J. Colinge, FinFETs and Other Multi-Gate Transistors, 2008.

, Intel® 22 nm Technology

, Samsung: Strong 14nm FinFET Logic Process and Design Infrastructure for Advanced Mobile SOC Applications, 2013.

S. H. Tang, L. Chang, N. Lindert, . Yang-kyu, W. Choi et al., FinFET-a quasi-planar doublegate MOSFET, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177, pp.118-119, 2001.

B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell et al., FinFET scaling to 10 nm gate length, Digest. International Electron Devices Meeting, pp.251-254, 2002.

J. B. Chang, M. Guillorn, P. M. Solomon, C. Lin, S. U. Engelmann et al., Scaling of SOI FinFETs down to fin width of 4 nm for the 10nm technology node, Symposium on VLSI Technology -Digest of Technical Papers, 2011.

J. P. Colinge and A. Chandrakasan, FinFETs and other multi-gate transistors, 2008.

D. Bhattacharya and N. K. Jha, FinFETs: From Devices to Architectures, Adv. Electron, vol.2014, pp.1-21, 2014.

, International Technology Roadmap for Semiconductors: Executive Summary -2013 Edition, 2013.

A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, and A. Virazel, Advanced test methods for SRAMs, Proc. IEEE VLSI Test Symp, pp.300-301, 2012.
URL : https://hal.archives-ouvertes.fr/lirmm-00805049

L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri et al., Resistive-Open Defects in Embedded-SRAM Core Cells: Analysis and March Test Solution. 13th Asian Test Symp, pp.266-271, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108800

R. A. Fonseca, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch et al., Analysis of resistive-bridging defects in SRAM core-cells: A comparative study from 90nm down to 40nm technology nodes, 15th IEEE Eur. Test Symp. ETS'10, vol.1, pp.132-137, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00493236

J. C. Li, . Chao-wen, . Tseng, and E. J. Mccluskey, Testing for resistive opens and stuck opens, Proceedings International Test Conference, pp.1049-1058, 2001.

A. J. Van-de-goor and Z. Al-ars, Functional memory faults: a formal notation and a taxonomy, Proc. 18th IEEE VLSI Test Symp, pp.281-289, 2000.

S. Borri, M. Hage-hassan, L. Dilillo, P. Girard, S. Pravossoudovitch et al., Analysis of Dynamic Faults in Embedded-SRAMs: Implications for Memory Test, J. Electron. Test, vol.21, pp.169-179, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00105313

P. Dubey, A. Garg, and S. Mahajan, Study of Read Recovery Dynamic Faults in 6T SRAMS and Method to Improve Test Time, J. Electron. Test, vol.26, pp.659-666, 2010.

G. Harutyunyan, S. Shoukourian, V. Vardanian, and Y. Zorian, Impact of process variations on read failures in SRAMs, East-West Design & Test Symposium (EWDTS 2013), pp.1-4, 2013.

W. Needham and C. Prunty, Eng Hong Yeoh: High volume microprocessor test escapes, an analysis of defects our tests are missing, Proceedings International Test Conference, pp.25-34, 1998.

S. Borri, M. Hage-hassan, L. Dilillo, P. Girard, S. Pravossoudovitch et al., Analysis of dynamic faults in embedded-SRAMs: Implications for memory test, J. Electron. Test. Theory Appl, vol.21, pp.169-179, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00105313

P. Dubey, A. Garg, and S. Mahajan, Study of Read Recovery Dynamic Faults in 6T SRAMS and Method to Improve Test Time, J. Electron. Test, vol.26, pp.659-666, 2010.

A. Benso, A. Bosio, S. Di-carlo, G. Di-natale, and P. Prinetto, New March Tests for unlinked dynamic memory faults. Proc. -Int. Test Conf, pp.834-841, 2005.

A. Bosio, S. Di-carlo, G. Di-natale, and P. Prinetto, March AB, a state-of-the-art march test for realistic static linked faults and dynamic faults in SRAMs, IET Comput. Digit. Tech, vol.1, pp.237-245, 2007.

S. Hamdioui, Z. Al-ars, and A. J. Van-de-goor, Testing static and dynamic faults in random access memories, Proc. IEEE VLSI Test Symp. 2002-Janua, pp.395-400, 2002.

G. Harutyunyan, S. Martirosyan, S. Shoukourian, and Y. Zorian, Memory Physical Aware Multi-Level Fault Diagnosis Flow, IEEE Trans. Emerg. Top. Comput. 1-1, 2018.

G. Harutyunyan, G. Tshagharyan, and Y. Zorian, Test and Repair Methodology for FinFET-Based Memories, IEEE Trans. Device Mater. Reliab, vol.15, pp.3-9, 2015.

G. Harutyunyan, G. Tshagharyan, V. Vardanian, and Y. Zorian, Fault modeling and test algorithm creation strategy for FinFET-based memories, 2014 IEEE 32nd VLSI Test Symposium (VTS), pp.1-6, 2014.

J. A. Segura, V. H. Champac, R. Rodríguez-montañés, J. Figueras, and J. A. Rubio, Quiescent current analysis and experimentation of defective CMOS circuits, J. Electron. Test, vol.3, pp.337-348, 1992.

L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, and M. Bastian, Resistive-open defect injection in SRAM core-cell, Proceedings of the 42nd annual conference on Design automation -DAC '05, p.857, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00106558

E. I. Vatajelu, A. Bosio, L. Dilillo, P. Girard, A. Todri et al., Analyzing resistive-open defects in SRAM core-cell under the effect of process variability, 2013 18TH IEEE EUROPEAN TEST SYMPOSIUM (ETS), pp.1-6, 2013.
URL : https://hal.archives-ouvertes.fr/lirmm-01921630

R. A. Fonseca, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch et al., Analysis of resistive-bridging defects in SRAM core-cells: A comparative study from 90nm down to 40nm technology nodes, 2010 15th IEEE European Test Symposium, ETS'10, pp.132-137, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00493236

R. A. Fonseca, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch et al., Impact of Resistive-Bridging Defects in SRAM Core-Cell, 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications, pp.265-269, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00553592

T. S. Copetti, G. C. Medeiros, L. M. Poehls, and T. R. Balen, Analyzing the Behavior of FinFET SRAMs with Resistive Defects, 2017 IFIP/IEEE International Conference on Very Large Scale Integration, pp.1-6, 2017.

, Intel: Intel's 14 nm Technology: Delivering Ultrafast, Energy-Sipping Products, 2017.

, Samsung: Samsung Mass Produces 14-Nanometer Exynos Processor with Full Connectivity Integration, 2016.

, Predictive Technology Model (PTM)

D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda, A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET, International Technical Digest on Electron Devices Meeting, pp.833-836, 1989.

D. Bhattacharya and N. K. Jha, FinFETs: From Devices to Architectures, Adv. Electron, vol.2014, pp.1-21, 2014.

M. O. Simsir, A. Bhoj, and N. K. Jha, Fault modeling for FinFET circuits, 2010 IEEE/ACM International Symposium on Nanoscale Architectures, pp.41-46, 2010.

E. Karl, Y. Wang, Y. G. Ng, Z. Guo, F. Hamzaoglu et al., A 4.6 GHz 162 Mb SRAM design in 22 nm tri-gate CMOS technology with integrated read and write assist circuitry, IEEE J. Solid-State Circuits, vol.48, pp.150-158, 2013.

C. H. Jan, U. Bhattacharya, R. Brain, S. J. Choi, G. Curello et al., A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications, Tech. Dig. -Int. Electron Devices Meet. IEDM, pp.44-47, 2012.

D. Burnett, S. Parihar, H. Ramamurthy, and S. Balasubramanian, FinFET SRAM design challenges, 2014 IEEE International Conference on IC Design & Technology, pp.1-4, 2014.

Y. Liu and Q. Xu, On modeling faults in FinFET logic circuits, 2012 IEEE International Test Conference, pp.1-9, 2012.