S. Abu-abed, G. Maclean, V. Fraulob, P. Chambon, M. Petkovich et al., Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis, Mechanisms of Development, vol.110, pp.173-177, 2002.

Y. Alnouti and C. D. Klaassen, Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice, Toxicological Sciences, vol.101, pp.51-64, 2008.

E. L. Anderson, A. E. Baltus, H. L. Roepers-gajadien, T. J. Hassold, D. G. De-rooij et al., Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice, vol.105, pp.14976-14980, 2008.

A. E. Baltus, D. B. Menke, Y. C. Hu, M. L. Goodheart, A. E. Carpenter et al., In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication, Nature Genetics, vol.38, pp.1430-1434, 2006.

F. Barrios, D. Filipponi, F. Campolo, M. Gori, F. Bramucci et al., SOHLH1 and SOHLH2 control Kit expression during postnatal male germ cell development, Journal of Cell Science, vol.125, pp.1455-1464, 2012.

P. Blume-jensen, G. Jiang, R. Hyman, K. F. Lee, S. O'gorman et al., Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility, Nature Genetics, vol.24, pp.157-162, 2000.

J. Bowles, C. W. Feng, D. Knight, C. A. Smith, K. N. Roeszler et al., Malespecific expression of Aldh1a1 in mouse and chicken fetal testes: implications for retinoid balance in gonad development, Developmental Dynamics, vol.238, pp.2073-2080, 2009.

J. Bowles, C. W. Feng, K. Miles, J. Ineson, C. Spiller et al., ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries, Nature Communications, vol.7, p.10845, 2016.

J. Bowles, C. W. Feng, C. Spiller, T. L. Davidson, J. et al., FGF9 suppresses meiosis and promotes male germ cell fate in mice, Developmental Cell, vol.19, pp.440-449, 2010.

J. Bowles, D. Knight, C. Smith, D. Wilhelm, J. Richman et al., Retinoid signaling determines germ cell fate in mice, Science, vol.312, pp.596-600, 2006.

J. Bowles and P. Koopman, Retinoic acid, meiosis and germ cell fate in mammals, Development, vol.134, pp.3401-3411, 2007.

F. W. Buaas, A. L. Kirsh, M. Sharma, D. J. Mclean, J. L. Morris et al., Plzf is required in adult male germ cells for stem cell self-renewal, Nature Genetics, vol.36, pp.647-652, 2004.

Y. Chen, L. Ma, C. Hogarth, G. Wei, M. D. Griswold et al., Retinoid signaling controls spermatogonial differentiation by regulating expression of replication-dependent core histone genes, Development, vol.143, pp.1502-1511, 2016.

Y. Clermont and B. Perey, Quantitative study of the cell population of the seminiferous tubules in immature rats, The American Journal of Anatomy, vol.100, pp.241-267, 1957.

J. A. Costoya, R. M. Hobbs, M. Barna, G. Cattoretti, K. Manova et al., Essential role of Plzf in maintenance of spermatogonial stem cells, Nature Genetics, vol.36, pp.653-659, 2004.

J. C. Davis, E. M. Snyder, C. A. Hogarth, C. Small, and M. D. Griswold, Induction of spermatogenic synchrony by retinoic acid in neonatal mice, Spermatogenesis, vol.3, p.23180, 2013.

D. G. De-rooij and L. D. Russell, All you wanted to know about spermatogonia but were afraid to ask, Journal of Andrology, vol.21, pp.776-798, 2000.

D. G. De-rooij, Stem cells in the testis, International Journal of Experimental Pathology, vol.79, pp.67-80, 1998.

A. L. Drumond, M. L. Meistrich, and H. Chiarini-garcia, Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach, Reproduction, vol.142, pp.145-155, 2011.

G. Duester, Retinoic acid synthesis and signaling during early organogenesis, Cell, vol.134, pp.921-931, 2008.

E. Evans, C. Hogarth, D. Mitchell, and M. Griswold, Riding the spermatogenic wave: profiling gene expression within neonatal germ and Sertoli cells during a synchronized initial wave of spermatogenesis in mice, Biology of Reproduction, vol.90, pp.1-12, 2014.

X. Fan, A. Molotkov, S. Manabe, C. M. Donmoyer, L. Deltour et al., Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina, Molecular and Cellular Biology, vol.23, pp.4637-4648, 2003.

D. Filipponi, R. M. Hobbs, S. Ottolenghi, P. Rossi, E. A. Jannini et al., Repression of kit expression by Plzf in germ cells, Molecular and Cellular Biology, vol.27, pp.6770-6781, 2007.

I. C. Gaemers, A. M. Van-pelt, P. T. Van-der-saag, and D. G. De-rooij, All-trans-4-oxo-retinoic acid: a potent inducer of in vivo proliferation of growth-arrested A spermatogonia in the vitamin A-deficient mouse testis, Endocrinology, vol.137, pp.479-485, 1996.

I. Gagnon, G. Duester, and P. V. Bhat, Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates, Biochimica et Biophysica Acta, vol.1596, pp.156-162, 2002.

A. Gely-pernot, M. Raverdeau, C. Célébi, C. Dennefeld, B. Feret et al., Spermatogonia differentiation requires retinoic acid receptor gamma, Endocrinology, vol.153, pp.438-449, 2012.

A. Gely-pernot, M. Raverdeau, M. Teletin, N. Vernet, B. Féret et al., Retinoic acid receptors control spermatogonia cell-fate and induce expression of the SALL4A transcription factor, PLoS Genetics, p.1005501, 2015.

P. Germain, C. Gaudon, V. Pogenberg, S. Sanglier, A. Van-dorsselaer et al., Differential action on coregulatory interaction defines inverse retinoid agonists and neutral antagonists, Chemistry & Biology, vol.16, pp.479-489, 2009.

N. B. Ghyselinck, N. Vernet, C. Dennefeld, N. Giese, H. Nau et al., Retinoids and spermatogenesis: lessons from mutant mice lacking the plasma retinol binding protein, Developmental Dynamics, vol.235, pp.1608-1622, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187930

M. D. Griswold, Spermatogenesis: The Commitment to meiosis, Physiological Reviews, vol.96, pp.1-17, 2016.

M. D. Griswold, C. A. Hogarth, J. Bowles, and P. Koopman, Initiating meiosis: the case for retinoic acid, Biology of Reproduction, vol.86, p.35, 2012.

K. Hara, T. Nakagawa, H. Enomoto, M. Suzuki, M. Yamamoto et al., Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states, Cell Stem Cell, vol.14, pp.658-672, 2014.

R. M. Hobbs, S. Fagoonee, A. Papa, K. Webster, F. Altruda et al., Functional antagonism between Sall4 and Plzf defines germline progenitors, Cell Stem Cell, vol.10, pp.284-298, 2012.

C. A. Hogarth, R. Evanoff, D. Mitchell, T. Kent, C. Small et al., Turning a spermatogenic wave into a tsunami: synchronizing murine spermatogenesis using WIN 18, Biology of Reproduction, vol.446, p.40, 2013.

C. A. Hogarth, S. Arnold, T. Kent, D. Mitchell, N. Isoherranen et al., Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production, Biology of Reproduction, vol.92, p.37, 2015.

C. A. Hogarth, E. Evans, J. Onken, T. Kent, D. Mitchell et al., CYP26 enzymes are necessary within the postnatal seminiferous epithelium for normal murine spermatogenesis, Biology of Reproduction, vol.93, p.19, 2015.

C. Horton and M. Maden, Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo, Developmental Dynamics, vol.202, pp.312-323, 1995.

K. Ikami, M. Tokue, R. Sugimoto, C. Noda, S. Kobayashi et al., Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis, Development, vol.142, pp.1582-1592, 2015.

A. Jørgensen, J. E. Nielsen, S. Perlman, L. Lundvall, R. T. Mitchell et al., Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development, Human Reproduction, vol.30, pp.2351-2363, 2015.

M. A. Kane, A. E. Folias, C. Wang, and J. L. Napoli, Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry, Analytical Chemistry, vol.80, pp.1702-1708, 2008.

T. Kawai, N. Yanaka, J. S. Richards, and M. Shimada, De novo-synthesized retinoic acid in ovarian antral follicles enhances FSH-mediated ovarian follicular cell differentiation and female fertility, Endocrinology, vol.157, pp.2160-2172, 2016.

T. Kent, S. L. Arnold, R. Fasnacht, R. Rowsey, D. Mitchell et al., ALDH enzyme expression is independent of the spermatogenic cycle, and their inhibition causes misregulation of murine spermatogenic processes, Biology of Reproduction, vol.94, p.12, 2016.

H. I. Kissel, M. P. Timokhina, G. Hardy, Y. Rothschild, V. Tajima et al., Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses, The EMBO Journal, vol.19, pp.1312-1326, 2000.

P. M. Kluin, M. F. Kramer, and D. G. De-rooij, Spermatogenesis in the immature mouse proceeds faster than in the adult, International Journal of Andrology, vol.5, pp.282-294, 1982.

A. Kocer, J. Reichmann, D. Best, and I. R. Adams, Germ cell sex determination in mammals, Molecular Human Reproduction, vol.15, pp.205-213, 2009.

U. Koshimizu, M. Watanabe, and N. Nakatsuji, Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro, Developmental Biology, vol.168, pp.683-685, 1995.

J. Koubova, D. B. Menke, Q. Zhou, B. Capel, M. D. Griswold et al., Retinoic acid regulates sex-specific timing of meiotic initiation in mice, vol.103, pp.2474-2479, 2006.

S. Kumar, C. Chatzi, T. Brade, T. J. Cunningham, X. Zhao et al., Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling, Nature Communications, vol.2, p.151, 2011.

L. Bouffant, R. Guerquin, M. J. Duquenne, C. Frydman, N. Coffigny et al., Meiosis initiation in the human ovary requires intrinsic retinoic acid synthesis, Human Reproduction, vol.25, pp.2579-2590, 2010.

H. Li, G. Maclean, D. Cameron, M. Clagett-dame, and M. Petkovich, Cyp26b1 expression in murine Sertoli cells is required to maintain male germ cells in an undifferentiated state during embryogenesis, PLoS One, vol.4, p.7501, 2009.

G. Maclean, H. Li, D. Metzger, P. Chambon, and M. Petkovich, Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice, Endocrinology, vol.148, pp.4560-4567, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00188960

M. Mark, N. B. Ghyselinck, and P. Chambon, Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis, Annual Review of Pharmacology and Toxicology, vol.46, pp.451-80, 2006.

M. Mark, H. Jacobs, M. Oulad-abdelghani, C. Dennefeld, B. Féret et al., , 2008.

, STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation, Journal of Cell Science, vol.121, pp.3233-3242

M. Mark, M. Teletin, N. Vernet, and N. B. Ghyselinck, Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation, Biochimica et Biophysica Acta, vol.1849, pp.84-93, 2015.

N. Matt, V. Dupé, J. M. Garnier, C. Dennefeld, P. Chambon et al., Retinoic aciddependent eye morphogenesis is orchestrated by neural crest cells, Development, vol.132, pp.4789-4800, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187693

A. Mclaren and K. A. Lawson, How is the mouse germ-cell lineage established? Differentiation, vol.73, pp.435-437, 2005.

C. Mendelsohn, D. Lohnes, D. Decimo, T. Lufkin, M. Lemeur et al., Multiple abnormalities at various stages of organogenesis in RAR double mutants, Development, vol.120, pp.2749-2771, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02196236

C. Morales and M. D. Griswold, Retinol-induced stage synchronization in seminiferous tubules of the rat, Endocrinology, vol.121, pp.432-434, 1987.

Y. Morita and J. L. Tilly, Segregation of retinoic acid effects on fetal ovarian germ cell mitosis versus apoptosis by requirement for new macromolecular synthesis, Endocrinology, vol.140, pp.2696-2703, 1999.

R. Nagano, S. Tabata, Y. Nakanishi, S. Ohsako, M. Kurohmaru et al., Reproliferation and relocation of mouse male germ cells (gonocytes) during prespermatogenesis, The Anatomical Record, vol.258, pp.210-220, 2000.

H. Nakata, T. Wakayama, T. Sonomura, S. Honma, T. Hatta et al., Three-dimensional structure of seminiferous tubules in the adult mouse, Journal of Anatomy, vol.227, pp.686-694, 2015.

K. Niederreither, P. Mccaffery, U. C. Dräger, P. Chambon, and P. Dollé, Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development, Mechanisms of Development, vol.62, pp.67-78, 1997.

K. Niederreither, J. Vermot, V. Fraulob, P. Chambon, and P. Dollé, Retinaldehyde dehydrogenase 2 (RALDH2)-independent patterns of retinoic acid synthesis in the mouse embryo, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.16111-16116, 2002.

J. Novák, M. Benísek, and K. Hilscherová, Disruption of retinoid transport, metabolism and signaling by environmental pollutants, Environment International, vol.34, pp.898-913, 2008.

M. Oulad-abdelghani, P. Bouillet, D. Decimo, A. Gansmuller, S. Heyberger et al., Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene, The Journal of Cell Biology, vol.135, pp.469-477, 1996.

R. P. Piprek, A. Pecio, K. Laskowska-kaszub, M. Kloc, J. Z. Kubiak et al., Retinoic acid homeostasis regulates meiotic entry in developing anuran gonads and in Bidder's organ through Raldh2 and Cyp26b1 proteins, Mechanisms of Development, vol.130, pp.613-627, 2013.

M. Raverdeau, A. Gely-pernot, B. Féret, C. Dennefeld, G. Benoit et al., Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis, vol.109, pp.16582-16587, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749600

J. Rossant, R. Zirngibl, D. Cado, M. Shago, and V. Giguère, Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis, Genes & Development, vol.5, pp.1333-1344, 1991.

L. D. Russell, A. P. Ettlin, and R. A. Clegg, Histological and histopathological evaluation of the testis, 1990.

E. Samarut and C. Rochette-egly, Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development, Molecular and Cellular Endocrinology, vol.348, pp.348-360, 2012.

M. K. Sarath-josh, S. Pradeep, K. S. Vijayalekshmi-amma, S. Balachandran, U. C. Abdul-jaleel et al., Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor ?, ?, ? subtypes: an in silico approach, Journal of Applied Toxicology, vol.34, pp.754-765, 2014.

B. H. Schrans-stassen, H. J. Van-de-kant, D. G. De-rooij, and A. M. Van-pelt, Differential expression of kit in mouse undifferentiated and differentiating type A spermatogonia, Endocrinology, vol.140, pp.5894-5900, 1999.

T. Shinohara, K. E. Orwig, M. R. Avarbock, and R. L. Brinster, Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.8346-8351, 2000.

E. M. Snyder, J. C. Davis, Q. Zhou, R. Evanoff, and M. D. Griswold, Exposure to retinoic acid in the neonatal but not adult mouse results in synchronous spermatogenesis, Biology of Reproduction, vol.84, pp.886-893, 2011.

S. B. Soone, K. Almstrup, M. Dalgaard, A. S. Juncker, D. Edsgard et al., Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte, Cancer Research, vol.69, pp.5241-5250, 2009.

R. Sugimoto, Y. Nabeshima, and S. Yoshida, Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium, Mechanisms of Development, vol.128, pp.610-624, 2012.

M. Tedesco, M. G. Desimio, F. G. Klinger, M. De-felici, and D. Farini, Minimal concentrations of retinoic acid induce stimulation by retinoic acid 8 and promote entry into meiosis in isolated pregonadal and gonadal mouse primordial germ cells, Biology of Reproduction, vol.88, p.145, 2013.

M. H. Tong, Y. , Q. E. Davis, J. C. Griswold, and M. D. , Retinol dehydrogenase 10 is indispensable for spermatogenesis in juvenile males, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.543-548, 2013.

E. Trautmann, M. J. Guerquin, C. Duquenne, J. B. Lahaye, R. Habert et al., Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes, Cell Cycle, vol.7, pp.656-664, 2008.

M. E. Van-beek and M. L. Meistrich, A method for quantifying synchrony in testes of rats treated with vitamin A deprivation and readministration, Biology of Reproduction, vol.42, pp.424-431, 1990.

A. M. Van-pelt and D. G. De-rooij, The origin of the synchronization of the seminiferous epithelium in vitamin A-deficient rats after vitamin A replacement, Biology of Reproduction, vol.42, pp.677-682, 1990.

A. M. Van-pelt and D. G. De-rooij, Retinoic acid is able to reinitiate spermatogenesis in vitamin A-deficient rats and high replicate doses support the full development of spermatogenic cells, Endocrinology, vol.128, pp.697-704, 1991.

A. M. Van-pelt, F. M. Van-dissel-emiliani, I. C. Gaemers, M. J. Van-der-burg, H. J. Tanke et al., Characteristics of A spermatogonia and preleptotene spermatocytes in the vitamin A-deficient rat testis, Biology of Reproduction, vol.53, pp.570-578, 1995.

N. Vernet, C. Dennefeld, C. Rochette-egly, M. Oulad-abdelghani, P. Chambon et al., Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis, Endocrinology, vol.147, pp.96-110, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188178

N. Vernet, C. Dennefeld, F. Guillou, P. Chambon, N. B. Ghyselinck et al., , 2006.

, Prepubertal testis development relies on retinoic acid but not rexinoid receptors in Sertoli cells, The EMBO Journal, vol.25, pp.5816-5825

A. Wallacides, A. Chesnel, D. Chardard, S. Flament, and H. Dumond, Evidence for a conserved role of retinoic acid in urodele amphibian meiosis onset, Developmental Dynamics, vol.238, pp.1389-1398, 2009.

P. S. Western, D. C. Miles, J. A. Van-den-bergen, M. Burton, and A. H. Sinclair, Dynamic regulation of mitotic arrest in fetal male germ cells, Stem Cells, vol.26, pp.339-347, 2008.

S. B. Wolbach and P. R. Howe, Tissue changes following deprivation of fat-soluble A vitamin, The Journal of Experimental Medicine, vol.42, pp.753-777, 1925.

X. Wu, J. A. Schmidt, M. R. Avarbock, J. W. Tobias, C. A. Carlson et al., Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules, Proceedings of the National Academy of Sciences, vol.106, pp.21672-21677, 2009.

J. W. Wu, R. Y. Wang, Q. S. Guo, and C. Xu, Expression of the retinoic acid-metabolizing enzymes RALDH2 and CYP26b1 during mouse postnatal testis development, Asian Journal of Andrology, vol.10, pp.569-576, 2008.

S. Yoshida, M. Sukeno, T. Nakagawa, K. Ohbo, G. Nagamatsu et al., The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage, Development, vol.133, pp.1495-1505, 2006.

Q. Zhou, Y. Li, R. Nie, P. Friel, D. Mitchell et al., Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro, Biology of Reproduction, vol.78, pp.537-545, 2008.