel.

1 Introduction

The question of how to assimilate measured data into large scale compu-
tations of flow problems is receiving increasing attention from the compu-
tational community. There are several different situations where such data
assimilation problems arise. One situation is when the data necessary to
make the flow problem well posed is lacking, that is, boundary data can
not be obtained on parts of the boundary, but some other measured data
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on the boundary or in the bulk is available to make up for this shortfall,
or alternatively the position of the boundary itself is unknown. Another
situation is when the initial data is unknown, but measurements are avail-
able in the (space-time) bulk domain. In such situations, the problem is
ill-posed and numerical simulations are much more delicate to handle than
for the well-posed flow equations. The traditional approach is to regularize
the continuous problem to obtain a well-posed continuous problem, often
using a variational framework, that can then be discretized using standard
techniques. The regularization parameter then has to be tuned to have an
optimal value with respect to noise in the data. The granularity of the com-
putational mesh is chosen afterwards to resolve all scales of the regularized
problem. An example of this strategy is the quasi-reversibility method (see
the references [7, 8, 9, 10]). For examples directly related to flow prob-
lems, we refer to [9] for an application to inverse identification of boundaries
subject to Stokes problem. Other examples can be found in [25], where ad-
ditional measured data is used to compensate for a lack of knowledge of the
boundary conditions in hemodynamics or [32] where a least squares method
is proposed for combining and enhancing the results from an existing com-
putational fluid dynamics model with experimental data.

Regardless of the application, success hinges on the existence of some
stability property of the ill-posed problem. Fortunately, it is known that
a relatively large class of ill-posed problems has some conditional stability
property. Stability estimates give a precise information on the effect of
perturbations on the system. In particular, they imply that, if the data
are compatible with the PDE, in the sense that there exists a solution, in
some suitable Sobolev space, satisfying both the PDE and the data, then
this solution is unique. For the Stokes equation, this unique continuation
property was originally proven by Fabre and Lebeau [28]. The analysis of
the stability properties of ill-posed problems based on the Navier-Stokes
equations is a very active field of research and we refer to the works [33, 3,
6, 31, 30, 4, 2] for recent results. Stability estimates for inverse problems
classically rely on Carleman inequalities or three-balls inequalities, two tools
which are strongly related. The idea of applying Carleman estimates for the
stability analysis of inverse problems is introduced in the seminal paper [15]
by Bukhgeim and Klibanov.

There appears to be relatively few results in the literature discussing
the combined error due to regularization, discretization and perturbations
for inverse problems subject to the equations of fluid mechanics. To the
best of our knowledge such a combined analysis has only been performed
in the recent paper [21], where a nonconforming finite element method was
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used, together with regularization techniques developed in the context of
discontinuous Galerkin methods, to analyze a data assimilation problem for
Stokes problem. One of the reasons for this is that there is in general a
gap between the stability estimates that can be proven analytically and the
stability required to perform a numerical analysis. An approach allowing to
bridge this gap was proposed in [18, 19, 20, 22], drawing on earlier ideas for
well-posed problems in [11, 12]. This framework combines stabilized finite
element methods designed for well-posed problems with variational formu-
lations for data assimilation and sharp stability estimates for the continuous
problems based on three balls inequalities or Carleman estimates. Recent
developments include finite element data assimilation methods with optimal
error estimates for the heat equation [24, 23] and design of methods for in-
definite or nonsymmetric scalar elliptic problems analyzed using Carleman
estimates with explicit dependence on the physical parameters [17, 16].

In this paper, our aim is to build on these results and use known tech-
niques for the approximation of the (well-posed) Navier-Stokes equation in
an optimisation framework in order to assimilate data with computation.
Contrary to the previous work [21], we consider the linearized Navier-Stokes
equations and use standard H1-conforming, piecewise affine, finite element
spaces. The key idea is that the ill-posed continuous problem is not regular-
ized. Instead, we discretize the equation and set up a constrained optimiza-
tion problem where we minimize the distance between the discrete solution
and the measured data. To counter the instabilities in the discrete system,
we introduce weakly consistent regularization terms in such a way that the
error with respect to the approximation and the underlying conditional sta-
bility is optimized. In our framework, the only regularization parameter, up
to a constant scaling factor, is the mesh parameter.

The analysis is applicable to incompressible laminar steady flow in the
low Reynolds regime. We are interested in a situation where a known laminar
base flow U is available. A perturbation of the velocities of the base flow has
been measured in some subset ωM of the computational domain Ω. Assuming
that the perturbation is small, we then consider a linearized equation and
design a stabilized finite element method for the approximation of the global
perturbation. Using a three balls inequality derived by Lin, Uhlmann and
Wang [33] we derive quantitative local error estimates for the perturbations
in some target subdomain ωT. Herein, we only consider error estimates for
local L2-norms, but errors in local H1-norms of velocity together with L2-
norms of pressure are also possible to analyse using three balls inequalities
derived in [6], provided measurements of both velocities and pressures are
available in ωM.
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The order of the estimate depends on the Hölder coefficient of the con-
tinuous stability estimate which depends on the size of the measure domain
and the distance between the target domain and the boundary of the com-
putational domain. For simplicity, we restrict the discussion to piecewise
affine continuous approximation spaces, but the arguments can be extended
to higher order finite element spaces, with the expected improvement of
convergence order, following the ideas of [20]. It should however be noted
that the system matrix becomes increasingly ill-posed as the polynomial or-
der increases and the computation becomes more sensitive to noise in the
measured data, so the practical interest in using high order approximation
spaces remains to be proven.

The rest of the paper is organized as follows. In Section 2, we introduce
the considered inverse problem and some related stability estimates. Sec-
tion 3 presents the proposed stabilized finite element approximation of the
data assimilation problem. The numerical analysis of the method is carried
out in Section 4. Finally, Section 5 presents a series of numerical examples
which illustrate the performance of the proposed method. In particular, in
Section 5.3, we explore how the present approach can be applied to the esti-
mation of relative pressure in blood flow from MRI velocity measurements.

2 Presentation of the inverse problem and stabil-
ity results for the continuous problem

Let Ω be a bounded open polyhedral domain in Rd with d = 2, 3. We
denote by (U,P ) a solution of the stationary incompressible Navier-Stokes
equations and we consider some perturbation (u, p) of this base flow. It is
then known that, if the quadratic term is neglected, the linearized Navier-
Stokes equations for (u, p) may be written{

(U · ∇)u+ (u · ∇)U +∇p− ν∆u = f in Ω
∇ · u = 0 in Ω.

(1)

The above system is linear, but its approximation is nevertheless nontrivial,
since without further assumptions on the size of ∇U , one can not prove the
coercivity of the system. We assume that U belongs to [W 1,∞(Ω)]d and that
the flow perturbation satisfies the regularity

(u, p) ∈ [H2(Ω)]d ×H1(Ω).

In what follows, we consider that measurements on u are available in some
subdomain ωM ⊂ Ω having a nonempty interior and that these measure-
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ments are polluted by a small noise δu ∈ [L2(ωM)]d.

Let us now introduce some useful notations. We will consider the fol-
lowing spaces:

V := [H1(Ω)]d, V0 := [H1
0 (Ω)]d, L0 := L2

0(Ω), and L := L2(Ω).

and the following norms, for k = 1 or d,

‖ · ‖L := ‖ · ‖[L2(Ω)]k , ‖ · ‖V := ‖ · ‖[H1(Ω)]k , ‖ · ‖V ′0 := ‖ · ‖[H−1(Ω)]d .

Let us notice that, in the first two definitions, with some abuse of notation,
we use the same notation for k = 1 and k = d. For any subdomain ω ⊂ Ω,
we set

|v|ω :=

(∫
L2(ω)

|v|2
) 1

2

, ∀ v ∈ L2(ω).

Besides, we introduce the bilinear forms

a(u, v) :=

∫
Ω

((U · ∇)u+ (u · ∇)U) · v + ν

∫
Ω
∇u : ∇v, (2)

where H : G :=

d∑
i,j=1

HijGij and

b(p, v) :=

∫
Ω
p∇ · v. (3)

We will assume that the non-homogeneous linearized Navier-Stokes pro-
blem completed by homogeneous Dirichlet boundary data is well-posed:

Assumption A For all f ∈ V ′0 and g ∈ L0, we consider the problem:
find (u, p) ∈ V0 × L0 such that

a(u, v)− b(p, v) + b(q, u) = 〈f, v〉V ′0 ,V0 + (g, v)L2(Ω) (4)

for all (v, q) ∈ V0 × L0.
We assume that this problem admits a unique solution (u, p) ∈ V0 × L0.
Moreover, we assume that there exists CS > 0 depending only on U and Ω
such that, for all f ∈ V ′0 and g ∈ L0

‖u‖V + ‖p‖L ≤ CS(‖f‖V ′0 + ‖g‖L). (5)
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In particular, if ‖∇U‖[L∞(Ω)]d×d is small enough, it is straightforward
to verify that Assumption A holds according to Lax-Milgram lemma. This
assumption of smallness on ∇U however is a sufficient condition and there
are reasons to believe that the well-posedness of system (4) holds in more
general cases.

The problem that we are interested in approximating on the other hand
is ill-posed. It can be expressed in the following form: f ∈ V ′0 being given,
find (u, p) ∈ V × L0 such that

u = uM in ωM (6)

and
a(u, v)− b(p, v) + b(q, u) = 〈f, v〉V ′0 ,V0 , ∀ (v, q) ∈ V0 × L (7)

Here, uM is the measurement of the velocity made on ωM and we assume
that uM is given by uM := u|ωM +δu where δu corresponds to a noise term in
the velocity measurements. We observe that, compared to problem (4), the
test function space has been enlarged since there are no boundary conditions
on u. As a consequence, the spaces of the solution and of the test functions
do not match.

In the homogeneous case, the solution (u, p) of (1) satisfies a three-
balls inequality which only involves u. This result (or more precisely its
non-homogeneous version given in Corollary 2.1) will be capital in the con-
vergence study of the numerical method presented in the sequel. It is stated
in [33] (with their notations, A corresponds to U and B to ∇U):

Theorem 2.1 (Conditional stability for the linearized Navier-Stokes pro-
blem) There exists R̃ ∈ (0, 1) such that for all 0 < R1 < R2 < R3 ≤ R0 and
x0 ∈ Ω satisfying R1/R3 < R2/R3 < R̃ and BR0(x0) ⊂ Ω, we have∫

BR2
(x0)
|u|2 ≤ C

(∫
BR3

(x0)
|u|2
)1−τ (∫

BR1
(x0)
|u|2
)τ

(8)

for (u, p) ∈ [H1(BR0(x0))]d × H1(BR0(x0)), solution of (1) with f = 0 in
BR0(x0). In this inequality, C depends on R2/R3 and 0 < τ < 1 depends on
R1/R3, R2/R3 and d.

To avoid the proliferation of multiplicative constants independent of the
mesh size, we will frequently use the notation a . b for a ≤ Cb for some
C > 0.

6



Theorem 2.1 with the help of Assumption A implies the following local
stability inequality in the non-homogeneous case:

Corollary 2.1 Let f ∈ V ′0 and g ∈ L0 be given. For all ωT ⊂⊂ Ω, there
exist C > 0 and 0 < τ < 1 such that

|u|ωT ≤ C(‖f‖V ′0 + ‖g‖L + ‖u‖L)1−τ (‖f‖V ′0 + ‖g‖L + |u|ωM)τ (9)

for all (u, p) ∈ [H1(Ω)]d ×H1(Ω) solution of

(U · ∇)u+ (u · ∇)U − ν∆u+∇p = f in Ω
∇ · u = g in Ω.

(10)

Proof: Let us first assume that there exist x0 ∈ ωM and 0 < R1 < R2 <
R3 ≤ R0 such that BR1(x0) ⊂ ωM, ωT ⊂ BR2(x0), BR0(x0) ⊂⊂ Ω and
R1/R3 < R2/R3 < R̃ where R̃ is defined in Theorem 2.1.

According to Assumption A, problem (4) admits a unique solution that
we denote (ũ, p̃) ∈ V0 × L0. Then (w̃, ỹ) := (u − ũ, p − q̃) satisfies (1) with
f = 0. Using the interior regularity of solution of Stokes problem (see for
instance [35]), (w̃, ỹ) ∈ [H1(BR0(x0))]d ×H1(BR0(x0)). We may then write

|u|ωT ≤ |ũ|ωT + |w̃|ωT .

For the first term in the right hand side, we use that (ũ, p̃) satisfies the
stability inequality (5):

|ũ|ωT . (‖f‖V ′0 + ‖g‖L).

For the second term, according to Theorem 2.1, (w̃, ỹ) satisfies (8) and thus:

|w̃|ωT ≤ ‖w̃‖[L2(BR2
(x0))]d . ‖w̃‖1−τ[L2(BR3

(x0))]d
‖w̃‖τ[L2(BR1

(x0))]d . ‖w̃‖
1−τ
L |w̃|τωM

.

We now revert back to u in the right hand side:

|w̃|ωT . (‖ũ‖L + ‖u‖L)1−τ (|ũ|ωM + |u|ωM)τ

. (‖f‖V ′0 + ‖g‖L + ‖u‖L)1−τ (‖f‖V ′0 + ‖g‖L + |u|ωM)τ .

We conclude the proof by collecting the estimates for ũ and w̃.
If ωM and ωT do not satisfy the assumptions for the construction of the

balls BR1(x0) and BR0(x0), we introduce a finite sequence of intermediate
balls in order to link ωT to ωM (as it is done for instance in [34]) and we get
again the estimate. �
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In a classical way for ill-posed problems [1], Corollary 2.1 gives a con-
ditional stability result in the sense that, to be useful, this estimate has to
be accompanied with an a priori bound on the solution on the global do-
main (due to the presence of ‖u‖L in the right hand side). Let us notice
that Corollary 2.1 implies in particular the uniqueness of a solution (u, p) in
[H1(Ω)]d ×H1(Ω) for problem (6)-(7), up to a constant for p.

In what follows, we assume that f ∈ L2(Ω) and we introduce the operator
A defined on (V × L0)× (V0 × L) by

A[(u, p), (v, q)] := a(u, v)− b(p, v) + b(q, u) (11)

where a and b are respectively defined by (2) and (3). Thus, we look for
(u, p) ∈ V × L0 such that

A[(u, p), (v, q)] = (f, v)L2(Ω), ∀ (v, q) ∈ V0 × L (12)

and (6) holds.

3 Finite element formulation

On the domain Ω, we consider a family {Th}h of shape regular, conforming,
quasi-uniform meshes consisting of shape regular simplices K. This family
is indexed by h defined as the maximum over the diameters hK of elements
in the mesh. For a fixed h > 0, we denote by Fi the set of interior faces of
the mesh Th.

We define the jump over a face F shared by the elements K and K ′

(which means that F = K̄ ∩ K̄ ′) as follows: if ζ is a scalar,

JζKF = ζ|K − ζ|K′

and, if ζ is a vector,

JζKF = ζ|K · nK + ζ|K′ · nK′

where nK denotes the outward pointing normal of the element K.
We denote by Xh the standard H1-conforming finite element space of

piecewise affine functions defined on Th and we introduce Vh := [Xh]d, Wh :=
Vh ∩ V0, Qh := Xh and Q0

h := Xh ∩ L0.
We may then write the finite element approximation of (12): find
(uh, ph) ∈ Vh ×Q0

h such that

A[(uh, ph), (vh, qh)] = (f, vh)L2(Ω)
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for all (vh, qh) ∈ Wh × Qh. This linear system is not invertible and to
regularize it, we introduce the following operators su : Vh × Vh 7→ R, s∗u :
Wh×Wh 7→ R, and for the pressure sp : Q0

h×Q0
h 7→ R and s∗p : Qh×Qh 7→ R

defined by

su(uh, vh) := γu
∑
F∈Fi

∫
F
hF J∇uhKJ∇vhK + γdiv

∫
Ω

(∇ · uh)(∇ · vh),

sp(ph, qh) := γp

∫
Ω
h2∇ph · ∇qh

and

s∗u(zh, wh) := γ∗u

∫
Ω
∇zh : ∇wh, s∗p(yh, xh) := γ∗p

∫
Ω
yhxh,

where γu, γp, γ
∗
u and γ∗p are positive user-defined parameters. Let us notice

that the stabilization term sp for the pressure of the direct problem comes
from the Brezzi-Pitkäranta method [13].

For compactness, we introduce the primal and dual stabilizers: for all
(uh, ph), (vh, qh) ∈ Vh ×Q0

h

S[(uh, ph), (vh, qh)] = su(uh, vh) + sp(ph, qh)

and, for all (zh, yh), (wh, xh) ∈Wh ×Qh

S∗[(zh, yh), (wh, xh)] = s∗u(zh, wh) + s∗p(yh, xh).

Finally, we introduce the measurement bi-linear form

m(u, v) = γM

∫
ωM

uv,

where γM > 0 is a free parameter representing the relative confidence in
the measurements. We may then write the discrete Lagrangian L : (Vh ×
Q0
h) × (Wh × Qh) 7→ R that will form the basis of our method as: for all

(uh, ph) ∈ (Vh ×Q0
h) and (zh, yh) ∈ (Wh ×Qh)

L[(uh, ph), (zh, yh)] :=
1

2
m(uM − uh, uM − uh) +A[(uh, ph), (zh, yh)]

− (f, zh)L2(Ω) +
1

2
S[(uh, ph), (uh, ph)]− 1

2
S∗[(zh, yh), (zh, yh)]. (13)

If we differentiate with respect to (uh, ph) and (zh, yh), we get the following
optimality system: find (uh, ph) ∈ Vh×Q0

h and (zh, yh) ∈Wh×Qh such that

A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] =(f, wh)L2(Ω)

A[(vh, qh), (zh, yh)] + S[(uh, ph), (vh, qh)] +m(uh, vh) =m(uM, vh)
(14)
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for all (vh, qh) ∈ Vh ×Q0
h and all (wh, xh) ∈Wh ×Qh.

We can already notice that formulation (14) is weakly consistent in the
sense that we have a modified Galerkin orthogonality relation with respect
to the scalar product associated to A:

Lemma 3.1 (Consistency) Let (u, p) satisfy (1) and (uh, ph) be a solution
of (14). Then there holds

A[(u− uh, p− ph), (wh, xh)] = −S∗[(zh, yh), (wh, xh)] (15)

for all (wh, xh) ∈Wh ×Qh.

Proof: The result is immediate by taking the difference between (12) and
the first equation of (14). �

A crucial inequality to get the stability of the method is the following
Poincaré inequality that we recall from [22] (Lemma 2). For all vh ∈ Vh, we
have

h‖vh‖V . (su(vh, vh) + γM |vh|2ωM
)
1
2 . (16)

If we take in the variational formulation (14) the test functions wh = −zh,
xh = −yh and vh = uh, qh = ph we see that, for any solution (uh, ph) ∈
Vh ×Q0

h, (zh, yh) ∈Wh ×Qh, there holds

S[(uh, ph), (uh, ph)]+S∗[(zh, yh), (zh, yh)]+γM |uh|2ωM
= −(f, zh)L+m(uM, uh).

(17)
Then, according to (16), the left hand side in equation (17) is the square of
a norm in (Vh ×Q0

h)× (Wh ×Qh) and, according to Babuska-Necas-Brezzi
theorem (see [27]), we conclude that the square linear system defined by
(14) admits a unique solution for all h > 0.

In the analysis below, we will use the following classical inverse and trace
inequalities:

• Inverse inequality (see [26, Section 1.4.3]),

|v|H1(K) . h
−1
K ‖v‖L2(K) ∀v ∈ P1(K). (18)

Here P1(K) denotes the set of polynomials of degree less than or equal
to 1 on the simplex K.

• Trace inequalities (see [26, Section 1.4.3]),

‖v‖L2(∂K) ≤ C
(
h
− 1

2
K ‖v‖L2(K) + h

1
2
K‖v‖H1(K)

)
∀v ∈ H1(K). (19)

At last, by combining (19) and (18)

‖v‖L2(∂K) ≤ Ch
− 1

2
K ‖v‖L2(K) ∀v ∈ P1(K). (20)
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4 Stability and error analysis

Let us first define the semi-norms associated to the stabilization operators
defined on ([H2(Ω)]d + Vh)× (H1(Ω) +Qh)

|||(v, q)||| = h‖v‖V + S[(v, q), (v, q)]
1
2 , |||(v, q)|||∗ = S∗[(v, q), (v, q)]

1
2 .

We also introduce the norm

‖(v, q)‖# := ‖v‖V + ‖q‖L.

Let ih : L2(Ω) 7→ Xh be the Scott-Zhang interpolant. We refer to [27] for
the following results: for t = 1, 2, we have, for all u ∈ Ht(Ω)

‖u−ihu‖Ω +h‖∇(u−ihu)‖Ω +h
1
2

(∑
K

‖u−ihu‖2∂K
)1/2

≤ Cht|u|Ht(Ω) (21)

and for all u ∈ H2(Ω)( ∑
F∈Fi

‖∇(u− ihu) · n‖2F
)1/2

≤ h
1
2 |u|H2(Ω).

Using the componentwise extension of ih to vectorial functions, we deduce
the approximation bounds: ∀(v, q) ∈ [H2(Ω)]d ×H1(Ω)

|||(v− ihv, q− ihq)|||+ ‖(v− ihv, q− ihq)‖# . h(‖v‖H2(Ω) + ‖q‖H1(Ω)). (22)

The following continuity results for the bilinear form motivates the def-
inition of the triple norms.

Lemma 4.1 (Continuity) For all ς ∈ Vh + [H2(Ω)]d and $ ∈ Qh +H1(Ω)
there holds

A[(ς,$), (vh, qh)] . ‖(ς,$)‖#|||(vh, qh)|||∗, ∀(vh, qh) ∈Wh ×Qh (23)

and, for all (vh, qh) ∈ Vh ×Q0
h, for all w ∈ [H1

0 (Ω)]d and y ∈ L2(Ω)

A[(vh, qh), (w − wh, y − yh)] ≤ |||(vh, qh)|||(‖w‖V + ‖y‖L) (24)

where (wh, yh) = (ihw, ihy).
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Proof: The proof of (23) directly comes from the Cauchy-Schwarz inequal-
ity applied termwise in the definition (11) of A. For the second inequality
(24), we set w̃ = w − wh and ỹ = y − yh and notice that

A[(vh, qh), (w̃, ỹ)] := a(vh, w̃)− b(qh, w̃) + b(ỹ, vh). (25)

For the first term in the right hand side, an integration by parts in the
viscous term gives, observing that w̃|∂Ω = 0,

a(vh, w̃) . ‖U‖[W 1,∞(Ω)]d‖hvh‖V ‖h−1w̃‖L +
1

2

∑
F∈Fi

∫
F
J∇vh · nK · w̃ ds.

Using Cauchy-Schwarz inequality with the right scaling in h, we get

a(vh, w̃) . ‖U‖[W 1,∞(Ω)]d‖hvh‖V ‖h−1w̃‖L +
∑
F∈Fi

‖h
1
2 J∇vhK‖F ‖h−

1
2 w̃‖F .

Applying the trace inequality (19), we notice that

‖h−1w̃‖K + ‖h−
1
2 w̃‖∂K . h−1‖w̃‖K + ‖∇w̃‖K .

Then, if we take the square, sum over K and use the H1−stability inequality
of ih (21) for t = 1, this inequality becomes

‖h−1w̃‖L +
( ∑
F∈Fi

‖h−
1
2 w̃‖2F

)1/2
. ‖w‖V .

As a consequence
a(vh, w̃) . |||(vh, 0)||| ‖w‖V .

Similarly, for the second term in (25), an integration by parts gives

|b(qh, w̃)| ≤ ‖h∇qh‖L‖h−1w̃‖L . |||(0, qh)|||‖w‖V .

Finally, the bound for the third term in (25) is immediate by the Cauchy-
Schwarz inequality and the L2-stability of ih

|b(ỹ, vh)| ≤ ‖∇ · vh‖L‖ỹ‖L . |||(vh, 0)||| ‖y‖L.

Gathering these results, we get (24). �
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Remark 4.1 The augmented Lagrangian stabilization on the divergence in
the operator su is used in the proof of Lemma 4.1 to bound in a direct way
term III but it is not strictly necessary. Indeed, if yh is chosen as the L2-
projection of y we see that for all xh ∈ Qh,

b(ỹ, vh) = (ỹ,∇ · vh − xh)L

and recalling that

inf
xh∈Qh

‖∇ · vh − xh‖L .

∑
F∈Fi

hF ‖J∇ · vhK‖2F

 1
2

we conclude that

b(ỹ, vh) . ‖y‖L

∑
F∈Fi

hF ‖J∇vhK‖2F

 1
2

.

Hence, the stabilization of the gradient jump is sufficient to bound this term.
In practice however, it can be useful to add the stabilization term on the
divergence since it allows to get a stronger coercivity estimate.

Lemma 4.2 We assume that the solution (u, p) of (12) belongs to [H2(Ω)]d×
H1(Ω) and we consider (uh, ph) ∈ Vh ×Q0

h, (zh, yh) ∈Wh ×Qh the discrete
solution of (14). Then there holds

|||(u− uh, p− ph)|||+ |||(zh, yh)|||∗ + γ
1/2
M |u− uh|ωM

≤ Ch(‖u‖[H2(Ω)]d + ‖p‖H1(Ω)) + γ
1/2
M |δu|ωM .

Proof: We introduce the discrete errors ξh = ihu− uh, ηh = ihp− ph. By
this way, (u − uh, p − ph) = (u − ihu, p − ihp) + (ξh, ηh). First we observe
that

|||(u− uh, p− ph)|||+ γ
1/2
M |u− uh|ωM

≤ |||(u− ihu, p− ihp)|||+ γ
1/2
M |u− ihu|ωM + |||(ξh, ηh)|||+ γ

1/2
M |ξh|ωM .

Using inequalities (22) and (21) for t = 1, we can directly bound the first two
terms in the right hand side. For the last two terms, according to inequality
(16), we have

|||(ξh, ηh)|||2 + γM |ξh|2ωM
. S[(ξh, ηh), (ξh, ηh)] + γM |ξh|2ωM

.

13



To estimate the right hand side, we notice that, using the second equation
of (14) with (vh, qh) = (ξh, ηh)

S[(ξh, ηh), (ξh, ηh)] + γM |ξh|2ωM
−A[(ξh, ηh), (zh, yh)] =

S[(ihu, ihp), (ξh, ηh)] +m(ihu− u, ξh)−m(δu, ξh).

Next, according to (15) with (wh, xh) = (zh, yh), we have

|||(zh, yh)|||2∗ +A[(ξh, ηh), (zh, yh)] = A[(ihu− u, ihp− p), (zh, yh)].

Thus, adding these two equalities, we get

S[(ξh, ηh), (ξh, ηh)] + |ξh|2ωM
+ |||(zh, yh)|||2∗ = A[(ihu− u, ihp− p), (zh, yh)]︸ ︷︷ ︸

I

+ S[(ihu, ihp), (ξh, ηh)]︸ ︷︷ ︸
II

+m(ihu− u, ξh)−m(δu, ξh)︸ ︷︷ ︸
III

.

We bound the terms I–III term by term. By Lemma 4.1 and the approxi-
mation bound (22), we have for term I

I . ‖(ihu−u, ihp−p)‖#|||(zh, yh)|||∗ . h(‖u‖[H2(Ω)]d+‖p‖H1(Ω))|||(zh, yh)|||∗.

For term II, we have

S[(ihu, ihp), (ξh, ηh)] = S[(ihu− u, 0), (ξh, ηh)] + γp

∫
Ω
h2∇ihp · ∇ηh.

Thus, using (22) with (v, q) = (u, p) for the first term and the H1-stability
of ih for the second term, we get

II . h(‖u‖[H2(Ω)]d + ‖p‖H1(Ω))|||(ξh, ηh)|||.

For term III, according to (21) with t = 2, we have

III ≤ γM (|ihu− u|ωM + |δu|ωM)|ξh|ωM

≤ (Ch2‖u‖H2(Ω) + γ
1/2
M |δu|ωM)γ

1/2
M |ξh|ωM .

Thus, collecting the above bounds, we get

|||(ξh, ηh)|||2 + |||(zh, yh)|||2∗ + γM |ξh|2ωM

. (h(‖u‖[H2(Ω)]d+‖p‖H1(Ω))+γ
1/2
M |δu|ωM)(|||(ξh, ηh)|||2+γM |ξh|2ωM

+|||(zh, yh)|||2∗)
1
2

14



and we conclude by dividing by (|||(ξh, ηh)|||2 + γ
1/2
M |ξh|2ωM

+ |||(zh, yh)|||2∗)
1
2 .

�
The above lemma does not give the convergence of the error, it only asserts
that some residual must converge with optimal order if the exact solution
is smooth enough. Nevertheless, this lemma implies the following a priori
bounds on the finite element solution.

Corollary 4.1 Under the same assumptions as for Lemma 4.2 there holds

|||(uh, ph)||| . h(‖u‖[H2(Ω)]d + ‖p‖H1(Ω)) + γ
1/2
M |δu|ωM (26)

and

‖uh‖V + ‖ph‖H1(Ω) . ‖u‖[H2(Ω)]d + ‖p‖H1(Ω) + h−1γ
1/2
M |δu|ωM . (27)

Proof: In an evident way, we have

|||(uh, ph)||| ≤ |||(uh − u, ph − p)|||+ |||(u, p)|||.

Thus, according to Lemma 4.2 and the fact that |||(u, p)||| = h‖u‖V +

sp(p, p)
1
2 , we get (26). Moreover, by definition of ||| · |||, we have

‖uh‖V + ‖ph‖H1(Ω) . h
−1|||(uh, ph)|||.

Thus inequality (26) directly implies (27). �
In the following theorem, we state an error estimate. The proof of this

result relies on the conditional stability estimate for the continuous problem
given by Corollary 2.1 and the convergence of the residual quantities given
by Lemma 4.2.

Theorem 4.1 We assume that the solution (u, p) of (12) belongs to [H2(Ω)]d×
H1(Ω) and we consider (uh, ph) ∈ Vh ×Q0

h, (zh, yh) ∈Wh ×Qh the discrete
solution of (14). Then, for all ωT ⊂⊂ Ω, there exists τ ∈ (0, 1) such that

|u− uh|ωT ≤ Ch
τ (‖u‖[H2(Ω)]d + ‖p‖H1(Ω) + h−1|δu|ωM) + h‖f‖L. (28)

The constant C depends on the mesh geometry, the geometry of ωM and ωT
and on ‖U‖[W 1,∞(Ω)]d×d.
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Proof: Let us first introduce the weak formulation of the problem satisfied
by (ξ, η) := (u − uh, p − ph). By equation (12), we have for all w ∈ V0 and
q ∈ L,

A[(ξ, η), (w, q)] = (f, w)L2(Ω) −A[(uh, ph), (w, q)]

We introduce, uh and ph being fixed, the linear forms rf and rg on V0 and
L respectively defined by: for all w ∈ V0 and q ∈ L,

〈rf , w〉V ′0 ,V0 + (rg, q)L := (f, w)L2(Ω) −A[(uh, ph), (w, q)].

It follows that (ξ, η) is solution of (10) with the functions f and g in the
right hand sides replaced respectively by rf and rg. Applying now Corollary
2.1, we directly get

|ξ|ωT ≤ C(‖rf‖V ′0 + ‖rg‖L + ‖ξ‖L)1−τ (‖rf‖V ′0 + ‖rg‖L + |ξ|ωM)τ . (29)

Using the first equation of (14), we can write the residuals: for all (wh, qh) ∈
Wh ×Qh

〈rf , w〉V ′0 ,V0 + (rg, q)L

= (f, w − wh)L2(Ω) −A[(uh, ph), (w − wh, q − qh)]− S∗[(zh, yh), (wh, qh)].

We take wh = ihw and qh = ihq in this equality. For the first term, according
to (21) for t = 1, we have

|(f, w − wh)L2(Ω)| ≤ h‖f‖L‖w‖V .

The second term can be bounded by using the relations (24) and (26). For
the last term, we have, according to Lemma 4.2

|S∗[(zh, yh), (wh, qh)]| ≤ |||(zh, yh)|||∗‖(wh, qh)‖#
. (hC(u, p) + |δu|ωM) ‖(w, q)‖#

where
C(u, p) := ‖u‖[H2(Ω)]d + ‖p‖H1(Ω).

We thus get

〈rf , w〉V ′0 ,V0 + (rg, q)L .
(
hC(u, p) + |δu|ωM + h‖f‖L + |||(ξ, η)|||

)
‖(w, q)‖#.

Since this bound holds for all w ∈ V0 and q ∈ L, we conclude that

‖rf‖V ′0 + ‖rg‖L . hC(u, p) + |δu|ωM + h‖f‖L + |||(ξ, η)|||.
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Thus, we can bound the terms in the right hand side of (29) in the following
way:

‖rf‖V ′0 + ‖rg‖L + ‖ξ‖L . C(u, p) + h‖f‖L + h−1|δu|ωM

according to inequalities (26) and (27) and

‖rf‖V ′0 + ‖rg‖L + |ξ|ωM . hC(u, p) + h‖f‖L + |δu|ωM

according to Lemma 4.2.
Using these two bounds in (29), we conclude that

|ξ|ωT . (C(u, p) + h−1|δu|ωM)1−τ (hC(u, p) + |δu|ωM)τ + h‖f‖L
. hτ (C(u, p) + h−1|δu|ωM) + h‖f‖L,

which completes the proof. �
Thus, if the measurement noise δu is equal to 0, this theorem gives the

convergence of the error u − uh when h tends to 0 on any subset ωT ⊂⊂
Ω. In the case of perturbed data, the accuracy of the error is limited and
inequality (28) shows that the mesh size has to balance the error due to the
discretization and the error due to the noise.

5 Numerical simulations

In this section, we apply the method introduced in Section 3 in different
two-dimensional different numerical examples. The free parameters in (14)
are set to

γu = γdiv = γp = γ∗u = γ∗p = 10−1, γM = 1000,

in all the numerical examples. The numerical computations have been per-
formed with FreeFEM++ (see [29]).

5.1 Convergence study: Stokes example

In order to illustrate the convergence behavior of the method introduced in
Section 3, we take up the test case presented in [21] for the Stokes system.
In the unit square Ω = (0, 1)2, we consider the velocity and pressure fields
given by

u(x, y) = (20xy3, 5x4 − 5y4), p(x, y) = 60x2y − 20y3 − 5.

It is straightforward to verify that (u, p) is a solution to the homogeneous
Stokes problem with ν = 1, which corresponds to system (1) with U = 0
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Figure 1: Relative errors against mesh size for the Stokes problem. Left:
without noise. Right: with 10% noise.

and f = 0. We hence consider the formulation (14) with U = 0 and f = 0.
The measurement and target subdomains are defined by

ωM := (0.75, 1)× (0.25, 0.75), ωT := (0.25, 1)× (0.25, 0.75).

First, we perform the computation with unperturbed data. In Figure 1
(left), we report the velocity and pressure errors both in the global L2-
norm and the local L2-norm in the subdomain ωT. We also provide the
convergence history of the residual quantity for the velocity stabilization:∑

F∈Fi

γu

∫
F
‖h

1
2 J∇uhK‖2F

 1
2

.

The observed global asymptotic behaviors of the local velocity error (filled
squares) and residual (filled circles) are in agreement with the convergence
rates obtained in Theorem 4.1 and Corollary 4.1 with |δu|ωM = 0. It should
be noted that, for the finest grids, the local velocity error tends to stagnate
or increase, which can be related either to the impact of the rounding-off
errors or to ill-conditioning issues of the system matrix, so that |δu|ωM >
0. The other error quantities, global velocity error (empty squares) and
local and global pressure errors (filled and empty triangles, respectively)
show a convergent behavior which also tends to stagnate for the smallest
values of h. Figure 1 (right) presents the convergence history of the same
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quantities with a 10% Gaussian noise. The impact of the noise is clearly
visible. In particular, it is worth noting that the convergence history of the
local and global velocity and pressure errors is not monotone anymore and
the residual loses first-order convergence rate. This is also in agreement with
Theorem 4.1 and Corollary 4.1 with |δu|ωM > 0.

5.2 Convergence study: linearized Navier-Stokes example

In this subsection, we will use Taylor-Green vortices to construct exact so-
lutions of (1). Let us first introduce a flow of size Rπ described by a Taylor-
Green vortex:

uR(x, y) :=

(
− sin(x/R) cos(y/R) exp(−2νt/R2)
cos(x/R) sin(y/R) exp(−2νt/R2)

)
,

pR(x, y) :=
1

4
(cos(2x/R) + cos(2y/R)) exp(−4νt/R2).

For any R > 0, we can check that (uR, pR) is solution of the unsteady
Navier-Stokes equations. In our numerical example, we take Ω = (0, 2π)2

and consider the following system which admits (u 1
2
, p 1

2
) as solution:{

(u1 · ∇)u+ (u · ∇)u1 − ν∆u+∇p = f in Ω
∇ · u = 0 in Ω

where f is given by

f = −(u 1
2
· ∇)u 1

2
+ (u1 · ∇)u 1

2
+ (u 1

2
· ∇)u1 − ∂tu 1

2
.

Thus, f and u1 being given, we can use the method presented in Section 3
to reconstruct u and p from measurements on ωM. The measurement and
target subdomains are defined by

ωM :=(0, π/2)× (π/2, 3π/2) ∪ (3π/2, 2π)× (π/2, 3π/2),

ωT :=(π/2, 2π)× (π/2, 3π/2).

As in the previous case, we have performed numerical tests for unper-
turbed data and for data perturbed with a 10% noise and we have studied
the convergence of the method. The obtained results are illustrated in Fi-
gure 2. The convergence curves present similarities with the ones obtained
in Figure 1. We can all the same notice that, for unperturbed data, the
evolution of the local velocity error is more satisfactory: it is close to the
linear behavior and the error reaches much smaller values.
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Figure 2: Relative errors against mesh size for the linearized Navier-Stokes
problem. Left: without noise. Right: with 10% noise.

5.3 Application: relative blood pressure estimation from ve-
locity measurements

To evaluate the risks related to a constriction (also called stenosis) in a
blood vessel, the relative pressure difference (RPD) is a standard clinical
bio-marker. Direct blood pressure measurements can however only be ob-
tained through invasive procedures like catheterization. Non-invasive mea-
surements are limited to the blood velocity. In particular, 4D-MRI provides
a measurement of the velocity field in the whole vessel. A natural question
is hence to reconstruct the RPD from these velocity measurements. We re-
fer to [5] for a review on direct based estimation methods for this problem.
The purpose of this example is to illustrate how the method introduced in
Section 3 can be used to estimate the RPD from full velocity measurements.

We assume that blood flow is described by the Navier-Stokes equations
and that we have velocity measurements in the whole domain Ω (see Fig-
ure 3) at a given set of time instants. We denote by (0, T ) the time interval,
by N the number of measurements instants and set the time-step length to
∆t := T

N−1 . For all 0 ≤ n ≤ N − 1, the symbol unM stands for the measured
velocity at time tn = n∆t. Then, for all 0 ≤ n ≤ N − 2, we consider the
following Oseen type equation in terms of (un, pn):(unM · ∇)un − 2ν∇ · ε(un) +∇pn = −

un+1
M − unM

∆t
in Ω,

∇ · un = 0 in Ω.

(30)
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Γw

Figure 3: Geometric description of the domain Ω representing a stenotic
blood vessel

Note that no boundary data is prescribed in (30), which can be cumbersome
in practice since the measured velocity unM is not necessarily divergence free
(and hence incompatible with Dirichlet data on the whole boundary ∂Ω).
We hence propose to estimate un and pn (up to a constant) from the data
assimilation problem (12), with f and a (in the definition (11) of A) given
respectively by

f = −
un+1

M − unM
∆t

, a(u, v) =

∫
Ω

((unM · ∇)u) · v + ν

∫
Ω
ε(u) : ε(v).

Note that, here, the measurement and target sets coincide, ωM = ωT = Ω,
so that the estimated velocity field un has to be seen as a physically driven
regularization of the full velocity measure unM. Yet, the main target is to
estimate the RPD, defined by the following quantity:

δp =
1

|Γi|

∫
Γi

p− 1

|Γo|

∫
Γo

p.

In oder to investigate this new approach, we consider a two-dimensional
version of the test case reported in [5, Section 6]. The stenotic blood vessel
represented in Figure 3 corresponds to a contraction of 60%. The radii of
inlet and outlet are 1 cm, the length of the vessel is 6 cm and the dynamic
viscosity is given by ν = 0.035 Poise. Synthetic measurements are first
generated by numerically solving the incompressible Navier-Stokes system{

∂tu+ (u · ∇)u− 2ν∇ · ε(u) +∇p = 0 in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),
(31)
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with the following boundary and initial conditions:

u = 0 on Γw × (0, T ),

u =

(
(−60(y2 − 1) sin

(
5π

2
t

)
, 0

)
on Γi × (0, T ),

2νε(u)n− pn = 0 on Γo × (0, T ),

u(·, 0) = 0 in Ω.

(32)
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Figure 4: Left: Noise free data, right: 10% Gaussian noise on the data
with exact sampling. The exact RPD is represented in full line whereas the
reconstructed RPD is represented in dotted line.
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Figure 5: Left: Time subsampling of 0.02 s, right: Space subsampling of 0.08
cm. The exact RPD is represented in full line whereas the reconstructed
RPD is represented in dotted line.
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Figure 6: Velocity magnitude at t = 0.082, 0.162, 0.242 (from top to bot-
tom). Right: reference. Left: reconstruction with space-time subsampling
and 10% of Gaussian noise.

This direct problem (31)-(32) is discretized in space by continuous piece-
wise affine finite element approximations based on the SUPG/PSPG sta-
bilization method. The time discretization consists in a backward Euler
scheme with a semi-implicit treatment of the convective term. A standard
backflow stabilization term is also applied on the outlet boundary Γo in
order to guarantee the overall stability of the numerical scheme (see, e.g.,
[14]). The discretization parameters are set to ∆t = 0.002 s and h = 0.01
cm. This space-time grid generates a set of synthetic velocity measurements
which can be perturbed either by noise or by space-time subsampling.

Figure 4 represents the estimate RPD with the same discretization pa-
rameters as for the direct problem (no subsampling). When the data are
unperturbed, we see that the reconstructed curve is perfectly superimposed
with the exact curve (Figure 4, left). With a 10% Gaussian noise, we ob-
serve that the reconstructed curve (which corresponds to the mean curve
obtained from 30 tests with variable noises) succeeds in following accurately
the variations of the reference data (Figure 4, right).

In Figure 5, the measurements are perturbed by a subsampling both in
time and in space (the time step is 10 times larger and the mesh size is 8
times larger). We then solve the data assimilation problem with the time
step or the mesh size corresponding to this subsampling. Figure 5 shows
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that the proposed approach is able to provide a reasonable estimation of the
RPD with and without noise (10% Gaussian noise). In particular, we can
clearly observe that the RPD peak is well captured in both cases.
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