
HAL Id: hal-02319794
https://inria.hal.science/hal-02319794

Submitted on 18 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Pushing the Limits Further: Sub-Atomic AES
Markus Stefan Wamser, Georg Sigl

To cite this version:
Markus Stefan Wamser, Georg Sigl. Pushing the Limits Further: Sub-Atomic AES. 25th IFIP/IEEE
International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2017,
Abu Dhabi, United Arab Emirates. pp.220-239, �10.1007/978-3-030-15663-3_11�. �hal-02319794�

https://inria.hal.science/hal-02319794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Pushing the Limits Further: Sub-Atomic AES

Markus Stefan Wamser and Georg Sigl

Lehrstuhl für Sicherheit in der Informationstechnik
Technische Universität München, 80333 München, Germany

{wamser,sigl}@tum.de http://www.sec.ei.tum.de/

Abstract. The recent trend to connect a plethora of sensors, embedded
and ubiquitous systems with low computing power, in short the rise of the
Internet of Things, has created a great demand for compact, lightweight
and cheap to produce implementations of cryptographic primitives.
One approach to meet this demand is the development and standardis-
ation of new tailored primitives, most prominently PRESENT. Yet, the
wide proliferation of the Advanced Encryption Standard and the trust
it earned through its long history of withstanding cryptanalysis spurred
anew the search for small, lightweight implementations of AES.
Among the smallest published architectures is the AtomicAES design by
Banik et al. , who reported a design size of just over 2000 GE.
Here we present a new 8-bit serial architecture that has been designed
from careful observation of the minimum required connections between
storage elements to support all dataflows required for execution of the
algorithm. While we reach similar conclusions to previous publications,
the new architecture enables us to push the area requirement for a fully
featured AES primitive further down by more than 8% from the area
requirement of AtomicAES while offering more functionality.
Along the way we also answer in the affirmative the open question
whether the AES reverse keyschedule can be implemented with negli-
gible hardware overhead based on the forward keyschedule.
Our design sets a new record for an 8-bit serial architecture with full
functionality for encryption and decryption including the keyschedule,
as well as for a sole encryption architecture. Furthermore our design is
flexible enough to allow scaling the S-Box architecture from single-cycle
to multi-stage pipelined approaches as are required for high operation
frequencies or for protection against side-channel attacks. We demon-
strate this by instantiating the design with a serial version of the S-Box
to reduce the area requirement even further.

Keywords: AES, lightweight, 8-bit-serial, ASIC, block cypher, S-Box

1 Introduction

In recent years small and resource-constrained computing platforms and embed-
ded systems became ubiquitously present. With the recent growth of the Internet
of Things (IoT), those systems are becoming increasingly connected among each
other and with more powerful dedicated servers or applications in the cloud.

http://www.sec.ei.tum.de/


Along with sensitive data such as firmware or personal data on the devices, all
this communication needs cryptographic protection. To solve this problem, many
new block cyphers have been conceived, such as NOEKEON [10], PRESENT [6],
KATAN [11], PRINTcipher [18], piccolo [24], TWINE [25], LED [15], KLEIN [14],
PRINCE [7], SIMON and SPECK [5], RECTANGLE [28] or Midori [2] to name
just a few.1

While some, such as PRESENT and CLEFIA, have been standardised [17],
these new cyphers have not gained as much trust as the well scrutinised Ad-
vanced Encryption Standard (AES) nor can they compete with the latter’s pro-
liferation. Therefore research on lightweight implementations of AES has gained
momentum in the recent years. Moreover, not only interoperability issues, but
also the need to defend against side-channel attacks motivates the search for
small implementations, because countermeasures against such attacks usually
increase the size of the design by a factor, rather than simply adding a constant
overhead. The notion of lightweight usually denotes low area designs with low
energy consumption that "pay" for these optimisations with slightly increased
latency. Sometimes the focus is more on (peak) power consumption than on
energy consumption. The exact definition of lightweight and the ideal tradeoff
are usually driven by the actual application scenario. Most of these scenarios,
however, have in common that they do not need bulk encryption, but are rather
implemented to secure transmission of infrequent small data packages or are
used for authentication purposes on SmartCards. In all cases hardware area is
at a premium and there is some flexibility in the acceptable latency.

Given the wide range of optimisation targets and the popularity of AES, it is
impossible to give a comprehensive account of implementations. Short overviews
can be found in [22,13] and [9] (the latter with a focus on FPGA implementa-
tions). With respect to compact hardware and a focus on ASICs, some notable
publications follow. All these architectures employ serialisation as basic tech-
nique of area-runtime tradeoff. The structure of AES suggests a datapath width
of 8-bit, given by the S-Box. The S-Box-implementation of [8] is used by all
publications unless otherwise noted. Sizes are given in gate equivalents (GEs),
the number of 2-input NAND gates from the same cell library that would cover
an equivalent area.

Motivated by the column-wise operations of AES, a 32-bit wide serial data-
path is used by [23] along with a tower-field approach to the S-Box to achieve a
design size of 5389 GE. A better combination of sub-fields for this S-Box-design
was subsequently published by [8]. This variant is used in most of the current
implementations. A significant reduction in area was achieved by [12], who re-
port 3400 GE. The main drawback is the high latency of more than 1000 clock
cycles. Improved runtime was reported by [16], who realised the minimum run-
time for an 8-bit serial architecture and [21] but for an encryption-only design.
The latter design has been extended into an encryption/decryption design by
[3,4]. The additional improvement in area is due to a careful selection of the used

1 for a more comprehensive list see e. g. https://www.cryptolux.org/index.php/
Lightweight_Block_Ciphers

https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers
https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers


cell library. The same holds for the design of [20], that was tailored to an Intel
22nm tri-gate process. While encryption is implemented in less than 2000 GE, no
distinct combined implementation, that offers encryption and decryption func-
tionality, is available and the naïve combined implementation weighs in at more
than 4000 GE.

Here we discuss in detail the 8-bit serial hardware architecture for encryption
and decryption first presented in [27] that is significantly smaller than previously
published architectures at the cost of an increase in latency. We show that by
carefully designing the datapath we can construct a smaller architecture than by
simply extending the architecture of [21] to accommodate decryption as in [4].
Especially we demonstrate that the inverse keyschedule can be realised without
significantly increasing the circuit size, something left as an open question in [4].
Beyond that we show how the serial approach to computing the S-Box from [26]
integrates nicely into our architecture, giving a further significant reduction in
the size of the overall implementation.

The remainder of this chapter is organised in the following way: In section 2
we quickly recapitulate the particulars of AES, before we give the details of our
architecture in section 3 through section 6. Section 7 demonstrates how a serial
multi-cycle S-Box-implementation can be used with our architecture, before sec-
tion 8 presents details of actual implementations and lists related results from
the literature. Finally we sum up our results in section 9.

2 Background

2.1 The Advanced Encryption Standard

We give a minimal description of AES, focused on its smallest version, AES-
128, to keep the chapter somewhat self-contained. For a much better and more
complete introduction we suggest the relevant chapter in [19].

AES is a block cypher taking a 128-bit plaintext for encryption and a key
of either 128, 192 or 256 bits. The result is a 128-bit cyphertext. The plaintext
is mapped to an internal state, then transformed by iterated application of four
operations, which are independent of the key-length. These operations are or-
ganised in rounds and only the number of rounds depends on the key-length.
Finally the state is serialized again to produce the cyphertext. The state is usu-
ally envisioned as a square grid of 4 by 4 bytes where the plaintext/cyphertext is
mapped in column-major order. For the purpose of this work we will use indexing
from top left to bottom right.

Elementary Operations of AES AES is build from four elementary opera-
tions. Three of these are linear operations, e. g. can be implemented in hardware
using only xor gates.
ShiftRows is simply a permutation of bytes in the state. From top to bottom
the rows of the state are rotated left by 0, 1, 2 and 3 positions respectively. Its
purpose is to provide confusion among the columns.



MixColums operates on each of the columns independently. Indexed cyclically,
each element is tripled, the double of its predecessor added and the two successors
are added unchanged. For these multiplications the byte values are interpreted
as elements of a certain finite field. In practice this means that doubling equals
a shift left by one bit and in case of a carry out a given constant is added (by
xor). Tripling is the same as doubling plus adding the original value. The pur-
pose of MixColumns is to provide confusion among the rows, complementing the
ShiftRows operation.
AddRoundkey combines the current roundkey with the current value of the state
by a simple bit-wise xor operation. Its purpose is to repeatedly mix in the secret
into the state.

Finally there is a single non-linear operation: SubBytes replaces each byte
with another value, that can either be computed just-in-time by inverting the
value in the aforementioned Galois Field and applying an affine transformation,
or it can be taken from a lookup-table with precomputed values. Its purpose is
to avoid that the cypher can be modelled as a set of linear equations that is
easily solvable.

Roundkey Derivation For each AddRoundkey step a new roundkey is used.
The input key is used as-is as first roundkey. Each subsequent roundkey is de-
rived from the previous one in chunks of four bytes. A new chunk is generated
by adding (xor) the corresponding chunk of the previous roundkey with the last
derived chunk. For the first chunk of each roundkey the last chunk of the pre-
vious roundkey is taken as previous chunk, but only after applying a three-step
transformation on it: First the bytes are cycled by one position in direction of
the smaller index, then the SubBytes transformation is applied to each of the
bytes before a round-specific constant is added to the first byte.

Round Structure AES-128 encryption starts with a pre-whitening step, where
the input key is added as-is. Then nine full rounds, each made up of the sequence
SubBytes – ShiftRows – MixColums – AddRoundkey follow. The encryption
process finishes with the sequence SubBytes – ShiftRows – AddRoundkey.
Decryption works by applying the inverse operations in reverse order.

It shall be noted here that, due to the byte granularity of the operations, the
order of SubBytes and ShiftRows can be swapped.

3 Basic Principles of the Architecture

3.1 Design Rationale

Studying previously published low-area implementations of AES, e. g. [21], we
quickly noticed that an 8-bit data-path lends itself nicely to the byte-granularity
found in AES. We also noticed that this decision leads to many multiplexers,
which the authors of [21] tried to counter by using scan flip flops (scan FFs),
which combine a storage element (FF) and a multiplexer in one design unit



provided by the cell library used to implement the architecture. In the case of
[21] a cell library by UMC was selected. In this library a scan FF uses less area
than the two components would require individually, thus saving a considerable
amount of area in the implementation.

A significant part of any low-area implementation of a symmetric block
cypher is taken by the storage elements. Their number is determined by the
algorithm itself, for AES-128 this amounts to at least 128 FFs for the state and
128 FFs for the current roundkey, for a total of 1536 GE, assuming a typical
size of 6 GE per FF. To lower this fixed cost, [4] chose a cell library by STM
which offers so-called multi-bit FFs, i. e. library cells that offer multiple data I/O
ports, but only a single clock port. The internal design of these cells can then be
optimised by the library vendor. As a result the average area consumption of a
FF in [4] is less than 4.5 GE, as can be estimated from the numbers given in [4]
and was confirmed by the authors in personal communication.

Those optimisations are specific to a certain technology and therefore not
applicable to other cell libraries, e. g. those from TSMC offered to universities
through the Europractice2 program.

We therefore aimed to reduce the area consumption of our implementation
through architectural decisions. The aforementioned optimisations may then be
applied additionally.

An important insight from this deliberation is that the amount of area avail-
able for optimisation through architectural decisions is limited by the difference
between the total area consumed by the architecture and the area consumed by
the state bits. We will call this the optimisation gap. In this work, taking also
into account that at least one S-Box is required, it amounts to less than 1000 GE,
based on [4].

Our design rationale is therefore an 8-bit datapath that keeps the number of
multiplexers low.

We identified two directions of data movement in the square state represen-
tation, horizontally to the left and vertically from the bottom up. To reduce
multiplexers, we designed each row to rotate one byte per cycle to the left and
selected one designated column to also rotate data towards the top. The verti-
cal movement is required for loading and serialisation of the round functions. It
can be avoided only at the cost of a 32-bit serial implementation or additional
storage and multiplexing, both significantly increasing the required area.

For the key we identified that movement is either along all key bytes or – in
the same direction – among the last four key bytes only. For data that should
not move/be updated we used activation signals generated by the control logic.

Finally we kept the architecture flexible enough to accommodate different
implementation options for the SubBytes function, from single cycle implemen-
tations to pipelined/staged implementations that are required for increased op-
erating frequency, further serialisation or countermeasures against side-channel
attacks. We demonstrate this by giving implementation results for two different
S-Box architectures in section 8.
2 http://www.europractice-ic.com/libraries_TSMC.php (last accessed: 30.03.2017)

http://www.europractice-ic.com/libraries_TSMC.php


3.2 Area-Runtime Tradeoff

Our goal is to push the area-runtime tradeoff significantly towards smaller area,
trading a reduction in area for an increase in runtime. Naturally, as we come
closer to the minimal possible area, it becomes harder to make progress and
the cost (runtime) increases dramatically. Due to practical constraints, there is
a point where the additional control logic offsets any gains from serialisation,
further reducing the available optimisation gap.

3.3 Serial MixColumns

We chose to implement MixColumns in a serial fashion to avoid duplication
of logic. The basic idea of a serial implementation draws from the fact that
MixColumns, when written as a matrix operating on a vector over GF(28) in
Rijndael-representation, is a MDS matrix. Especially all rows/columns are just
rotated variants of each other. In practice this can be exploited by keeping the
function and rotating the argument. To further ease computation, we use the
decomposition

(2, 3, 1, 1)(a, b, c, d)T = [(3, 2, 0, 0)⊕ (1, 1, 1, 1)] (a, b, c, d)T

in the Galois field. This allows to compute the sum of all inputs ahead and only
a must be buffered for the computation of the last element. This leads to a total
of 6 clock cycles per column for computing the MixColumns operation. More
details on serial implementations of MixColumns can be found in [1].

3.4 SubBytes Implementation

A lot of work has gone into finding small implementations of the SubBytes
operation. For a long time the architecture published in [8] was considered the
smallest. Smaller ones, at the cost of reduced throughput, have been published
recently in [26]. We give results for the former one as our main result as it is also
used in the referenced publications and therefore facilitates easier comparison of
architectures. Nevertheless, as the implementation can be replaced easily with
the one from [26], we also give results with a design based on an improved
version of the latter and show how it can be integrated tightly into the overall
architecture.

4 Our Architecture

4.1 Architecture Overview

The architecture consists of three main modules as depicted in Figure 1: a data
state module implementing storage and all operations exclusive to the state, a
keystate module implementing storage for one roundkey and implementing all
functions exclusive to the key update and a control module that schedules and



interface and control

key in

plaintext/cyphertext in
cyphertext/plaintext out

mode select
RESET
READY

data state key state

RCON generatorLFSR

SBOX

Fig. 1: High level view of the proposed architecture. The control module en-
capsulates the two state modules and some smaller utility modules. The public
interface is described in subsection 4.1. The S-Box can be implemented either as
a shared module or with a distinct copy for each state.

synchronises all operations and provides the public interface of the architecture.
Some smaller modules implementing shared resources, such as the SubBytes op-
eration, or otherwise lending themselves to encapsulation, such as the generation
of the round constants, are also connected and coordinated through the control
module.

The public interface has two 8-bit wide ports for inputting data and key, one
8-bit wide port for reading the result, two input bits to select one of the available
three modes of operation (see section 5), an input port for the reset signal and
an output port to signal availability of the results. Operation details and timings
are given in section 6.

4.2 Individual Modules

The State Module as shown in Figure 2 contains all storage elements for
the data at its current state of processing along with all logic required for the
ShiftRows, MixColumns and AddRoundkey operations. It has two 8-bit wide
inputs for data and key, an 8-bit wide output for data and inputs for the relevant
control signals. Depending on the implementation of the SubBytes operation
(dedicated or shared) another pair of data ports is present.

All data manipulation happens on the rightmost column. Once four bytes
have been shifted in from the bottom or fully handled by the round opera-
tions, all columns are rotated one position to the left. The control signals can
enable/disable shifting per row and individually for each of the bytes in the
rightmost column. ShiftRows and its inverse are implemented by selectively ac-
tivating the rows over the course of three cycles.



The term 3 · [12] ⊕ 2 · [13] denotes the multiplications in the Galois Field
required for a serial implementation of MixColumns. The register ms samples,
when enabled, a xor sum of the rightmost column. mb is a register used for
buffering during mix columns. Note that key addition can either be chained to
MixColumns or computed individually, by virtue of the multiplexer in the input
path of mb. To implement AddRoundkey we drew inspiration from the logic
description of a multiplexer, with the difference that only the key is gated by
the selection signal and combination happens by xor instead of or, hence the ⊕
on the multiplexer symbol.

The Keystate Module as shown in Figure 3 contains all storage elements
for one roundkey along with all logic required for the key update operations. As
with the data state, all manipulation happens on the rightmost column (bytes 12
through 15), with the notable difference that during update the whole keystate
gets shifted, since updates of the roundkey can not happen in-place. Rather, each
new word is appended to the so far generated key stream. There are two enable
signals, one for shifting the whole key by one position and one for only rotating
the rightmost column, which is in some cases used to non-destructively read a
single word of the key. By properly setting the selectors of the multiplexers, data
can either cycle through the whole keystate and from byte 0 back to byte 15 or
only in the rightmost column and from byte 12 to byte 15. There is again one
multiplexer marked with ⊕. This multiplexer has distinct selection signals for
each input, so either one or both at the same time can be selected. Combination
happens by xor, so we have a dual functionality: In case only one input is
selected, it is a regular multiplexer; in case both inputs are active we get the
xor required for key updates. As with ShiftRows for the state, the rotation of
the last column by one byte can be swapped with the SubBytes operation. This
is handled by the multiplexer at the input of the S-Box. SubBytes is applied
three times to the value then at byte 13, and after each application the whole
keystate is moved by one byte. The remaining byte to be handled can then be
found at byte 9. The round constant is added after the S-Box and is delivered
by the control unit as required (e. g. it is zero for all but for the first byte). The
updated key can either be streamed out at generation time or read back later.
It was experimentally verified for our implementation that loading the key into
byte 0 instead of byte 15 results in smaller area (by 3 GE) at the cost of an extra
cycle.

For the reverse key schedule exactly the same dataflow can be used with the
only caveat that after each word the whole key must be cycled by 8 bytes to
correctly position the input values. The only additional logic required is found
in the control module.

The Control Module encapsulates the two modules just presented. It also
has three Linear Feedback Shift Registers (LFSRs) and a small 2-bit counter
to generate the required control signals. The first LFSR is used during loading
and the initial key addition until proper round-operation starts. In the later
stages it is used to count the cycles required for the S-Box, which depend on the
selected architecture of the latter. The second LFSR coordinates the operations



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

out

in

ms

mb

3 · [12] ⊕ 2 · [13]

⊕

round key

SBox

Fig. 2: The state. All datapaths depicted are 8-bit wide. The S-Box can be
implemented as a shared module.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SBox

RCON

⊕

in

round key

Fig. 3: The keystate. All datapaths depicted are 8-bit wide. The S-Box can be
implemented as a shared module.



for a single column while the 2-bit counter counts the number of columns. Those
counters are coupled, such that a step of a "higher level" counter only occurs
when a "lower level" counter wraps or resets itself. The third LFSR generates
the round constants required for key scheduling. It is stepped once during the
round and also serves as round counter for the control module. Once the correct
value for the last round is reached and the last round finishes a ready signal is
generated.

All LFSRs are in Galois configuration, with the one for the round constants
being able to enumerate the constants in forward and backward direction.

Control signals are derived from these LFSRs in a straight-forward manner,
taking into account the selection of operation mode, namely whether encryption
or decryption should occur and in the case of the latter, whether the given key
must be expanded or corresponds to the last roundkey of the encryption process
and can be directly used for decryption.

Both mode selection signals can be hardwired at design time, allowing for
easy synthesis of specialised architectures. The effects for our particular imple-
mentations are listed in section 8.

5 Encryption vs. Decryption

The architecture supports encryption and decryption with or without key-expan-
sion, that is for decryption either the same key as for encryption can be given,
which is then first expanded before decryption starts, or the last roundkey can
be given directly, allowing for flexible application of the architecture. If key-
expansion is desired, a regular encryption process is run with a deactivated state.
This takes more cycles than actually would be needed for a pure key-expansion,
but saves significantly on control logic.

To optimise the architecture, we tried to express the decryption process as
much as possible in terms of the encryption process. The inverse to ShiftRows
(iSR) is given by swapping the enable signals of row 1 and 3. This is equivalent
to three subsequent applications of ShiftRows (SR). As four applications rotate
each row by a multiple of four positions, resulting in identity, this results in the
inverse operation. Showing that no smaller number of repetitions suffices and
that iSR can be expressed in at most three left shifts is trivial.

MixColumns (MC) can be written as a matrix applied to a vector. Computing
powers of this matrix resembles repeated application of the MixColumns oper-
ation. The fourth power is the smallest power to result in the identity matrix.
Therefore the inverse MixColumns (iMC) operation is given by three subsequent
applications of MC. AddRoundkey (ARK) is self-inverse and the inverse to Sub-
Bytes (SBOX) is given by a dedicated function (iSBOX).

A third step is to align the decryption control flow to the encryption flow.
Recall the sequence of operations for encryption:

ARK → (SR→ SBOX →MC → ARK)9 → SR→ SBOX → ARK



When reversing this sequence, ShiftRows can be swapped with the application of
SubBytes, as the latter operates on isolated state bytes. Since the last round does
not carry a MixColumns operation, decryption essentially has almost the same
sequence of steps as encryption, with all operations replaced by their inverse
counterparts and AddRoundkeys before inverse MixColumns:

ARK → iSR→ iSBOX → (ARK → iMC → iSR→ iSBOX)9 → ARK

=̂ ARK → (iSR→ iSBOX → ARK → iMC)9 → iSR→ iSBOX → ARK

For encryption the individual round keys can be derived from the initial key
in straightforward order. For decryption, they must be recovered from the last
round key and presented to the state in reverse order. A special property of the
key schedule is, that no inverse variants of the update operations are required:
For each 32-bit word Ki, i = 0, . . . , 43, the update formula for the forward
expansion is Ki = Ki−4 ⊕ f(Ki−1), where 4 < i < 44 and f is the special
key-update transformation for every fourth column and identity otherwise. The
update formula for the reverse expansion is then simply Ki = Ki+4 ⊕ f(Ki+3)
with 40 > i > 0 and f being identity, when i 6= 0 mod 4.

It remains to remark that in both cases all operations aside from ShiftRows
and its inverse are restricted to a single column. Thus they can be computed
in an interleaved fashion and each column needs to be touched only once per
round.

6 Operation and Timing

We first give a rough by-cycle breakdown of the encryption operation, followed
by a short enumeration of the differences when the architecture operates in
decryption mode.

To prepare the module for encryption of a new block, the RESET input must
be activated. All inputs are expected to be available at the input ports once the
RESET is deactivated. During the following 16 cycles data is read into the state.
Simultaneously the key is loaded into the keystate. The state is subsequently
rotated by one column, the key by one byte. During the next 23 cycles the key is
added to the state with three cycles to switch between columns. For decryption,
this is followed by another 12 cycles to reposition the key for the subsequent key
scheduling.

Next, nine regular rounds follow. Each round is subdivided into four repeti-
tions of a column update. The first iteration begins with a ShiftRows operation
taking three cycles, in which the rows are gradually disabled to control the
amount of shifting. In the remaining column updates, this part of the sub-round
is skipped.

The main part of each sub-round starts by computing the SubBytes operation
on byte 12, putting the result into byte 15 and cycling the column upwards by one
byte. In the next cycle one SubByte operation for the key schedule is computed,
the round constant added to the first key byte and the whole key shifted by one



position, appending the result to the key state. A total of 8 cycles are needed to
compute all SubByte operations for one column.

Following this, MixColumns and AddRoundkey can be computed immedi-
ately on this column. This is done in 6 cycles: First the sum of the bytes 12
through 15 is stored in the register ms. Concurrently, byte 12 is copied into the
buffer mb. For five cycles the expression 3 · [12]⊕ 2 · [13] is evaluated, using hard-
wired shift-and-adds, the value of ms added and the result stored in mb while the
previous value of this register is shifted into byte 15, with the value delivered
from the roundkey module added during the last four cycles. The values in the
rightmost column of the roundkey are cycled concurrently. A final cycle rotates
all columns to the left by one step. Summing up, a total of 3 + 4(8 + 6) = 59
cycles are required per round, as MixColumns is started while the last S-Box for
the keyschedule is evaluated.

In the final round the input multiplexer to mb is set to take the value from byte
12 during the whole MixColumns process, effectively bypassing this operation
and implementing a pure AddRoundkey operation.

Along with the last cycle of the last round, a ready signal is raised and the
result of the computation is made available one byte per cycle at the output
by shifting the last column up and rotating left when necessary. During regular
computation the output is gated off to avoid unnecessary toggling at the output.
This leads to a total latency of 40 + 10 · 59 + 16 = 646 cycles per encryption,
including 32 cycles for loading/storing results.

The MixColumns of the dedicated encryption architecture can be tweaked a
bit more for speed, yielding a slightly bigger design that runs in 606 clock cycles.
Instead of computing the value for ms in a dedicated clock cycle, the value is
produced by accumulating the outputs of the S-Box as they are produced.

Decryption has an almost identical control flow, with only a few, but impor-
tant, differences. First, the the output of the S-Box is written to mb instead of
byte 15, to enable immediate addition of the roundkey. Second, MixColumn is
repeated three times to realise the reverse functionality. Finally, after each col-
umn, the key must be repositioned to compute the reverse key schedule. This is
done concurrently to the MixColumn operation. Altogether, decryption requires
an additional 592 cycles compared to encryption for the combined architecture.

Decryption with initial forward key expansion simply runs a full encryption
process with deactivated data state, followed by 9 cycles to readjust the key
position and switch modes before regular decryption operation commences.
All latencies are listed in Table 1.

7 An Even Smaller Variant

To demonstrate the flexibility of our architecture we also instantiate it with S-
Box designs following the approach of [26]. This allows us to further reduce the
size of the implementation by at least 1.1% up to more than 4.5%, depending
on the implemented modes of operation and using the TSMC cell library as
detailed in section 8. With other cell libraries (having smaller FFs compared to



the respective size of logic gates) the relative savings can be expected to be even
more significant.

7.1 The Serial S-Box Architecture

The AES-S-Box is defined as an inversion of elements in a finite field with a given
representation, followed by an affine mapping (defined in a different representa-
tion of this field). The basic idea of this approach is to serialize the inversion
step by exploiting that every element x from the field can uniquely be written
as a power gk of a generating element g. Once the value of g has been selected
from the set of admissible values in the field, a bijection x = gk between x and
k is defined. The inverse x−1 of x is then indeed given by x = g−k, where the
exponents are computed modulo a value determined by the field size. The dif-
ferent flavours of serial inversion algorithms given in [26] operate by continually
multiplying with either g or its inverse element and comparing to x or a fixed
reference value to obtain k resp. −k. The result is then computed as g−k or(
g−1)k.

Since multiplication with a fixed element in a binary extension field can be
realised in hardware using a feedback shift-register in Galois configuration, this
yields a very small circuit for inversion.

The implementation is based on the two algorithms given hereafter. The first
one is a generalised version of Algorithm A from [26], employed to implement
the S-Box used in the key scheduling. The other one is a generalised version of
Algorithm B2 from the same paper, which can be tightly integrated into the
data state.

Algorithm 1.1: S-Box for key
scheduling
Input: γ
Output: γ−1c2

r1 ← c;
r2 ← 1;
while (r1 6= γ) ∧ (r2 ≤ 255) do

r1 ← αr1;
r2 ← r2 + 1;

end
r1 ← c;
while r2 ≤ 255 do

r1 ← αr1;
r2 ← r2 + 1;

end

Algorithm 1.2: S-Box for
data state
Input: γ
Output: γ−1c2

r1 ← γ;
r2 ← 1;
while (r1 6= c) ∧ (r2 ≤ 255) do

r1 ← α−1r1;
r2 ← r2 + 1;

end

while r2 ≤ 255 do
r1 ← αr1;
r2 ← r2 + 1;

end

Both algorithms have the same constant runtime and the counter r2 is only
required to signal the passing of this timespan. Therefore a simple maximum-
length linear feedback shift-register can be used for this purpose. In the actual



implementation this was chosen as an 8-bit shift register in Galois-configuration
using the Reed-Solomon-Polynomial x8+x4+x3+x2+1 as feedback-polynomial.

Note that the algorithms run very uniformly and have almost equivalent
structure. The only difference between the two is the first phase in algorithm 1.2
running backwards in comparison to the first phase of algorithm 1.2, which spares
us resetting the register r1 in between phases. In return the multiplication with
the constant g−1 has to be implemented along with that for g leading to a second
feedback circuit and some multiplexers.

Furthermore, the counter r2 can be shared across multiple S-Boxes. There-
fore, we chose to implement distinct S-Boxes for the data state as well as the
keystate. This also makes the multiplexers previously required to multiplex the
inputs into a single instance redundant and halves the significant runtime penalty
of this serial inversion approach. As this counter can also be used to generate
the control signals for loading data and key as well as the control signals for
returning the results, since no S-Box is active at the time, the implementation
cost is further reduced. The remainder of the implementation can be kept as is
without any further modifications.

The algorithms just shown realise only the inversion in the finite field. The
constant α can be chosen as any of the 128 generating elements of the Rijndael-
field. The constant c can be any element of its multiplicative subgroup. Choosing
c to be different from the multiplicative neutral element gives an inversion result
that is augmented with a multiplication by c2. The correcting computation can
then be merged with the required affine transformation, which may lead to a
computation that is actually less costly to implement. With other words, some
computational effort can be split off from the affine transformation and be done
more cheaply by encoding it in the choice of the constant.

By exhaustive search (on the standalone S-Boxes) we found that setting
α to the element with the canonical bit-representation (written compactly as
hexadecimal value) 46 and c to 01 (the neutral element), yielded the smallest
implementation for algorithm 1.1 for our synthesis setup (detailed in section 8).
In the same way we determined the choices e9 for α and f1 for c in the context
of algorithm 1.2.

Further area savings can be realised when the S-Boxes are integrated into the
overall architecture. Note that the input to algorithm 1.2 is not used any more
once register r1 has been initialised. This nicely matches the operation of the
S-Box in the context of the full AES. Instead of attaching the S-Box to the state
byte 12 as in Figure 2, this part of the state itself can take the role of this register
and the S-Box can operate fully in place. Only the affine transformation is left in
the part that is denoted as S-Box in the figure. Unfortunately this optimisation
carries not over to the key schedule, where results are only concatenated instead
instead of replaced. Therefore we chose algorithm 1.1, which is a bit smaller as
only one feedback circuit is required, as the inversion core of the S-Box here.
On the other hand, this ensures the runtime difference of one cycle between the
S-Boxes, so the control logic can work as in the case of a multiplexed single-cycle
implementation, if it is halted during S-Box evaluation.



7.2 Runtime Impact

Using the serial S-Box architecture in the implementation adds a latency of 254
cycles per S-Box invocation in the round functions. One more cycle is added per
column invocation. The reason is a timing optimisation that can only be applied
in the case of the dedicated encryption core with a single-cycle S-Box. This leads
to a total of 646 + 160 · 254 + 40 = 41326 cycles for the dedicated encryption
core. For the combined architecture with serial S-Boxes we also decided to spend
some idle cycles at the beginning of each column sub-round. This leads to a
more uniform execution pattern, matching the execution times of all columns to
the first ones (that otherwise take three cycles more to execute the ShiftRows
operation). We gain a reduction of 7 GE for a total runtime penalty of 90 cycles.
Therefore encryption in case of the fully-functional core with serial S-Boxes takes
689+160 ·254+90 = 41419 clock cycles. In case one prefers the reduced latency,
the change is easily done by uncommenting a single line in the VHDL source
code.

8 Results

We implemented the architecture(s) presented in this work using VHDL. Func-
tional verification of all implementations was done by simulating the VHDL
sources directly with GHDL and Synopsys VCS. The design was compiled, opti-
mised and mapped to a TSMC 40 nm low power cell library (tcbn40lpbwp) using
the compile_ultra command in Synopsys DesignCompiler L-2016.03-SP3. En-
abling/disabling of sequential elements was realised through clock gating. The
results of manually defining clock-gating structures matched the results of au-
tomatic clock gating using the -gate_clock option to the compile_ultra com-
mand. The resulting netlist was simulated with Synopsys VCS MX and Modelsim
using test vectors from the NIST KAT3 set of test vectors.

Figure 4 shows the area consumption for different variants of our architecture
and its relevant competitors, based on the TSMC 40 nm low power cell library.
For each variant also the ratio between combinational and sequential logic is
shown. This demonstrates that a significant part of the area is consumed by
FFs. All but the pure encryption designs need forward and inverse S-Box im-
plementations and therefore have increased area demands for the combinational
part. In case of the serial S-Box variants the share of area used by FFs is even
higher.

Finally Table 1 lists our results along with various low-area architectures from
the literature, each being one of the smallest designs at the time of publication.
A word of caution is needed on the selection of cell libraries: In the UMC 180 nm
(and other UMC libraries) the area of a scan-flip-flop cell is 1 GE smaller than
the joint areas of a regular flip-flop and a multiplexer cell, therefore in [21] area
optimisation was possible by extensive use of scan-flip-flops. The STM 90nm
3 http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip; last ac-
cessed: 1st Feb 2017

http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip


lo
we

rl
im

it

fu
lly

fe
at

ur
ed

co
re

25
65

.7
5

GE

de
cr

yp
tio

n
w

ith
fu

ll
ke

y
ex

pa
ns

io
n

25
69

.0
0

GE

de
cr

yp
tio

n
w

ith
re

ve
rs

e
ke

y-
ex

pa
ns

io
n

24
81

.2
5

GE

en
cr

yp
tio

n
23

14
.0

0
GE

de
di

ca
te

d
en

cr
yp

tio
n

22
70

.5
0

GE

At
om

ic
AE

S
v2

†
[4

]
26

76
.2

5
GE

At
om

ic
AE

S
v1

†
[3

]
cl

oc
k

ga
te

d
FF

s
30

96
.5

0
GE

At
om

ic
AE

S
v1

†
[3

]
us

in
g

en
ab

le
FF

s
31

92
.2

5
GE

[2
1]

+
es

t.
sa

vi
ng

s‡

en
cr

yp
tio

n
on

ly
26

56
GE

†re-synthesized with the design flow and cell library of this work
‡adjusted for estimated savings of 1 GE per state bit due to
different cell library in original publication

Fig. 4: Comparison of our work with its nearest competitors. The AtomicAES
variants were re-synthesized from the source codes linked in [4] using our
toolchain and setup. The lower part of each bar signifies the share of sequential
elements in the design. Conversely the upper part represents combinational logic.
To make a fair comparison we only chose the variant using the S-Box from [8]
and conservatively estimated the area saved by using scan-FFs in [21] as 256 GE.
The area of 1536 GE required for the state flip-flops is given as a reference lower
limit for implementations.



and STM 65nm libraries used in [4] offer multibit-flip-flop cells for implementing
register banks. Using these the average area consumption of flip-flops can be
reduced from 6 GE/bit to roughly 4.5 GE/bit. (This was confirmed through
personal communication with one of the authors.) The TSMC libraries used in
this work offer none of these features. Therefore we re-synthesized the circuits
from [4] based on the VHDL design files given therein. On the contrary we expect
our design to significantly benefit from multi-bit cells. Extrapolation from the
figures in Table 1 indicate that our design could be the first one to break the
2000 GE-barrier for a fully featured core when synthesized with the STM 90 nm
library from [4].

We could not obtain detailed information for the library used in [20], for
which it should be noted that the circuit in [20] was designed primarily for
energy-efficiency.

Our results show that we can improve the area requirements over [4] for
a fully featured AES core by 110 GE, respectively 237 GE with the serial S-
Box, which amounts to at least 11%, respectively 23%, of the parts that can be
optimised. With other words, everything beyond the inevitable storage for data
and key is packed in 1030 GE for the fully featured core and just 734 GE for
the dedicated encryption core, less then a third of the total area, when using
Canright’s S-Box. With the serial S-Boxes this is further reduced to 913 GE (full
AES) and 708 GE (encryption only).

Furthermore, by simply fixing the mode selection inputs, optimised circuits
can be generated.4 Modifying the design by hand, also removing unneeded con-
trol signals, leads to a very compact dedicated encryption core occupying only
2269 GE, resp. 2244 GE. With the exception of [20], where a proper comparison
is not possible due to the differences in the used technologies, these are by far
the smallest 8-bit serial implementations of AES reported in the literature.

9 Conclusions

We presented a new 8-bit serial architecture for AES and realised a fully featured
implementation and a dedicated encryption variant. Both implementations set
new records for low-area consumption at a moderate increase in runtime. For
each we also gave results using a different S-Box architecture which further
reduced overall area consumption. This makes our architecture especially suited
for scenarios where AES needs to be implemented in hardware but is not used
for bulk encryption, such as SmartCards, Trusted Platform Modules (TPMs) or
IoT nodes.

4 The decryption circuit with full key expansion is bigger than the fully featured core,
as a FF used to support optimisation in the case of hard-wiring can be removed
(manually) from the latter. Keeping this register yields a size of 2573 GE.



Architecture Technology Area
(GE)

Latency
(cycles)

[12] (ED) Philips 350nm 3400 1032/1165
[16] (E) 0.13 µm, 1.2 V 3.1k 160
[21] (E) UMC 180 nm 2400 226

[20] (E) Intel 22 nm 1947 336
[20] (D) Intel 22 nm 2090 216

[4] (ED) STM 90 nm 2060 246/326
[4] (ED) STM 65 nm 2430 246/326
[4], re-synth TSMC 40 nm 2676 246/326

this (ED) TSMC 40 nm 2566 689/1281/1947
this (D*) full key-exp. TSMC 40 nm 2569 1947
this (D*) rev. key-exp. TSMC 40 nm 2481 1281
this (E*) TSMC 40 nm 2314 689
this (E) (dedicated, small) TSMC 40 nm 2269 646
this (E) (dedicated, fast) TSMC 40 nm 2294 606

this (ED) TSMC 40 nm 2449 41419/42011/83407
this (D*) full key-exp. TSMC 40 nm 2444 83407
this (D*) rev. key-exp. TSMC 40 nm 2350 42011
this (E*) TSMC 40 nm 2279 41419
this (E) (dedicated) TSMC 40 nm 2244 41326

w
ith

S-
B
ox

fr
om

[8
]

w
ith

S-
B
ox

fr
om

[2
6]

Table 1: Area and latency comparison of different architectures. Architec-
tures are annotated with their capability (Encryption/Decryption). If differ-
ent runtimes apply to combined architectures, they are given as [Encryp-
tion]/[Decryption]/[Decryption with full key expansion]. Those marked with *
are generated by hardwiring the mode selection inputs of the fully featured ar-
chitecture.



References

1. Ahmed, E.G., Shaaban, E., Hashem, M.: Lightweight mix columns implementation
for AES. In: Proceedings of the 9th WSEAS International Conference on Applied
Informatics and Communications. pp. 253–258. AIC’09, World Scientific and En-
gineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2009),
http://portal.acm.org/citation.cfm?id=1628143

2. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy (extended version). Cryp-
tology ePrint Archive, Report 2015/1142 (Nov 2015), http://eprint.iacr.org/
2015/1142

3. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: A compact implementa-
tion of the AES Encryption/Decryption core. Cryptology ePrint Archive, Report
2016/927 (Sep 2016), http://eprint.iacr.org/2016/927

4. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. Cryptology ePrint
Archive, Report 2016/1005 (Oct 2016), http://eprint.iacr.org/2016/1005

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (Jun 2013), http://eprint.iacr.org/2013/404

6. Bogdanov, A., Knudsen, L.R., Le, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight block cipher. In:
the proceedings of CHES 2007 (2007), http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.122.2536

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Kneević, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE - a low-latency block cipher for pervasive computing
applications (full version). Cryptology ePrint Archive, Report 2012/529 (Sep 2012),
http://eprint.iacr.org/2012/529

8. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2005, Lecture Notes in
Computer Science, vol. 3659, chap. 32, pp. 441–455. Springer Berlin / Heidelberg,
Berlin, Heidelberg (2005), http://dx.doi.org/10.1007/11545262_32

9. Chawla, S.S., Aggarwal, S., Kamal, S., Goel, N.: FPGA implementation of an op-
timized 8-bit AES architecture: A masked S-Box and pipelined approach. In: Elec-
tronics, Computing and Communication Technologies (CONECCT), 2015 IEEE
International Conference on. pp. 1–6. IEEE (Jul 2015), http://dx.doi.org/10.
1109/conecct.2015.7383859

10. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher.
Tech. rep. (Oct 2000), http://gro.noekeon.org/Noekeon-spec.pdf

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN —
a family of small and efficient Hardware-Oriented block ciphers. In: Clavier,
C., Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2009, Lecture Notes in Computer Science, vol. 5747, chap. 20, pp. 272–288.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009), http://dx.doi.org/10.
1007/978-3-642-04138-9_20

12. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proceedings - Information Security 152(1), 13+ (2005), http://dx.doi.
org/10.1049/ip-ifs:20055006

13. Feldhofer, M., Lemke, K., Oswald, E., Standaert, F.X., Wollinger, T., Wolk-
erstorfer, J.: State of the art in hardware architectures. note: Deliverable

http://portal.acm.org/citation.cfm?id=1628143
http://eprint.iacr.org/2015/1142
http://eprint.iacr.org/2015/1142
http://eprint.iacr.org/2016/927
http://eprint.iacr.org/2016/1005
http://eprint.iacr.org/2013/404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.2536
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.2536
http://eprint.iacr.org/2012/529
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1109/conecct.2015.7383859
http://dx.doi.org/10.1109/conecct.2015.7383859
http://gro.noekeon.org/Noekeon-spec.pdf
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1049/ip-ifs:20055006
http://dx.doi.org/10.1049/ip-ifs:20055006


with a special focus on AES hardware architectures. ECRYPT Deliverable No.
D.VAM2 (Sep 2005), http://www.iaik.tugraz.at/content/research/krypto/
AES/VAM2-IAIK-17-D.VAM2-1_0.pdf

14. Gong, Z., Nikova, S., Law, Y.: KLEIN: A new family of lightweight block ci-
phers. In: Juels, A., Paar, C. (eds.) RFID. Security and Privacy, Lecture Notes
in Computer Science, vol. 7055, pp. 1–18. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-25286-0_1

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and Embedded Systems –
CHES 2011, Lecture Notes in Computer Science, vol. 6917, pp. 326–341. Springer
Berlin Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-23951-9_22

16. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and im-
plementation of Low-Area and Low-Power AES encryption hardware core. In: 9th
EUROMICRO Conference on Digital System Design (DSD’06). pp. 577–583. IEEE
(2006), http://dx.doi.org/10.1109/dsd.2006.40

17. ISO/IEC: ISO/IEC 29192-2:2012 - information technology - security techniques -
lightweight cryptography - part 2: Block ciphers. Tech. rep., International Orga-
nization for Standardization (Jan 2012), https://www.iso.org/standard/56552.
html

18. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher:
A block cipher for IC-printing. In: Mangard, S., Standaert, F.X. (eds.) Crypto-
graphic Hardware and Embedded Systems, CHES 2010, Lecture Notes in Com-
puter Science, vol. 6225, pp. 16–32. Springer Berlin Heidelberg (2010), http:
//dx.doi.org/10.1007/978-3-642-15031-9_2

19. Knudsen, L.R., Robshaw, M.: The block cipher companion (2011), http://link.
springer.com/book/10.1007%2F978-3-642-17342-4

20. Mathew, S., Satpathy, S., Suresh, V., Anders, M., Kaul, H., Agarwal, A., Hsu,
S., Chen, G., Krishnamurthy, R.: 340mV–1.1V, 289Gbps/W, 2090-gate nanoAES
hardware accelerator with area-optimized encrypt/decrypt GF (24)2 polynomials
in 22 nm tri-gate CMOS. IEEE Journal of Solid-State Circuits 50(4), 1048–1058
(Apr 2015), http://dx.doi.org/10.1109/jssc.2014.2384039

21. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits:
A very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
Advances in Cryptology – EUROCRYPT 2011, Lecture Notes in Computer Science,
vol. 6632, chap. 6, pp. 69–88. Springer Berlin Heidelberg, Berlin, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-20465-4_6

22. Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient AES im-
plementations on ASICs and FPGAs. pp. 98–112 (2005), http://dx.doi.org/10.
1007/11506447_9

23. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) Advances in Cryptology
— ASIACRYPT 2001, Lecture Notes in Computer Science, vol. 2248, pp. 239–254.
Springer Berlin Heidelberg (2001), http://dx.doi.org/10.1007/3-540-45682-1_
15

24. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: An Ultra-Lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) Cryp-
tographic Hardware and Embedded Systems – CHES 2011, Lecture Notes in
Computer Science, vol. 6917, pp. 342–357. Springer Berlin Heidelberg (2011),
http://www.iacr.org/archive/ches2011/69170343/69170343.pdf

http://www.iaik.tugraz.at/content/research/krypto/AES/VAM2-IAIK-17-D.VAM2-1_0.pdf
http://www.iaik.tugraz.at/content/research/krypto/AES/VAM2-IAIK-17-D.VAM2-1_0.pdf
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1109/dsd.2006.40
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/56552.html
http://dx.doi.org/10.1007/978-3-642-15031-9_2
http://dx.doi.org/10.1007/978-3-642-15031-9_2
http://link.springer.com/book/10.1007%2F978-3-642-17342-4
http://link.springer.com/book/10.1007%2F978-3-642-17342-4
http://dx.doi.org/10.1109/jssc.2014.2384039
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/11506447_9
http://dx.doi.org/10.1007/11506447_9
http://dx.doi.org/10.1007/3-540-45682-1_15
http://dx.doi.org/10.1007/3-540-45682-1_15
http://www.iacr.org/archive/ches2011/69170343/69170343.pdf


25. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) Se-
lected Areas in Cryptography, Lecture Notes in Computer Science, vol. 7707,
pp. 339–354. Springer Berlin Heidelberg (2013), http://dx.doi.org/10.1007/
978-3-642-35999-6_22

26. Wamser, M.S.: Ultra-small designs for inversion-based S-Boxes. In: 17th Euromi-
cro Conference on Digital System Design. pp. 512–519. Department of Computer
Science, Università di Verona, IEEE (Aug 2014), http://dx.doi.org/10.1109/
DSD.2014.37

27. Wamser, M.S., Sigl, G.: Pushing the Limits Further: Sub-Atomic AES. In: 2017
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC).
pp. 1–6 (2017), http://dx.doi.org/10.1109/VLSI-SoC.2017.8203470

28. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTAN-
GLE: A bit-slice Ultra-Lightweight block cipher suitable for multiple platforms.
Cryptology ePrint Archive, Report 2014/084 (Feb 2014), http://eprint.iacr.
org/2014/084

http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1109/DSD.2014.37
http://dx.doi.org/10.1109/DSD.2014.37
http://dx.doi.org/10.1109/VLSI-SoC.2017.8203470
http://eprint.iacr.org/2014/084
http://eprint.iacr.org/2014/084

