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Abstract. Adverse drug events (ADEs) are considered to be highly im-
portant and critical conditions, while accounting for around 3.7% of hos-
pital admissions all over the world. Several studies have applied predic-
tive models for ADE detection; nonetheless, only a restricted number and
type of features has been used. In the paper, we propose a framework
for identifying ADEs in medical records, by first applying the Boruta
feature importance criterion, and then using the top-ranked features for
building a predictive model as well as for clustering. We provide an ex-
perimental evaluation on the MIMIC-III database by considering 7 types
of ADEs illustrating the benefit of the Boruta criterion for the task of
ADE detection.

Keywords: adverse drug events · feature importance · predictive models
· clustering.

1 Introduction

Adverse drug events (ADEs) refer to diagnoses corresponding to injuries that
result from the use of a drug, including harm caused by the normal use of a drug,
drug overdose, and use-related harms, such as from drug dose reductions and
discontinuations of drugs administration [21]. ADEs possess high clinical rele-
vance being that they account for approximately 3.7% of hospital admissions
around the world [16]. Unfortunately, many ADEs are currently not being iden-
tified as such, due to limited knowledge about the effects of medical treatments,
e.g., drugs being tested only in limited clinical trials under controlled conditions.
An alternative approach is to resort to machine learning and the exploitation of
the constantly growing amounts of information stored in electronic healthcare
records (EHRs), so as to extract knowledge from past observations and learn
how to identify new patient cases with a high risk of leading to an ADE.

With the adoption of EHRs, the amount of healthcare documentation is
larger than ever, and there are several efforts underway to involve patients in
their healthcare process through the use of patient generated data. Tradition-
ally, data management and machine models have been developed by utilizing



2 C. Allaart et al.

information from structured data fields [14,1] as well as clinical text [12], little
attention has been devoted to combining different data sources for the creation
of richer overall models [33]. More importantly, these data sources are natu-
rally characterized by high degree of sparsity and missing values. Consider for
example a drug prescription variable (e.g., beta-blockers), which is typically ad-
ministered to patients suffering from heart-related disorders. We should expect
that this variable will be substantially empty for patients not suffering from any
heart disease.

The problem of missing values in EHRs has been identified by several earlier
studies [3,1]. More recently, Bagattini et al. [1] propose three simple approaches
for handling sparse features in EHRs for the task of ADE detection. Nonethe-
less, only one type of EHR features was used, corresponding to blood test mea-
surements before the occurrence of an ADE; while diagnoses codes and drug
prescriptions were excluded from the study. Moreover, the goal of that paper
was to define simple temporal abstractions that take into account such temporal
features with high degrees of sparsity. The objective of our study in this paper
is to take a different research angle and approach the problem using feature
importance to assess the statistical significance of multiple, heterogeneous EHR
features in terms of their predictive performance. Moreover, we aim to define
a more general approach to the problem of ADE detection in EHRs that can
handle disparate feature types and, in the presence of sparse and noisy features,
identify the subset of most significant class-distinctive features, that can then
be used for both classification and clustering of ADEs in EHRs.

The main contributions of the paper include: (1) the formulation of a frame-
work for identifying and assessing the importance of medical features in terms
of their predictive performance, as well as their descriptive power for the prob-
lem of ADE detection; (2) the proposed framework employs the Boruta feature
importance criterion as a first step, and then subsequently pipelines the selected
features to building a predictive model for ADE prediction, as well as identifying
clusters of patients under different ADE classes; (3) an extensive experimental
evaluation on patient records obtained from the MIMIC database 1 including
patients with 7 ADE types, and assessing (a) the predictive performance of four
classification models using sets of features extracted by the Boruta criterion, as
well as (b) the descriptive performance of clusters obtained using the highest
scoring features in terms of the Boruta criterion under K-medoids.

2 Related work

The wide usage of EHRs in medical research has recently increased the interest
in the use of clinical data sources by medical practitioners as well as researchers
from various fields [13,32]. Numerous research directions arise for the problem of
ADE identification, which is the key focus of this study [13]. Compared to tra-
ditional data sources, such as spontaneous reports [26], as well as other popular

1 https://mimic.physionet.org.
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resources, such as social media data [28], EHRs contain data types and informa-
tion that allow for incidence estimation and provide class labels for supervised
machine learning. Research on mining both structured and unstructured EHR
data for ADE detection is nascent, see e.g. [10,11,25,29,33].

The traditional approach for ADE identification is performed before the de-
ployment of a drug. This is achieved by several rounds of clinical trials, which
however are hampered by the fact that only a limited sample of patients is usu-
ally employed and monitored for a short or limited time period. Consequently,
the phenomenon of ADE under-reporting arises as several serious ADEs are not
detected during clinical trials but rather after the market deployment of a new
drug. This typically results in having several drugs withdrawn. These limitations
can be overcome by defining and employing rules for ADE detection [8,4].

Machine learning is an alternative to ADE detection by the exploitation
of rich data features in EHRs, such as for example blood tests [23]. More im-
portantly, the development and application of machine learning models, both
supervised and unsupervised, in a clinical setting can facilitate substantial im-
provements in terms of ADE detection while maintaining low hospitalization and
treatment costs. We can identify four major lines of research on learning from
EHRs [17]: (1) detection and analysis of comorbidities, (2) clustering patients
with similar characteristics, (3) supervised learning, and (4) cohort querying and
analysis. Examples of the above four categories are itemset mining, association
rule extraction, and disproportionality analysis, prediction of critical healthcare
and patient conditions, such as, for instance, smoking status quantification for a
patient [31], patient safety and automated surveillance of ADEs [15], comorbidity
and disease networks [4], processing of clinical text [11], identification of suitable
individuals for clinical trials [24], as well as identification of temporal associa-
tions between medical events and first prescriptions of medicines for signaling
the presence of an ADE [22].

3 The FISUL framework

We present Feature Importance for Supervised and Unsupervised Learning (FISUL),
a framework for predictive and descriptive modeling of ADEs from EHRs. FISUL
has three phases: (1) feature importance, (2) predictive modeling, and (3) clus-
tering. In Figure 1 we provide an outline of the proposed framework. Next, we
describe each phase in more detail.

Fig. 1: An outline of the FISUL framework.
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3.1 Phase I: Boruta feature importance

We employ the Boruta method [19] as a feature importance criterion for reducing
the number of data features. Boruta is a variable importance method that is
defined for the random forest classifier, by mainly measuring the total decrease
in impurity from performing a feature split over all nodes of a tree, averaged over
all trees in the random forest. The Boruta method was selected for its ability to
provide unbiased and stable selection of all relevant features [18]

The main idea is to create randomized copies of the existing features, merge
the copies with the original data features, build a final classifier using all features,
including the randomized ones, and iteratively identify the most important fea-
tures for the classification task at hand. More concretely, let D be the original
dataset and let F denote the original feature space. The key objective of Boruta
is to define a mapping process, T , such that T : F −→ F̂ . where F̂ is a set
of randomized features originating from F . More concretely, the following steps
are performed:

– Randomization: a replica, called shadow feature, f̂i ∈ F̂ is created for each
feature fi ∈ F , by random permutation of its values; as a result, possible cor-
relations that may exist between the original features and the class attribute
are diminished.

– Model building: a random forest R is built using the union of the features
F
⋃
F̂ . This procedure is repeated n times, i.e., for n iterations.

– Importance score: for each fi ∈ F and f̂i ∈ F̂ , we define an importance
score, called Z -score, over all trees in R, where each feature appears. The
mean and standard deviation of the accuracy loss are defined as µfi , µf̂i and
σfi , σf̂i , respectively, using the out-of-bag samples. Finally, the Z-score of

each feature fi and each shadow feature f̂i is defined as

Zfi =
µfi
σfi

and Zf̂i =
µf̂i
σf̂i

,

respectively. Intuitively, the Z-score reflects the degree of fluctuation of the
mean accuracy loss among the trees in R.

– Statistical significance: for each original fi ∈ F , we compute a statistical
significance score using a two-tailed binomial test. More specifically, let Zjmax
be maximum Z-score of all shadow features in iteration j, i.e.,

Zjmax = max
f̂i∈F̂

Zf̂i . (1)

We use a vector, called hit vector H, to store for each fi ∈ F in how many
iterations it achieved a Z-score higher than Zjmax, i.e.,

Hi =

n∑
j=1

|11{fi:Zfi
≥Zj

max}(fi)| , (2)
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where 11 is the indicator function, i.e.,

11A(x) =

{
1 if x ∈ A
0 if x /∈ A

(3)

If feature fi performs significantly better than expected compared to its
shadow features in terms of Z-score, it is marked as “important”. Note that
under the binomial distribution assumptions, the expected number of times
Hi that fi may outperform its shadow replicas is simply E(fi, n) = n

2 , with

a standard deviation σ(fi, n) =
√

0.25n, assuming that Hi ∼ B(n, 0.5).
Conversely, fi is considered “important”, if Hi is significantly higher than
E(fi, n). Finally, the features that survive the significance test constitute the
set of Boruta features F?.

3.2 Phase II: Predictive modeling

The set of Boruta features F? extracted from Phase I are next passed to Phase II
for building a predictive model using the new feature space. The main objective
is to learn a classification function τ : o → y, that assigns a given data object
o with a class label from a set C of predefined class labels, such that y ∈ C.
More specifically, we can couple τ with a set of features θ selected and employed
during the training phase. In our case, the set of class labels corresponds to a
selected set of ADEs. More information about the selected class labels can be
found in Section 4. The training phase of a predictive model is more formally
defined as τ = L(θ, T ), where L is the learning function corresponding to a
chosen predictive model and T is the training set. Finally, the label of a newly
seen data example o is obtained by applying τ , configured with the same chosen
feature set θ, i.e., y = τ(o; θ). In our framework, we choose the top-k most
important Boruta features, i.e., θ = F?k .

3.3 Phase III: Clustering

An alternative approach for exploiting F? is clustering. The main objective is
to define a partitioning G = {g1, . . . , gK} of K groups, such that inter-group
similarity is maximized and intra-group similarity is minimized.

Since in our case the data objects contain features that are not necessarily
numerical, we employ K-medoids using the Gower distance. This distance func-
tion computes the average dissimilarity across the data objects. Let oi, oj be two
data objects in our dataset and |θ| be the size of our feature space. The Gower
distance is computed as follows:

Gdist(oi, oj) =
1

|θ|

|θ|∑
i=1

dfi,j , (4)

where dfi,j is a function computing the dissimilarity of feature f between objects
oi and oj , depending on the feature type, after standardizing each feature. For
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example, in the case of numerical features, dfi,j is defined as follows:

dfi,j =
|ofi − o

f
j |

Zf
, (5)

where Zf is the maximum distance range across all data objects and ofi , o
f
j denote

the values of feature f for objects oi, oj , respectively. In the case of categorical

features, dfi,j = 0, if ofi = ofj and 1, otherwise.
The final clustering is obtained by running K-medoids under the Gower dis-

tance given by Eq. 4, and tuning K using the Silhouette coefficient [27] and
selecting the one with the highest Silhouette value [27].

4 Experimental evaluation

We outline the experimental setup by first our dataset, the benchmarked meth-
ods, the undersampling procedure we used to tackle the high class imbalance,
and finally the presentation of our findings.

Dataset. We used the Medical Information Mark for Intensive Care III (MIMIC-
III) database [30], a freely available medical database for intensive care (ICU)
research, released in 2006 and comprising over 40,000 patients. Several studies
have been conducted on this dataset using predictive models, such as prediction
of hospital stay [9] or mortality rate [6]. However, little attention has been given
to prediction of ADEs, yet they are common in ICU patients [2]. In MIMIC-III
the ADEs are coded as ICD-9 diagnosis codes and for this study we explored
the 7 of the most commonly occurring codes depicting ADEs; grouped as caused
by one of four specific drugs: (1) antibiotics, (2) anticoagulants, (3) antineoplas-
tic and immunosuppressive drugs, or (4) corticosteroids. We hence considered
five datasets, one being the whole dataset including all ADEs, while each of
the remaining four corresponded to each of the four specific drugs. All hospital
admissions where one of these drugs were prescribed, were considered in the
preprocessing, with a positive class label signifying at least one of the selected
ADEs during hospital stay. A summary of the used datasets is given in Table 1.

Four different types of features were selected from MIMIC-III, either based on
previous relevance to ADE prediction or as they had been identified clinically as
risk factors or indications of ADEs in critical care. These features were: admission
characteristics, undergone procedures, laboratory tests, and prescribed drugs.
For the last three, one-hot encoding was applied based on clinically relevant
groupings of their coding systems. The NDC drug codes extracted from MIMIC-
III were converted to ATC codes[20], as the ATC grouping system has more
clinical relevance. The full set of selected features is described in Table 2. The
drug specific datasets excluded the drug feature group the ADE was caused
by, for example the dataset with ADEs caused by corticosteroids excluded the
corticosteroid drug group as a feature.

2 http://icd9.chrisendres.com/index.php?action=contents
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Table 1: The table provides information about the whole dataset used for our experi-
mental evaluation, and the four subset datasets of ADEs. For each dataset we indicate
the number of total examples, the number of positive and negative class labels, the
gender ratio of the patients (in terms of % of female patients), and their average age.

Whole Anti- Immuno- Cortico- Antbiotics
Dataset coagulants suppresive steroids

Total # of Examples 47506 42449 2389 12198 37145
# of Class Labels (positive) 2078 600 223 511 469
# of Class Labels (negative) 4,4 1,4 9,3 4,2 1,3
% of Female Patients 43.9 43.9 42.8 49.3 44.2
Average Age 58.8 61.9 57.2 61.2 58.4

Table 2: The table provides information on the features of the datasets used in our
experimental evaluation. Per feature type, the total number of features for the whole
dataset is indicated, as well as the type of grouping used for their one-hot encoding.

# of Features Type of grouping

Admission Characteristics 5 -
Procedures 18 ICD-9 2 procedure groups
Laboratory Test 10 LOINC 3 (parent) groups
Prescribed Drugs 94 ATC 4 level 2

Setup. We benchmarked six predictive modeling techniques having demon-
strated competitive predictive performance in earlier works on ADE detection
[1,33]: (1) Random Forests (RF100) with 100 trees, (2) simple Feed-Forward
Neural Networks (NNet), (3) eXtreme gradient boosting (XGBoost), (4) SVM
with a radial basis kernel (SVMRadial), (5) SVM with a polynomial kernel with
degree 3 (SVMPolynomial), and (6) SVM with a linear kernel (SVMLinear).
Due to the high class imbalance in all datasets, we performed under-sampling
of the majority class for each dataset. All models used 3 feature sets: all fea-
tures, the relevant features as selected by Boruta, and Boruta’s top 10 (after
under-sampling). The performance metrics were AUC and AUPRC, under 10-
fold cross-validation. For clustering we used the original imbalanced datasets.
We applied K-medoids for different values of K, using the Gower distance on
the top-10 Boruta selected features.

Results. Next, we present our experimental findings for each of the three phases
of the FISUL framework.

– Boruta feature importance. When applied to the whole dataset, the Boruta
criterion rejected 56 features, mainly those that were extremely sparse (<1%
occurrence). Many of the top ranking significant features are laboratory tests,
while the vast majority of the remaining significant features are drug pre-
scriptions with very few admission characteristics and procedures, which is
comparable to the antibiotics dataset (Fig 2). The anticoagulants dataset
paints a similar picture, with the only difference that age and the platelets
lab test are the top 2 features (Fig 4). For the immunosuppressives dataset,

3 https://loinc.org/groups/
4 https://www.whocc.no
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the top-3 features were again laboratory tests, while the majority of the re-
maining significant features were drugs, with very few features corresponding
to procedures. On the other hand, we observe that for corticosteroids (Figure
3 (left)) the vast majority of significant features are drugs, with laboratory
tests being less significant. We also note that for the latter dataset, no other
feature types where deemed significant.

– Predictive modeling. Our experimental findings in terms of predictive per-
formance are shown in Tables 3, 4, and 5. We observe that both RF100 and
XGBoost consistently outperform the other classifiers for the whole dataset
classification in all feature sets. For the four individual datasets, RF100 is
still a winner in most of the cases, alongside with XGBoost, especially on
the complete unfiltered feature set, where the other benchmarked classifiers
are not competitive. However, note that when the Boruta feature selection
is applied first and either only all relevant or top-10 features are included,
the performances of the other benchmarked classifiers are not substantially
lower than the two winners. Clustering. For all 5 datasets, the Silhouette
coefficient suggested two clusters. For all cases, the two clusters mostly con-
tained non-ADE examples, while cluster purity was above 96% for the whole
dataset as well as for corticosteroids, 98% for antibiotics and anticoagulants,
and 91% for immunosuppressives. Due to the inherent extreme class imbal-
ance of the dataset the top-10 Boruta features did not manage to capture
any strong cluster structure that can distinguish ADE from non-ADE cases.

Fig. 2: Histograms of the Boruta importance for all feature types for the whole dataset
(left) and the antibiotics dataset (right). We observe that the features with the highest
importance are Laboratory tests and drugs for both cases.

Discussion. Our overall framework and our benchmark on six predictive mod-
els, illustrates the medical importance of the selected features. The most im-
portant features of all the datasets mainly included values clinically known to
be indicative of ADEs, such as laboratory tests and certain drugs groups. The
procedures seemed to be the least influential features for ADE detection. There
were differences between the 4 drug-specific datasets, which could be clinically
explained. For example, the top 2 features in the anticoagulants dataset were
age and platelet lab tests, which are also considered the two major risk factors
in anticoagulants caused ADEs [7]. Moreover, the corticosteroid dataset showed
mainly drugs important features. Corticosteroids are a known factor in many
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Fig. 3: Histograms of the Boruta importance for all feature types for the corticos-
teroids dataset (left) and the immunosuppresive dataset (right). We observe that the
features with the highest importance for immunosuppresives are the drugs, while for
corticosteroids some laboratory tests precede in the ranking.

Fig. 4: Histogram of the Boruta importance for the anticoagulant dataset. We observe
that laboratory tests and the patient’s age are the most important features.

drug-drug interactions [5], which are often at the base of ADEs, which could
explain the importance of other drug groups for corticosteroid-induced ADEs.

With regards to the classifiers, it is evident that the random forest and ex-
treme gradient boosting outperformed the other classifiers. However, when the
full framework including the feature selection is applied, the other classifiers
become competitive, while the two winners to not decrease in predictive perfor-
mance. Also, the addition of the feature selection speeds up the model building
phase substantially, without decreasing the performance. Moreover, due to the
high values of purity obtained in the clustering, our results still suggest that
the Boruta criterion can be seen as a promising feature importance measure for
identifying strong cluster substructures.

5 Conclusions

We presented a framework for studying ADEs in EHRs using heterogeneous
feature types. We illustrated the importance of the Boruta feature importance
criterion for the tasks of classification and clustering ADEs. Our findings suggest
that integrating different feature types along with a strong feature importance
criterion (such as Boruta) can provide substantially better predictive perfor-
mance compared to only using drugs or clinical tests. Directions for future work
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Table 3: The performance the six chosen classifiers for the five datasets in terms of
AUC and AUPRC for all data features without applying the Boruta criterion.

Whole Dataset Anticoagulants Immunosupp. Corticosteroids Antibiotics
AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

RF100 0,81 0,79 0,73 0,69 0,78 0,75 0,72 0,70 0,80 0,78
NNet 0,57 0,38 0,54 0,43 0,65 0,45 0,58 0,40 0,58 0,45
XGBoost 0,81 0,79 0,73 0,69 0,78 0,75 0,71 0,68 0,81 0,78
SVMRadial 0,50 0,49 0,56 0,56 0,52 0,51 0,48 0,50 0,49 0,49
SVMPolynomial 0,74 0,76 0,67 0,63 0,76 0,74 0,67 0,69 0,74 0,72
SVMLinear 0,71 0,72 0,58 0,61 0,71 0,75 0,57 0,65 0,61 0,72

Table 4: The performance the six chosen classifiers for the five datasets in terms of
AUC and AUPRC for all data features considered significant by the Boruta criterion.

Whole Dataset Anticoagulants Immunosupp. Corticosteroids Antibiotics
AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

RF100 0,81 0,79 0,74 0,69 0,80 0,77 0,72 0,71 0,81 0,78
NNet 0,78 0,66 0,69 0,59 0,74 0,61 0,66 0,62 0,71 0,60
XGBoost 0,81 0,79 0,74 0,69 0,79 0,74 0,71 0,69 0,81 0,78
SVMRadial 0,80 0,77 0,73 0,69 0,76 0,74 0,69 0,68 0,79 0,75
SVMPolynomial 0,80 0,79 0,70 0,66 0,80 0,76 0,71 0,68 0,80 0,76
SVMLinear 0,80 0,78 0,70 0,66 0,76 0,73 0,70 0,67 0,79 0,75

Table 5: The performance the six chosen classifiers for the five datasets in terms of
AUC and AUPRC for the top-10 significant data features based on the Boruta criterion.

Whole Dataset Anticoagulants Immunosupp. Corticosteroids Antibiotics
AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

RF100 0,78 0,77 0,71 0,66 0,77 0,75 0,70 0,67 0,79 0,77
NNet 0,78 0,76 0,69 0,63 0,76 0,69 0,70 0,66 0,78 0,75
XGBoost 0,78 0,77 0,72 0,67 0,78 0,74 0,71 0,67 0,80 0,77
SVMRadial 0,76 0,71 0,70 0,64 0,78 0,75 0,70 0,68 0,76 0,73
SVMPolynomial 0,77 0,76 0,69 0,64 0,80 0,77 0,70 0,67 0,78 0,76
SVMLinear 0,77 0,76 0,68 0,63 0,77 0,74 0,70 0,66 0,78 0,75

include the integration of features from non-structured data types (e.g., clinical
text and notes) and the exploration of alternative feature importance measures.
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