
HAL Id: hal-02319573
https://inria.hal.science/hal-02319573

Submitted on 18 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Syncpal: A Simple and Iterative Reconciliation
Algorithm for File Synchronizers

Marius Shekow

To cite this version:
Marius Shekow. Syncpal: A Simple and Iterative Reconciliation Algorithm for File Synchronizers.
19th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS),
Jun 2019, Kongens Lyngby, Denmark. pp.1-18, �10.1007/978-3-030-22496-7_1�. �hal-02319573�

https://inria.hal.science/hal-02319573
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Syncpal: A simple and iterative reconciliation
algorithm for file synchronizers

Marius Shekow1[0000−0003−3477−8446]

Fraunhofer FIT, Sankt Augustin, Germany
marius.shekow@fit.fraunhofer.de

Abstract. Today file synchronizers are tools often used to facilitate
collaboration scenarios and data management across multiple devices.
They replicate the file system, e.g. from a cloud storage to a device disk,
achieving convergence by only transmitting detected changes. A popular
variant available in a plethora of products are state-based file synchroniz-
ers such as the Dropbox client. They detect operations by computing the
difference between a previously persisted state and the respective cur-
rent state. However, state-based synchronization is difficult because we
need to detect and resolve conflicting operations as well as the propaga-
tion order of non-conflicting operations. This work presents Syncpal, an
algorithm that reconciles two divergent file systems using an iterative ap-
proach. It first handles conflicts, one at a time, making sure that resolving
one conflict does not negatively affect other ones, while avoiding conflicts
whenever possible. It then finds order dependencies (and breaks cycles)
between the remaining non-conflicting operations to avoid the violation
of operation preconditions during propagation. This work is relevant for
file synchronizer researchers and developers who want to improve their
products with an algorithm whose iterative nature reduces the overall
complexity and the probability of bugs. In addition to our proposed al-
gorithm and a formal analysis of the underlying problem, our validation
approach for the proposed algorithm includes the presentation of a full-
scale implementation of an exemplary file system model.

Keywords: file synchronizer · file system · optimistic replication · con-
flict detection.

1 Introduction

Today tools like word processors are a core component in digital workflows. They
are used to create large parts of the user’s data in the form of files, which are
stored and distributed on multiple devices in a hierarchical file system. However,
copying files and directories between storages causes various problems, both for
individual users and collaborative settings. For instance, users may fail to locate
the correct, up to date version of a document on the right device [5, 22, 8], and
files are prone to lose their context and meta-data information when transferred
via Email or instant messaging [25]. One convenient solution for such challenges
is data synchronization. File synchronizers [2] are synchronizers whose data is

2 M. Shekow

the file system, including its namespace structure and file contents. They pro-
vide optimistic replication to otherwise isolated file systems, with weak, eventual
consistency [21] guarantees. In particular, cloud storage file synchronizers like
Dropbox, Google Backup and Sync, OneDrive, ownCloud and others1 have be-
come popular over the last ten years, indicated by the high number of their
users [9, 18]. They synchronize two file system replicas—a directory on the local
storage of a device, and a directory on a cloud storage server, in near real-time.
As they are not integrated on a kernel-level with the operating system, they
use a state-based approach that detects operations by computing the difference
between the current and a persisted file system state.

When using synchronizers files are available on the local disk, thus users can
work offline for extended time periods (e.g. while traveling). The side effect is
an increased chance for conflicting operations as well as long, non-conflicting op-
eration sequences resulting from users reorganizing the folder hierarchies. These
are challenging to detect and propagate for the synchronizer. For example, a
conflict situation, where the user creates a new file at path '/dir/file' but '/dir'
was already deleted on the server, must be detected and resolved in favor of
one of the operations. But even non-conflicting operations can be challenging
to propagate. Consider the situation where the user swaps two objects at paths
'/x' and '/y' on the local disk, using three rename operations. The synchro-
nizer’s state-based update detection mechanism detects them as two operations
(move('/x', '/y')+move('/y', '/x'). If the corresponding objects were not mod-
ified on the server since the last synchronization (which makes the operations
non-conflicting), the synchronizer cannot apply these two detected move opera-
tions to the server because they would violate the move operation’s precondition
that requires the target location to be free.

Contrary to the marketing materials of industrial synchronizers which promise
that their product ”just works”, we observed that they misbehave and make in-
transparent decisions for the user - especially when attempting to synchronize
after a long offline phase. This includes:

– Inexplicable changes made to the file system, convoluting its structure, e.g.
with file and folder (conflict) copies where no conflict actually happened,

– Ineffective use of network bandwidth, in particular when move operations
were not detected correctly in replica X, causing the synchronizer to re-
transmit large files as new, rather than moving them on replica Y ,

– Bugs or crashes of the file synchronizer, resulting in permanently divergent
replicas, or even data loss.

All these problems cause frustration because users then have to repair direc-
tory structures and file contents manually. The majority of issues can be traced
back to an incomplete analysis of the underlying file system model (and its
operations) by the synchronizer authors. In this work we contribute Syncpal, a
generic algorithm for file synchronizers that eliminates above side effects, because

1 E.g. Amazon Drive, Box, NextCloud, Seafile, SpiderOakOne, LeitzCloud, Tonido,
TeamDrive, Strato HiDrive, or Hubic.

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 3

it provides a simple and iterative solution to solving conflicts and propagating
non-conflicting operations. It is based on a formally defined file system model,
which makes its individual steps provably correct. Additionally, it is able to
avoid conflicts whenever possible, resolves conflicts without side effects for other
conflicts, and does not replace detected move operations with delete and create
operations. This improves propagation performance, preserves meta-data (which
would otherwise be lost due to the delete operation) and maintains usability, be-
cause users will be able to identify the move operations of their own replica in
the respective operations log of the other replica [20].

We start with providing background on file synchronizers, file systems and
state-based update detection in section 2. After presenting the generic approach
in section 3 we apply it to a concrete file system model in section 4. We briefly
present the evaluation of an implementation of our approach in section 5 and
conclude in section 6.

2 Background

We begin with a short introduction to file synchronizers in section 2.1. As file
systems are the core component being synchronized, we briefly explain differences
in how file systems can be modeled and formally present our own, exemplary
model in section 2.2, which we use in the remainder of this work. In section 2.3
we briefly explain how operations are detected in a state-based approach.

2.1 File synchronizers

In [2] the authors describe and coin the term file synchronizer as a user-invoked
program that performs a pair-wise synchronization of two file system replicas.
They describe a state-based approach [21] with three stages, update detection,
reconciliation and propagation. In contrast, operation-based approaches like [13,
15] rely on a complete log of operations. Because some file systems (e.g. POSIX
APIs) do not provide such logs, it is reasonable to assume that cloud storage
synchronizers (and other products) use a state-based approach with a similar
three-stage process. State-based approaches persist the file system state (struc-
ture + meta-data) in a database and compute operations by comparing the
persisted and current state, see section 2.3 for more details. Surprisingly, while
there is a plethora of file synchronizer products, the topic has not received much
attention in comparison within academia (neither state- nor operation-based
synchronizers).

2.2 File system model

Every file synchronizer uses its own internal file system model definition for the
state. An analysis of related works reveals several differences:

4 M. Shekow

– Identity- vs. path-based model : as discussed in [23, section 3] the file system
and its operations can be modeled using the identity-based approach where
each object is identified by a unique ID, or by a path-based approach where
objects are only identified by their path. ID-based approaches include [23, 3,
10–13], for path-based approaches see [2, 15, 4, 24].

– Hardlink support for files: an identity-based model may support that a spe-
cific file is linked exactly once, or several times. In the latter case a file’s
name may be part of the file itself, or be part of the parent-child link.

– Directory support: Most file system implementations support directories.
However, alternatives exist, e.g. models that only consist of a set of file paths
and their identities [19, Definition 2.3.1 + section 2.4.4]. Another example
is Git [24] which does not support empty directories.

– Operation support: while the models of all file synchronizers we examined
support create directory, create file and edit operations (that update the
content of a file), support for other operations varies. For example, the model
may or may not offer a move operation, or the delete operation may be
modeled as such, or as a move operation to the garbage directory [13].

Because there may be a mismatch between the internal model definition and
the definitions of the two underlying replicas being synchronized, file synchro-
nizers belong to the category of heterogeneous synchronization [17, 6, 1].

We now present a formal file system model that is used in the remainder of
this work. It is ID-based, because the file systems industrial synchronizers are
ID-based, too, and because IDs allow to efficiently detect moved objects.

We define the file system F to be a set of tuples where each tuple represents
an object with a unique ID i ∈ I, parent directory ID p ∈ I, type t ∈ T (with
T = {file, dir}), name n ∈ Σ+ (with Σ+ = Σ∗\{ε}), lastmodified meta-datum
l ∈ L and content b ∈ B. I is the set of unique IDs, L is the set of all valid
lastmodified meta-datum values (e.g. N or arbitrary strings), and B is the set
of arbitrary byte sequences, including ε. That is, F ⊂ I × I × T ×Σ+ × L×B,
with tuples (ik, pk, tk, nk, lk, bk) with tk = dir =⇒ bk = ε. Several invariants
hold for F :

∀i, j ∈ I : i ∈ list(j) =⇒ type(j) = dir (1)

∀i ∈ I : i /∈ list(i) (2)

∀i, j, k ∈ I : j 6= k ∧ i ∈ list(j) =⇒ i /∈ list(k) (3)

∀i ∈ I : iroot /∈ list(i) (4)

∀i ∈ I \ {iroot} : type(i) 6= error ⇐⇒ ancestor(iroot , i) (5)

∀i, j, k ∈ I : j 6= k ∧ j ∈ list(i) ∧ k ∈ list(i) =⇒ name(j) 6= name(k) (6)

where list(i) returns the set of IDs of all tuples whose pk = i (i.e., the set
of immediate child IDs of i); type(i) returns tk of the tuple where ik = i, or

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 5

error if no such tuple exists; name(i) returns nk of the tuple where ik = i. We
additionally define the predicate

ancestor(i, j) =


true j ∈ list(i)

true ∃k ∈ list(i) : ancestor(k, j)

false otherwise

to express whether the object with ID i is an ancestor of the object with ID j. F is
an arborescence rooted in the well-known object iroot ∈ I with type(iroot) = dir ,
where each object exists exactly once.

The operations with their pre- and postconditions are defined in table 1.
Function id(i, n) returns the ID of the object with parent i and name n, or error
if no such object exists. lastmodified(i) returns lk of the tuple where ik = i, or
error if no such tuple exists. content(i) returns bk of the tuple where ik = i, or
error .

We refer to [14, Section 8.5] for an equivalent formal definition, which the
authors proved to be correct using the CISE SMT solver [7].

2.3 State-based update detection

State-based update detection means that operations are computed by comparing
the persisted and current state of the tree-shaped data structure. The operations
depend on the data model and there might be slight differences between the
detected operations and those defined in the file system model. For F we detect:

– createdir(i, p, n): a directory was created, when we find i with type(i) = dir
in the current state, but not in the persisted one

– createfile'(i, p, n, c): a file with content c was created, when we find i with
type(i) = file in the current state, but not in the persisted one

– move(i,u,v,n): an object was moved, when we find i in both states, but with
varying name or parent

– edit'(i): a file content was edited, when we find i in both states, but with
different lastmodified meta-datum l. For update-detection, the exact content,
i.e., how the file changed, is not relevant yet (edit ′ 6= edit)

– delete'(i,p): an object was deleted when we find i in the persisted state,
but not in the current one. delete ′ is a recursive operation when it affects a
directory. It aggregates all other detected deletefile(j, q) and deletedir(j, q)
operations that affect objects j situated below i, i.e., where ancestor(i, j)
holds. When the synchronizer applies delete ′(i, p) to the other replica in the
propagation stage, it has to apply the corresponding deletefile and deletedir
operations according to a post-order traversal of the file system arborescence.

The computed list of operations does not indicate the exact order of oper-
ations, and some operations are affected by consolidation. See [20, 4] who iden-
tified this problem for file systems without move operation support. For F we
find seven consolidation rules presented in table 2 by examining all operation
pairs. Note that create = createfile ∨ createdir , delete = deletefile ∨ deletedir .

6 M. Shekow

Table 1. File system operations

Operation Description, pre- and post-conditions

createdir(i, p, n) Creates new dir with ID i and name n in parent dir with ID p.
Precondition: ¬ancestor(iroot , i) ∧ (ancestor(iroot , p) ∨ p =
iroot) ∧ type(p) = dir ∧ id(p, n) = error
Postcondition:
i ∈ list(p) ∧ type(i) = dir ∧ lastmodified(i) 6= error

createfile(i, p, n) Creates new file with ID i and name n in parent dir with ID p.
Precondition: see createdir(i, p, n)
Postcondition:
i ∈ list(p) ∧ type(i) = file ∧ lastmodified(i) 6= error

move(i, u, v, n) Moves a file or dir with ID i from parent dir with ID u to
parent dir with ID v, and/or change the object’s name to n.
Precondition: type(u) = dir ∧ i ∈ list(u) ∧ type(v) = dir
∧id(v, n) = error ∧ ¬ancestor(i, v)
Postcondition: i ∈ list(v) ∧ i /∈ list(u)
Note: ¬ancestor(i, v) ensures that the user cannot move a dir
to a destination dir below it.

deletefile(i, p) Removes the file with ID i from parent dir with ID p.
Precondition: ancestor(iroot , i) ∧ type(i) = file
Postcondition:
i /∈ list(p) ∧ ¬ancestor(iroot , i) ∧ lastmodified(i) = error

deletedir(i, p) Removes the empty dir with ID i from parent dir with ID p.
Precondition: ancestor(iroot , i) ∧ type(i) = dir ∧ list(i) = {}
Postcondition: see deletefile(i, p)

edit(i, op) Changes the byte content of file with ID i by performing the
operation op (e.g. adding, removing or changing bytes at
specific positions within the file).
Precondition: ancestor(iroot , i) ∧ type(i) = file. Let
lpre = lastmodified(i)
Postcondition: ancestor(iroot , i) ∧ lastmodified(i) 6= lpre

3 Approach

This section describes our approach in generic steps, independent of a concrete
data model, such as F . It consists of two phases. The preparation phase de-
scribed in section 3.1 is done offline before implementing the software, whereas
the execution phase applies the findings of phase 1, online at run-time of the
synchronizer, see section 3.2.

3.1 Phase 1: Preparation

In the preparation phase we get an understanding of the problems that can occur
during synchronization by building and closely examining the file system model.
We found that an analysis of the operation preconditions reveals two classes of
issues: first, two concurrent operations (each applied to a different replica) can

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 7

Table 2. Operation consolidation rules

Operation consolidation rule Explanation

move(i, u, v1, n1) + move(i, v1, v2, n2) ∼=
move(i, u, v2, n2)

An object moved several times is
detected as moved exactly once.

createfile(i, p, n) + edit(i, op) ∼=
createfile ′(i, p, n, c)

Creating an empty file and changing its
content is detected as a non-empty file.

create(i, p, n1) + move(i, p, v, n2) ∼=
create(i, v, n2)

Creating and moving an object is
detected as if it were created in the
move operation’s destination.

edit(i, op1) + edit(i, op2) ∼= edit ′(i) Editing a file multiple times is detected
as a single edit ′ operation.

create(i, p, n) + delete(i, p) ∼= [] A created object that is subsequently
deleted is not detected at all.

edit(i, op) + deletefile(i, p) ∼= deletefile(i, p) When an edited file is subsequently
deleted, only the deletion is detected.

move(i, u, v, n) + delete(i, v) ∼= delete ′(i, u) When a moved object is subsequently
deleted, only the deletion is detected.

cause conflicts that a synchronizer needs to handle. Second, state-based update
detection will not detect the actual operations (and their order) applied by the
user, but only an equivalent, unordered set. A precondition analysis must extract
order dependencies (and even identify cycles), otherwise the synchronization of
operations may fail. The following sections describe the individual steps.

Step 1: File system model formalization: The first step is to formally
define the file system model the synchronizer uses internally, that consists of a
formal definition of its elements, invariants and operations (with their pre- and
postconditions). We recommend an automated approach where a model (initially
built by hand) is iteratively refined via model checking tools, until all invariants
and operations are known and free of contradictions. See [14] for an example,
who did this for a model equivalent to our F model.

Step 2: Analysis of conflicting operations: An operation oX detected in
replica X is conflicting with operation oY detected in replica Y (and thus cannot
be applied to Y by the synchronizer) if the preconditions of oX no longer hold
for new state of Y due to the modifications already applied to Y by oY .

To find conflicts, let OT be the list of all operation types of the model found
in step 1. We start from an initially equal state for replicas X and Y . For any
two types tA, tB from OT we instantiate operations oX (of type tA) and oY (of
type tB), apply oX to X (which yields X ′) and oY to Y (yields Y ′). We choose
the operation parameters (e.g. i, p, u, v, n for F) such that either applying oY to
X ′, or oX to Y ′ fails, due to violated preconditions.

Finding conflicts can be done manually or in an automated approach. The
manual, pragmatic approach examines each individual precondition of each op-

8 M. Shekow

eration type tA and finds a tB , oY and oX that produces a conflict. We generally
recommend to identify pseudo conflicts, where two operations do conflict syn-
tactically, but should not, because both operations have the same effect. In this
case the synchronizer does not need to change the replicas, because the effect
of both operations is the same anyway. An example for a pseudo-conflict is if
oX , oY are both deletefile(i,p) operations that affect the same object i.

Step 3: Resolving conflicts: The general rule of conflict resolution is that the
effect of operations oX and oY are preserved as much as possible. There are two
general approaches to conflict resolution:

1. Choose one of the operations to win, and manipulate the loser operation to
resolve the conflict, or

2. Let both operations lose, by manipulating both of them, which avoids having
to choose a winner.

We prefer option 1. Even though it is challenging to decide which of the two
operations should take precedence in case of automatic resolution2, the advan-
tage is that at least one operation is fully preserved, and only the user who
executed the loser operation needs to be informed. Our general approach for
resolving conflicts is to perform the simplest possible resolution step, focusing
on manipulating the loser operation instead of the winner operation. Sometimes
the loser operation only has to be changed slightly, in other cases it has to be
undone completely. Consider an example where oX deletes a directory which
was renamed by oY , and the strategy is to prefer delete over move operations.
Instead of executing oX in replica Y , which could cause side effects because the
directory may have child-objects that are involved in other conflicts, it is more
appropriate to undo oY . The winner operation oX remains and is eventually
executed, once all other conflicts have been resolved.

If conflict resolution is automatic, we need to make sure that if the preconfig-
ured resolution was inappropriate for the user, the costs of subsequent, manual
repair of the file system is manageable. Optimally, automatic resolutions can be
changed by the user by a simple click, either before (via configuration) or after
the fact.

In this step the synchronizer developer needs to examine each conflict found
in step 2 and determine suitable resolution options. The operation(s) the syn-
chronizer generates to resolve a conflict must be designed such that their execu-
tion cannot fail (due to violated preconditions), even if other conflicts exist.

Step 4: Analysis of operation order dependencies: Assume that a file
synchronizer has resolved conflicting operations between X and Y , such that the
update detection now results in one set of unordered operations per replica ŌX ,
ŌY . To be able to propagate the operations in ŌX , ŌY , a suitable order needs to
be found, which requires an analysis of the operation preconditions because not

2 This is not a problem if the conflict resolution is delegated to the user.

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 9

all operations are commutative. Let OT be the list of considered operation types.
For any two types tA, tB fromOT we instantiate the respective operations oA, oB ,
as they would have been detected (see section 2.3) on one specific replica, e.g. X.
We choose the parameters (e.g. i, p, u, v, n for F) such that applying the sequence
(oA, oB) to the other, unchanged replica is feasible, but applying (oB , oA) would
fail, because a precondition of one of the two operations is violated. We end up
with a list of order dependencies, where each order dependency contains tA, tB (in
a specific order) and the violated operation precondition(s). Finally, we examine
whether cycles can be built from the order dependencies.

3.2 Phase 2: Execution

Fig. 1. Synchronization algorithm

Figure 1 provides a flow chart of our algorithm. Hexagons illustrate compu-
tation steps, table-shaped rectangles represent data structures. The Current file
system state is provided (and regularly updated) by the update detection com-
ponent of the synchronizer (not shown). Our algorithm is iterative. Let ŌX , ŌY

be the detected operations. Step Find conflicts analyzes every operation pair of
ŌX , ŌY and generates (1) a list of conflicts C where each c ∈ C is a tuple of
two conflicting operations, and (2) a list of pseudo-conflicts P , where each p ∈ P
summarizes two pseudo-conflicting operations. If C 6= ∅, C is sorted according to
some preference (e.g. ”resolve conflict type t1 before type t2”), if desired. Then a
resolution operation is generated and executed that only resolves the first c ∈ C.
If C = ∅ then operations are sorted according to algorithm 1.

We build operations as an initially unsorted list of pseudo-conflicting op-
erations P and non-conflicting operations from ŌX , ŌY (that are not in P).
Function find and fix order violations() performs an in-place sorting of
operations. It checks all operation pairs for order violations as determined
in step 4. If a violation is detected, the order of the two operations is swapped,

10 M. Shekow

Algorithm 1 Sorting operations

def s o r t o p e r a t i o n s (Ox, Oy, P) −> L :
global has order changed = False
ope ra t i on s = [P + (Ox − P) + (Oy − P)]
co mp l e t e cy c l e s = []
r e o r d e r i n g s = []
while True :

has order changed = False
f i n d a n d f i x o r d e r v i o l a t i o n s (ope ra t i on s)
i f not has order changed :

break
co mp l e t e cy c l e s = f i n d c o m p l e t e c y c l e s (r e o r d e r i n g s)
i f len (c o mp l e t e cy c l e s) > 0 :

break
i f len (c o mp l e t e cy c l e s) > 0 :

r e s o l u t i o n o p e r a t i o n = b r e a k c y c l e (c om p l e t e cy c l e s [0])
return [r e s o l u t i o n o p e r a t i o n]

else :
return ope ra t i on s

the corrected order is added to reorderings and has order changed is set to
True. Eventually either a cycle is found in reorderings which needs to be bro-
ken, or no more order violations were found in operations. In the first case
break cycle() must identify an operation oX in the cycle where manipulating
replica Y and the persisted state will dissolve a specific order dependency that
involves oX , turning the cycle into a chain. See section 4.4 for an example. In
the latter case our algorithm achieves convergence for both replicas, by iterating
over each o in operations and executing the detected operation on the corre-
sponding other replica, followed by updating the persisted state. If o ∈ P then
only the persisted state is updated, because the effect of o is already reflected in
X and Y .

4 Application

In this section we provide an exemplary application of the four preparation steps
from section 3 to file system model F .

4.1 Step 1: File system model formalization

Refer to the definition of F presented earlier in this work in section 2.2.

4.2 Step 2: Conflict detection

By examining the preconditions of the operations from table 1, we find the
conflicts and pseudo-conflicts presented in the following two lists. We use the

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 11

⊗ symbol for two conflicting operations. We use subscript letters X and Y as
placeholders that designate to which replica the operation (or parameter) applies.

– Create-Create: On both replicas a new object was created with the same
name under the same parent directory.
Definition: createX(iX , uX , nX)⊗ createY (iY , uY , nY) = [uX = uY]∧ [nX =
nY] ∧ [typeX(iX) = dir ∨ typeY (iY) = dir ∨ contentX(iX) 6= contentY (iY)]
with create := createdir ∨ createfile ′.
Violated precondition: id(p, n) = error

– Edit-Edit: The content of a file was changed on both replicas.
Definition: edit ′X(iX , opX)⊗ edit ′Y (iY , opY) = [iX = iY] ∧ [contentX(iX) 6=
contentY (iY)]
Violated precondition: technically no precondition is violated, but overwrit-
ing the file content on replica X with the one from replica Y would cause
X’s changes to be lost

– Move-Create: On one replica the user moved an object into a specific
parent directory, assigning name n, on the other replica the user created a
new object with the same name n in the same parent directory.
Definition: createX(iX , uX , nX) ⊗ moveY (iY , uY , vY , nY) = [uX = vY] ∧
[nX = nY] with create := createdir ∨ createfile ′

Violated preconditions: create: id(p, n) = error ; move: id(v, n) = error
– Edit-Delete: On one replica a file’s content was edited, on the other replica

the corresponding file was deleted.
Definition: edit ′X(iX , opX)⊗ delete ′Y (iY , pY) = (iX = iY)
Violated precondition: On replica Y , ancestor(iroot , i) of the edit ′ operation
is violated. On replica X there is no violation on the technical level, but on
the semantic level: the changes of the edit' operation would be lost.

– Move-Delete: On one replica an object was moved, on the other replica
the corresponding object was deleted (either directly or as a consequence of
deleting a parent directory).
Definition: moveX(iX , uX , vX , nX)⊗ delete ′Y (iY , pY) = (iX = iY)
Violated precondition: On replica Y , i ∈ list(u) of the move operation is
violated. On replica X there is no violation on the technical level, but on the
semantic level: the changes of the structural change of the move operation
would be lost. The user who deleted the object would have done so without
knowing that it was recently moved by another user on the other replica.

– Move-Move (Source): On both replicas the same object was moved to a
different location. That is, on each replica either the new name or parent
directory (or both) differs.
Definition: moveX(iX , uX , vX , nX)⊗moveY (iY , uY , vY , nY) = (iX = iY) ∧
[(vX 6= vY) ∨ (nX 6= nY)]
Violated precondition: on replica X: iY ∈ list(uY); on replica Y : iX ∈
list(uX). The source is no longer in the expected location

– Move-Move (Dest): The users of both replicas each moved a different ob-
ject into the same parent directory, assigning the same name. The name of
this conflict is Move-Move (Dest) because the conflict occurs at the destina-
tion.

12 M. Shekow

Definition: moveX(iX , uX , vX , nX)⊗moveY (iY , uY , vY , nY) = (iX 6= iY) ∧
(vX = vY) ∧ (nX = nY)
Violated precondition: id(v, n) = error

– Move-ParentDelete: On one replica the user deleted directory d, on the
other replica the user moved another object into d.
Definition: moveX(iX , uX , vX , nX)⊗ delete ′Y (iY , pY) = (vX = iY)
∧ancestorY (iroot , iX)
Violated precondition: move: type(v) = dir

– Create-ParentDelete: On one replica the user deleted directory d, on the
other replica the user creates a new object in d.
Definition: createX(iX , pX , nX)⊗delete ′Y (iY , pY) = (pX = iY) with create :=
createdir ∨ createfile ′

Violated precondition: type(p) = dir
– Move-Move (Cycle): Given two synchronized directories A and B, A was

moved into B’s namespace on one replica while B was moved into A’s names-
pace on the other replica. This would create a cyclic parent-child relationship
in the merged result.
Definition: moveX(iX , uX , vX , nX) ⊗moveY (iY , uY , vY , nY) = (type(iX) =
type(iY) = dir)∧ [ancestor(iY , vX)∨ (iY = vX)]∧ [ancestor(iX , vY)∨ (iX =
vY)] where ancestor refers to the state after all operations were executed.
Violated precondition: ¬ancestor(i, v)

Pseudo-conflicts are presented in the following list, where � indicates that
two operations are pseudo-conflicting:

– Edit-Edit: The content of a file was changed on both replicas, such that
the content is now the same.

– Create-Create: On both replicas a new file was created with the same con-
tent and name under the same parent directory. It would also be possible to
consider two createdir operations to pseudo-conflict and to merge the direc-
tory contents recursively. However, if this resolution is done automatically
and is inappropriate, manual clean up work is extensive [15].

– Delete-Delete: both replicas deleted the same object.
Definition: delete ′X(iX , pX)� delete ′Y (iY , pY) = (iX = iY)

– Move-Move: A specific object was moved to the same location.
Definition: moveX(iX , uX , vX , nX) �moveY (iY , uY , vY , nY) = (iX = iY) ∧
[(vX = vY) ∧ (nX = nY)]

4.3 Step 3: Resolving conflicts

Who wins? The winner of a conflict can be chosen in numerous ways. Either the
user is explicitly involved in each decision, or conflicts are resolved automatically.
For the latter the resolution strategy is pre-configured, typically by the developer.
To better customize the synchronizer to the user’s workflows, we propose to
develop multiple conflict resolution strategies to choose from, where the choice
may be given to the users or technically-apt administrators.

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 13

Name occupation conflicts: The Create-Create, Move-Create and Move-
Move (Dest) conflicts all have in common that a specific name in a specific
directory is being occupied by a create or move operation in each replica. A
simple resolution approach is to modify the loser operation, by renaming the
object on the corresponding replica, appending a unique suffix to the name.

Edit-Edit: When a specific file is edited on both replicas, undoing or modifying
may not be possible because a replica may not store previous versions of a file.
Resolving this conflict can either be achieved by renaming the loser file (and
synchronizing it to the other replica, or keep it only on the loser replica), or
backing up the loser file and overwriting it with the file of the winner replica,
together with updating the lastmodified timestamp in the persisted state.

Delete conflicts: Both Edit-Delete and Move-Delete are conflicts where
one operation changed the object, while the other one deleted it. Thus the reso-
lution approach should be similar for both. When the resolution favors the delete
operation, a Move-Delete conflict can be resolved by undoing the move, but
since the edit operation of an Edit-Delete conflict cannot be undone, the only
solution is to delete the file from the loser replica and persisted state, to avoid
the redetection of the conflict.

When the resolution favors the move or edit operation, we suggest the fol-
lowing approach:

– Edit-Delete: if the loser replica keeps deleted files in a garbage directory
then restoring such files effectively undoes the delete operation. Otherwise
the synchronizer can remove the file’s entry from the persisted state only.
In the next iteration, the file will be detected as createfile' operation and it
will be synchronized to the loser replica.

– Move-Delete: the resolution works like for Edit-Delete conflicts. One
caveat to consider is that when the move operation affects a directory, remov-
ing its entries from the database may cause orphaned entries for those child-
objects that were moved out. For instance, given a directory at path '/d' and
file '/d/f', with operationsmoveX(′/d′,′ /e′),moveY (′/d/f ′,′ /f ′), delete′Y (′/d′).
To restore the directory, deleting both the directory and its children from the
persisted state is inappropriate, because then one move operation would be
lost, causing file f to be duplicated. However, removing only those objects
that were deleted on replica Y , here: '/d', would also be inappropriate, be-
cause f would then be orphaned in the persisted state. We propose to move
such orphaned objects temporarily to the root level in the persisted state
and solve follow-up Move-Move (Source) conflicts in favor of replica Y .

Move-Move (Source): We propose to resolve this conflict type by undoing the
loser move operation. Note that undoing a move operation may not always be
possible: the source parent directory s might already be deleted, or the original
name of the moved object might already be occupied in s, or the user could have

14 M. Shekow

moved s such that it is now a child of the affected object. In case of such issues
we propose to move the affected object to the root of the synchronized directory
instead, with a random suffix added to its name.

Indirect conflicts: Two operations indirectly conflict with each other if they
don’t target two different objects, which are always in a hierarchical parent-child
relationship. The Move-Move (Cycle), Move-ParentDelete and Create-
ParentDelete conflict belong to this category. Move-Move (Cycle) con-
flicts can be resolved exactly like Move-Move (Source) conflicts. Move-
ParentDelete can be resolved by either undoing the deletion by restoring the
deleted directory in its entirety (with all sub-objects), if possible, or to prefer
the delete operation by undoing the move operation. The goal is to resolve this
conflict in a way that avoids that both users are unhappy with the merged result.
For instance, the two following resolution approaches would be bad ideas: (1)
favor the move operation, by restoring only the deleted directory (and all its
ancestor directories) targeted by the move operation, in order to make the move
operation possible. This would partially undo the delete operation and cause an
inconsistent namespace that would not be appreciated by either user. (2) Favor
the delete operation by deleting the directory. This would cause the moved file to
be deleted, which was not the intention of either user. In contrast, our solution
only discards the intention for the user of the move operation.

Resolving Create-ParentDelete conflicts works similarly. We also suggest
to take precedence to the delete operation. Undoing the create operation would
mean data loss, thus we suggest to back up the created object first, or to move
it to the root of the synchronized directory, or to a garbage directory.

Pseudo conflicts: A pseudo conflict is resolved by updating the entries of
the affected objects in the persisted state, such that the two operations are
no longer detected in the next iteration. For example, a Delete-Delete pseudo-
conflict would be resolved by removing the entries of the affected objects from
the persisted state.

4.4 Step 4: Analysis of operation order dependencies

For F we chooseOT = {createfile ′, createdir ,move, edit ′, delete ′}. Figure 2 shows
an overview of the eight order dependencies we found for the operation types in
OT . The arrows are denoted with a dependency number explained below:

Create Move

5 1

Create Move

7 4

Create

Move

2 3

6, 8

Fig. 2. Operation dependencies

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 15

1. delete ′ before move, e.g. user deletes an object at path '/x' and moves an-
other object '/a' to '/x'

2. move before create, e.g. user moves an object '/a' to '/b' and creates another
object at '/a'

3. move before delete ′, e.g. user moves object '/X/y' outside of directory '/X'
(e.g. to '/z') and then deletes '/X'

4. create before move, e.g. user creates directory '/X' and moves object '/y'
into '/X'

5. delete ′ before create, e.g. user deletes object '/x' and then creates a new
object at '/x'

6. move before move (occupation), e.g. user moves file '/a' to '/temp' and then
moves file '/b' to '/a'

7. create before create, e.g. user creates directory '/X' and then creates an
object inside it

8. move before move (parent-child flip), e.g. user moves directory '/A/B' to
'/C', then moves directory '/A' to '/C/A' (parent-child relationships are
now flipped)

By connecting the dependencies, we’re able to construct cycles. Figure 3
shows minimal cycles (with the smallest possible number of operations) in the
first row, and two examples of more elaborate cycles in the second row. We
note that it is impossible to build cycles of only delete and create operations.
It is also easy to prove that cycles that exclusively consist of move operations
connected only by rule 8 are impossible3. Cycles always include at least one
move operation.

Move Move

6

6, 8

Move Create

2

4

Move Delete

3

1

Create

Move

4 3

5
Delete

Move

1 8

3

Fig. 3. Operation dependency cycles

For any cycle found in replica X there must always be at least one operation
oX (that affects object with ID i) which frees a location (i.e., a name in a
specific directory) that is used by a follow-up operation o′X . oX must either be a
move (dependencies 6+2) or a delete (dependencies 1+5) operation. Instead of
executing oX we generate a different move operation rY that breaks the cycle.

3 Intuitively, a proof by contradiction shows that the existence of a rule 8 cycle of n
objects would require that those n objects also formed a cyclic parent-child relation-
ship (before and after synchronization), but cycles are not allowed in F .

16 M. Shekow

rY renames i by appending a unique suffix to its name. We execute rY on Y and
the persisted state. This way, rY is not detected after restarting the algorithm,
but oX still is detected because rY did not modify X: if oX is a move operation,
changing the name of i in the persisted state to a unique name will still find i
as moved on X; if oX is a delete operation then it will still be deleted on X.
However, the cycle is now broken, because the order dependency (6, 2, 1, or 5)
no longer applies. Note that if oX ∈ P , i.e., oX is a pseudo-conflicting operation,
rY may only be executed on the persisted state, leaving both physical replicas
X,Y untouched.

5 Evaluation

We implemented the approach presented in section 4 as a user-space Python
program that synchronizes folders on the user’s local disk to the BSCW group-
ware [16]. We deployed it to 30 users who have been using it in production
for over one year. In addition to hundreds of hand-made tests we applied two
automated testing approaches to verify practical correctness of our algorithm.
We used a variation of model checking.

In the first test approach we generated all possible operation sequences that
can be applied to the 12 start scenarios that consist of three directories and one
file. Due to state-space explosion we limited the number of operations to one
createfile, two createdir, three move and three delete operations. This resulted
in 5.5 million test cases computed in a HPC cluster over several weeks. Because
local file systems (even RAM disks) are slow, we sped up test generation and
execution by implementing a simple in-memory file system used instead.

To overcome the operation count limit resulting from state explosion in the
first test approach, the second approach generated a much larger count (up to 30
operations). Each operation type and its parameters were chosen at random. We
ran millions of test cases and discovered no anomalies in our implementation.

6 Conclusions

In this work we presented an iterative algorithm for the synchronization of two
replicas X and Y that hold tree-shaped data structures, where operations since
the last synchronization are detected using a state-based approach. We applied
it to file synchronizers with a concrete file system model.

While the drawback of our iterative algorithm is the increased run-time in
those scenarios where multiple iterations are required, we observed that those
higher costs only occur after long offline periods. The advantage of the algo-
rithm is that its individual steps are simple to implement, minimal and atomic.
Therefore the synchronization procedure can be interrupted any time, because
it avoids long-lasting transactions.

This work demonstrates two challenges during synchronization. First, state-
based update detection does not provide the order of the detected operations,
which we solve by analyzing the operation preconditions to find a suitable order.

Syncpal: A simple and iterative reconciliation algorithm for file synchronizers 17

The second challenge is that an operation in replica X may conflict with another
operation in Y . We provide guidelines for how to identify sensible resolution
options, find all possible conflicts, and how to build operations that resolve them.
We leave finding a suitable (graphical) representation of the conflicts and their
resolution (if automatic) as future work. We consider such conflict awareness an
important aspect, as it improves the overall usability of the system.

References

1. Antkiewicz, M., Czarnecki, K.: Design Space of Heterogeneous Synchronization. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Tech-
niques in Software Engineering II: International Summer School, GTTSE 2007,
Braga, Portugal, July 2-7, 2007. Revised Papers, pp. 3–46. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3 1,
https://doi.org/10.1007/978-3-540-88643-3 1

2. Balasubramaniam, S., Pierce, B.C.: What is a File Synchronizer? In:
Proceedings of the 4th Annual ACM/IEEE International Conference on
Mobile Computing and Networking. pp. 98–108. MobiCom ’98, ACM,
New York, NY, USA (1998). https://doi.org/10.1145/288235.288261,
http://doi.acm.org/10.1145/288235.288261

3. Bao, X., Xiao, N., Shi, W., Liu, F., Mao, H., Zhang, H. (eds.): SyncViews: Toward
Consistent User Views in Cloud-Based File Synchronization Services: 2011 Sixth
Annual Chinagrid Conference (2011). https://doi.org/10.1109/ChinaGrid.2011.35

4. Csirmaz, E.: Algebraic File Synchronization: Adequacy and Completeness.
https://arxiv.org/pdf/1601.01736.pdf (2016)

5. Dearman, D., Pierce, J.S.: It’s on my other computer! Computing with mul-
tiple devices. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 767–776. ACM, Florence, Italy (2008).
https://doi.org/10.1145/1357054.1357177

6. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Exploit-
ing schemas in data synchronization. Journal of Computer and System Sciences
73(4), 669–689 (2007). https://doi.org/10.1016/j.jcss.2006.10.024

7. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’Cause I’m
strong enough: Reasoning about consistency choices in distributed systems. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 371–384. ACM, St. Petersburg, FL, USA
(2016). https://doi.org/10.1145/2837614.2837625

8. Jokela, T., Ojala, J., Olsson, T.: A Diary Study on Combining Multiple Information
Devices in Everyday Activities and Tasks. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pp. 3903–3912. ACM, Seoul,
Republic of Korea (2015). https://doi.org/10.1145/2702123.2702211

9. Kollmar, F.: The Cloud Storage Report – Dropbox Owns Cloud Storage on Mo-
bile. https://blog.cloudrail.com/cloud-storage-report-dropbox-owns-cloud-storage-
mobile/ (2016)

10. Li, Q., Zhu, L., Zeng, S., Shang, W.Q. (eds.): An Improved File System Syn-
chronous Algorithm: 2012 Eighth International Conference on Computational In-
telligence and Security (2012). https://doi.org/10.1109/CIS.2012.123

18 M. Shekow

11. Li, Q., Zhu, L., Shang, W., Zeng, S.: CloudSync: Multi-nodes Directory Synchro-
nization. In: International Conference on Industrial Control and Electronics Engi-
neering (ICICEE 2012), 2012. pp. 1470–1473. IEEE, Piscataway, NJ and Piscat-
away, NJ (2012). https://doi.org/10.1109/ICICEE.2012.386

12. Lindholm, T., Kangasharju, J., Tarkoma, S.: A hybrid approach to optimistic file
system directory tree synchronization. In: Kumar, V., Zaslavsky, A., Cetintemel,
U., Labrinidis, A. (eds.) The 4th ACM international workshop on Data engineering
for wireless and mobile access. pp. 49–56. ACM, New York, NY, USA (2005).
https://doi.org/10.1145/1065870.1065879

13. Molli, P., Oster, G., Skaf-Molli, H., Imine, A.: Using the transformational approach
to build a safe and generic data synchronizer. In: Proceedings of the 2003 interna-
tional ACM SIGGROUP conference on Supporting group work, pp. 212–220. ACM,
Sanibel Island, Florida, USA (2003). https://doi.org/10.1145/958160.958194

14. Najafzadeh, M.: The Analysis and Co-design of Weakly-Consistent Applications.
Ph.D. thesis, Université Pierre et Marie Curie (2016), https://hal.inria.fr/tel-
01351187/document

15. Ng, A., Sun, C.: Operational Transformation for Real-time Synchronization of
Shared Workspace in Cloud Storage. In: Proceedings of the 19th International
Conference on Supporting Group Work, pp. 61–70. ACM, Sanibel Island, Florida,
USA (2016). https://doi.org/10.1145/2957276.2957278

16. OrbiTeam Software GmbH & Co KG: BSCW Social. https://www.bscw.de/social/
(2018)

17. Pierce, B.C., Vouillon, J.: What’s in Unison? A Formal Specification and Reference
Implementation of a File Synchronizer (2004)

18. Price, R.: Google Drive now hosts more than 2 trillion files.
http://www.businessinsider.de/2-trillion-files-google-drive-exec-prabhakar-
raghavan-2017-5 (2017)

19. Qian, Y.: Data synchronization and browsing for home environments. Ph.D. thesis,
Eindhoven University of Technology (2004)

20. Ramsey, N., Csirmaz, E.: An algebraic approach to file synchronization. In:
Tjoa, A.M., Gruhn, V. (eds.) the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium. p. 175 (2001).
https://doi.org/10.1145/503209.503233

21. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37(1),
42–81 (2005). https://doi.org/10.1145/1057977.1057980

22. Santosa, S., Wigdor, D.: A field study of multi-device workflows in distributed
workspaces. In: Proceedings of the 2013 ACM international joint conference on
Pervasive and ubiquitous computing, pp. 63–72. ACM, Zurich, Switzerland (2013).
https://doi.org/10.1145/2493432.2493476

23. Tao, V., Shapiro, M., Rancurel, V.: Merging Semantics for Conflict Up-
dates in Geo-distributed File Systems. In: Proceedings of the 8th ACM In-
ternational Systems and Storage Conference. pp. 10:1–10:12. SYSTOR ’15,
ACM, New York, NY, USA (2015). https://doi.org/10.1145/2757667.2757683,
http://doi.acm.org/10.1145/2757667.2757683

24. Torvalds, L., Hamano, J.: Git: Distributed Version Control. https://git-scm.com
(2010)

25. Vonrueden, M., Prinz, W.: Distributed Document Contexts in Cooperation Sys-
tems. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.)
Modeling and Using Context. pp. 507–516. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

