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Abstract. Nowadays, Artificial Intelligence (AI) is changing our daily
life in many application fields. Automatic trading has inspired a large
number of field experts and scientists in developing innovative tech-
niques and deploying cutting-edge technologies to trade different mar-
kets. In this context, cryptocurrency has given new interest in the appli-
cation of AI techniques for predicting the future price of a financial asset.
In this work Deep Reinforcement Learning is applied to trade bitcoin.
More precisely, Double and Dueling Double Deep Q-learning Networks
are compared over a period of almost four years. Two reward functions
are also tested: Sharpe ratio and profit reward functions. The Double
Deep Q-learning trading system based on Sharpe ratio reward function
demonstrated to be the most profitable approach for trading bitcoin.

Keywords: Deep Reinforcement Learning, Double Deep Q-learning Net-
works, Dueling Architecture, Cryptocurrency, Automatic Trading.

1 Introduction

Nowadays, Artificial Intelligence (AI) is reshaping our daily life. AI is the study
and design of intelligent agents where an agent is a system that perceives its
environment and takes actions in order to maximize its chances of success. AI
excels at interpreting signals and real-time analytic which underpin many dif-
ferent applications. For instance, AI is changing the way medical science was
perceived just few years ago. Autonomous machines play an increasingly impor-
tant role in surgery, improving patient outcomes and reducing expensive hospital
stay time. Elsewhere, computer vision are improving diagnostic technologies and
making them more accessible, while predictive algorithms are facilitating more
rapid drug discovery. A less noble application is related to the financial sector,
where AI is used to build automatic trading systems which are poised to foster a
new financial technology transformation. Furthermore, the arrival of cryptocur-
rency has given new interest in the application of AI techniques for predicting
the future price of a financial asset (i.e. Bitcoin).

In this context, Reinforcement Learning (RL) [6] [21] has demonstrated the
potential to transform how classical trading systems work. RL is an autonomous,
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self-teaching system that essentially learns by trial and error. It performs actions
with the aim to maximize rewards and achieve the best outcomes [2] [17].

In this work, we investigate the performance of two different trading sys-
tems based on deep RL approaches: Double Deep Q-Network (D-DQN) [16] and
Dueling Double Deep Q-Network (DD-DQN) [24]. The two trading systems are
compared with a Deep Q-Network (DQN) [16].

The article is structured as follows: Section 2 provides a definition of cryp-
tocurrency and bitcoin. Section 3 gives a short description of Reinforcement
Learning. Section 4 introduces and describes the proposed Q-learning trading
system. Main results are reported in Section 5 and Section 6 concludes the work.

1.1 Related Work

Deep Learning (DL) and Reinforcement Learning (RL) are viable approaches
for market making. In recent years, the use of DL and RL is increased a lot
demonstrating the powerful of these techniques.

McNally, S. et al. (2018) [15] applied different Machine Learning (ML) tech-
niques on bitcoin cryptocurrency. More precisely, they compared Recurrent Neu-
ral Network (RNN) and Long Short Term Memory (LSTM) network against
a more classical approach such as AutoRegressive Integrated Moving Average
(ARIMA) model. RNN and LSTM outperformed ARIMA in a traditional clas-
sification setting.

Patel, Y. (2018) [19] proposed a multi-agent approach that operates at two
different levels: (i) minute level (macro-agent) and (ii) order book level (micro-
agent). The macro-agent is based on a Double Q-learning network composed by
a Multi-Layer Perceptron (MLP) and the micro-agent is realized with a Dueling
Double Q-learning network with reward function based on volume weighted av-
erage bitcoin price. The multi-agent did not outperfom the simple macro-agent
but it obtained better results with respect to a uniform Buy and Hold and Mo-
mentum Investing techniques in terms of cumulative profits.

Previous works were applied only to bitcoin movements, Bu, S.-J. et al (2018)
[5] tested a hybrid approach (Boltzmann machine and Double Q-learning net-
work) against LSTM, MLP, Convolutional Neural Network (CNN) over eigth
cryptocurrencies. They used the ratio between total value after investement and
initial value as evaluation score. The hybrid approach demonstrated to be more
profitable than competitors but more risky and unstable.

Alessandretti, L. and coauthors (2018) [1] and Jiang, Z. et al. (2017) [10]
applied Artificial Intellingent (AI) approaches on portfolio management. In [1]
the authors applied a gradient boosting decision tree (i.e. XGBoost) and LSTM
network on a cryptocurrency portfolio. Performance were evaluated considering
Sharpe ratio [20] and geometric mean return. All proposed strategies produced
profit over the entire test period. Jiang, Z. et al. (2017) [10] applied a determin-
istic policy gradient using a direct reward function (average logarithmic return)
for solving the portfolio management problem. The approach demonstrated to
outperfom classical management techniques except against a Passive Aggressive
Mean Reversion technique in terms of cumulative return.
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In this work, the proposed trading systems based on deep RL approaches
differ from previous techniques for the use of a reward function based on Sharpe
ratio. Furthermore, Double Q-learning and Dueling Double Q-learning networks
are used as agents that interact with the financial market in a macro level.

2 Cryptocurrency and Bitcoin

A cryptocurrency can be seen as a digital or virtual currency that works as a
medium of exchange. In few words, it is a set of limited entries in a database
that no one can change unless specific conditions are fulfilled. Bitcoin is one
of the most established and discussed cryptocurrency available today. Since its
origination in 2009, bitcoin has received the stature of a digital commodity and
its value is considered comparable to traditional currencies [7]. The exchanges
of bitcoin are verified for secure transaction by network nodes which use crypto-
graphic techniques. They are recorded in a public distributed ledger called block
chain which records bitcoin transactions [7].

Considering a specific time interval, bitcoin price information is represented
by candlesticks, or Open-High-Low-Close (OHLC) chart. A candle consists of
four measurements for an asset during a period: the opening price at the start of
the period, the highest and lowest price within the period, and the closing price
at the end of the period. The opening and closing part of a candle is usually
charted as a box and the highest and lowest prices as the ”wicks” above and
below. Candles themselves trivially aggregate into larger candles. For instance,
a 1 hour candle is easily derived by aggregating 60 candles of 1 minute.

2.1 Automated trading

Automated trading can be seen as an automated decision-making procedure.
Usually, automated trading procedures aim at predicting whether a possible
positive return will be realized in the near future. The automated trading proce-
dure should define whether to buy or sell the asset under consideration or hold
the current position.

At time step t, the automated trading procedure will then act based on the
decision rule defined in Eq. 1.

Action =





Buy, if E[pt+h] > pt,

Hold, if E[pt+h] = pt,

Sell, if E[pt+h] < pt.

(1)

Given the price of an asset at time t, pt, the automated trading procedure
buys if the expected price at time t + h, E[pt+h], is greater than pt and sell if
E[pt+h] is lower than pt, otherwise it does not do any action (hold). h is some
positive number of time steps in the future [3].

Throughout this work we make use of two common market orders: long and
short. Long trades are the classic method of buying with the intention of profiting
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from a rising market, i.e. E[pt+h] > pt. Short trades are used with the intention of
profiting from a falling market, i.e. E[pt+h] < pt. Other two orders are commonly
used in defining trading strategies: stop-loss and take-profit. Both of them are
used to buy or sell an asset when it reaches a particular price. Stop-loss is used
to reduce a possible loss. Take-profit is used to guarantee a possible gain.

3 Reinforcement learning

Reinforcement learning (RL) can be seen as the formalization of an optimal
policy capable of ensuring the maximization of the expected cumulative profit
of an agent [6]. In the course of this section, we keep close to the description as
given in [9] [12] [18].

The agent interacts with the environment by executing actions and receiving
observations and rewards. At each time step t, which ranges over a set of discrete
time intervals, the agent select an action a from a set of legal actions A at state
st ∈ S, where S is the set of possible states. Action selection is based on a
policy, π. The policy is a description of the behaviour of the agent and tells the
agent which actions should be selected for each possible state. As a result of
each action, the agent receives a scalar reward rt ∈ R, and observes next state
st+1 ∈ S. The transition probability of each possible next state st+1 is defined
as P (st+1|st, at), with st+1, st ∈ S and at ∈ A. Similarly, the reward probability
of each possible reward rt is defined as P (rt|st, at) where st ∈ S, at ∈ A. Hence,
the expected scalar reward, rt, received by executing action a in current state s
is calculated based on EP (rt|st,at)(rt|st = s, at = a). This framework can be seen
as a finite Markov Decision Process (MDP).

The aim of the learning agent is to learn an optimal policy π∗, which defines
the probability of selecting action a in state s, so that the sum of the discounted
rewards over time is maximized. The expected discounted return R at time t is
defined as follows:

Rt = E[rt + γrt+1 + γ2rt+2 + . . . ] = E[

∞∑

k=0

γkrt+k], (2)

where E[.] is the expectation with respect to the reward distribution and 0 <
γ < 1 is called the discount factor. At this point a Q-value function, Qπ(s, a),
can be defined as follows:

Qπ(s, a) = Eπ[rt|st = s, at = a] = Eπ[

∞∑

k=0

rt+k|st = s, at = a]. (3)

The Q-value, Aπ(s, a), for an agent is the expected return achievable by
starting from state s ∈ S and performing action a ∈ A following policy π. Eq. 3
satisfies a recursive property, so that an iterative update procedure can be used
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for the estimation of Q-value function:

Qπi+1(s, a) = Eπ[rt + γ

∞∑

k=0

γkrt+k+1|st = s, at = a] =

= Eπ[rt + γQπi (st+1 = s′, at+1 = a′)|st = s, at = a],

(4)

for all s, s′ ∈ S and a, a′ ∈ A.
Reinforcement learning agent aims at finding the policy which achieves the

greatest outcome. Hence, it must learn an optimal policy π∗ with the expected
value greater than or equal to all other policies, and leading to an optimal Q-
value Q∗(s, a). In particular, the iterative update procedure for estimating the
optimal Q-value function ca be defined as in Eq. 5.

Qi+1(s, a) = Eπ[rt + γmax
a′

Qi(s
′, a′)|s, a]. (5)

The iteration procedure converges to the optimal Q-value, Q∗, as i → ∞
and is called value iteration algorithm. One of the most popular value-based
algorithms is the Q-learning algorithm [25]. The basic version of Q-learning
algorithm makes use of the Bellman equation for the Q-value function [4] whose
unique solution is Q∗(s, a):

Q∗(s, a) = (BQ∗)(s, a), (6)

where B is the Bellman operator mapping any function K : S × A → R into
another function S ×A→ R and is defined as follows:

(BK)(s, a) =
∑

s′∈S
T (s, a, s′)[R(s, a, s′) + γmax

a′∈A
K(s′, a′)], (7)

where T is the function for calculating the transaction value to go from s to s′

given action a. One general proof of convergence to the optimal value function is
available [25] under the conditions that: (i) the state-action pairs are represented
discretely, and (ii) all actions are repeatedly sampled in all states (which ensures
sufficient exploration, hence not requiring access to the transition model).

In that context, a parametric value function Q(s, a; θ) is needed, where θ
refers to some parameters that define the Q-values. Different Q-networks are
available in literature:

- Deep Q-Networks (DQNs): DQNs were introduced by Mnih et al. (2015)
[16]. DQNs stabilize the training of action value function approximation with
deep neural networks, in particular Convolutionary Neural Networks (CNNs)
[6], using experience replay [13] and target network.

- Double Deep Q-Networks (D-DQNs): D-DQN improved DQN avoiding
over-estimation. In D-DQN a greedy policy is evaluated in accordance with
a online network and a target network is used to estimate its value.

- Dueling Double Deep Q-Networks (DD-DQNs): DD-DQN [24] is based
on a dueling network architecture to estimate value function V (s) and the



6 Giorgio Lucarelli et al.

associated advantage function A(s, a) = Q(s, a) − V (s), and then combine
them in order to estimate Q(s, a). In DD-DQN, a CNN layer is followed
by two streams of fully connected (FC) layers, used to estimate the value
function and the advantage function separately; then the two streams are
combined to estimate the action value function.

4 Q-learning Trading System

The proposed Q-learning trading system is based on (i) D-DQN and (ii) DD-
DQN. In both cases, an agent interacts with the financial market. Given a certain
state of the financial market, the agent defines the type of the action a (buy,
hold, sell) to do on a bitcoin unit. If a bitcoin is acquired, it is then added to a
wallet. A stop-loss (sl = −5%) and a take-profit (tp = +12%) are also applied
to the wallet. For instance, if the wallet loses more than a threshold (i.e. −5%),
all open positions are closed.

The exploration-exploitation dilemma is of fundamental importance for deep
RL techniques as well as for the proposed Q-learning trading system. Exploita-
tion concerns information about the environment (i.e. transition and reward
functions) while exploitation is about maximizing the expected return given the
current knowledge. For this reason, the agent can take a random action with
probability, ε, and follows the policy that is believed to be optimal with proba-
bility, 1− ε (ε-greedy technique). In the proposed trading system, an εinitial = 1
is selected for the first observations (nobs = 300) and then is set to a new value
εnew = 0.12. For a more realistic study, a trade transition cost equal to 0.3% is
applied both for long and short actions.

The Q-learning trading system rewards the agent with two possible functions:

(i) Sharpe ratio [20], spt =
(%pt−%f )
σpt

, where %pt is the return of the portfolio or

merely the return of the asset, %f is the risk-free rate (%f = 0 in our work), σpt
is the standard deviation of portfolio’s return and (ii) a simple profit function,
gprofit = (pt − pt−1) (i.e. nominal return), where pt is the asset price at time t
and pt−1 the asset price at time t−1. More precisely, in the first case the trading
strategy at time t is:





spt ≥ 4→ reward = +10

1 < spt < 4→ reward = +4

0 < spt ≤ 1→ reward = +1

spt = 0→ reward = 0

0 < spt ≤ −1→ reward = −1

−1 < spt < −4→ reward = −4

spt ≤ −4→ reward = −10

(8)
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In the second case, the trading strategy at time t is:





gprofit > 0→ reward = 1

gprofit = 0→ reward = 0

gprofit < 0→ reward = −1

(9)

Fig. 1 shows the Q-learning trading system based on a Double Deep Q-
learning Network with Sharpe ratio reward function.

Fig. 1. Double Deep Q-learning trading system with Sharpe reward function.
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The basic version of Q-learning algorithm makes use of the Bellman equa-
tion for the Q-value function [CITA Bellman and Dreyfus, 1962] whose unique
solution is Q⇤(s, a):

Q⇤(s, a) = (BQ⇤)(s, a), (6)

where B is the Bellman operator mapping any function K : S ⇥ A ! R into
another function S ⇥ A ! R and is defined as follows:

(BK)(s, a) =
X

s02S

T (s, a, s0)[R(s, a, s0] + � max
a02A

K(s0, a0)] (7)

where T is the function for calculating the transaction value to go from s to
s0 given action a. One general proof of convergence to the optimal value function
is available [CITA Watkins and Dayan, 1992] under the conditions that: (i) the
state-action pairs are represented discretely, and (ii) all actions are repeatedly
sampled in all states (which ensures su�cient exploration, hence not requiring
access to the transition model).

In that context, a parameterized value function Q(s, a; ✓) is needed, where ✓
refers to some parameters that define the Q-values.

3.1 DOUBLE DEEP Q-NETWORKS

Double Deep Q-Networks (D-DQN) are deep RL methods based on Deep Q-
Networks (DQN). DQN have been introduced by Mnih et al. (2015) [CITA].
DQN stabilizes the training of action value function approximation with deep
neural networks, in particular Convolutionary Neural Networks (CNNs) [CITA],
using experience replay [CITA Lin, 1992] and target network. In fact, DQN uses
CNNs to approximate the optimal action value function:

Q⇤(s, a) = max
⇡

E[

1X

k=0

�krt+1|st = s, at = a,⇡]. (8)

In standard Q-learning, as well as in DQN, the parameter ✓ in Q(s, a; ✓) is
update as follows

✓t+1 = ✓t + ↵(yQ
t Q(st, at; ✓t))rQt(st, at; ✓t), (9)

where ↵ is the learning rate and yQ
t = rt+1 + � maxa Q(st+1, a; ✓t).

so that the max operator uses the same values to both select and evaluate an
action. As a consequence, it is more likely to select over-estimated values, and
results in over-optimistic value estimates [CITA]. In D-DQN the greedy policy
is evaluated in accordance with the online network, the target network is used
to estimate its value [CITA]. This can be achieved replacing yQ

t with:

yDDQN
t = rt+1 + �Q(st+1, arg max

a
Q(st+1, a; ✓t); ✓

�
t ) (10)

Action 
 
at     {Buy, Hold, Sell}!
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The aim of the learning agent is to learn an optimal policy ⇡⇤, which de-
fines the probability of selecting action a in state s, so that with following the
policy the sum of the discounted rewards over time is maximized. The expected
discounted return R at time t is defined as follows:

Rt = E[rt + �rt+1 + �2rt+2 + . . . ] = E[
1X

k=0

�krt+k] (2)

Where E[.] expectation with respect to the reward distribution and 0 < � < 1
is called the discount factor. With regard to the transition probabilities and the
expected discounted immediate rewards, which are the essential elements for
specifying dynamics of a finite MDP, Q-value function, Q⇡(s, a) is defined as
follows:

Q⇡(s, a) = E⇡[Rt|st = s, at = a] = E⇡[
1X

k=0

rt+k|st = s, at = a] (3)

The Q-value A⇡(s, a) for an agent is the expected return achievable by start-
ing from state s, s 2 S, and performing action a, a 2 A and then following
policy ⇡, where ⇡ is a mapping from states to actions or distributions over ac-
tions. With unfolding the Eq. 3 it is clear that it satisfies a recursive property,
so that the following iterative update can be used for the estimation of Q-value
function:

Q⇡
i+1(s, a) = E⇡[rt+�

1X

k=0

�krt+k+1|st = s, at = a] = E⇡[rt+�Q⇡
i (st+1 = s0, at+1 = a0)|st = s, at = a]

(4)
For all s, s0 2 S and a, a0 2 A, in Eq. 4, both states a relationship between

the value of an action in a state and the values of its next actions which can be
performed It also cites the way of estimating the value based on its subsequent
ones.

Reinforcement learning agent wants to find a policy which achieves the great-
est future reward in the course of its execution. Hence, it must learn an optimal
policy ⇡⇤, a policy which is resulted to an expected value greater than or equal
of following other policies for all states, and as a result, an optimal Q-value
Q⇤(s, a). In particular, an iterative update for estimating the optimal Q-value
function is defined as follows:

Qi+1(s, a) = E⇡[rt + � max
a0

Qi(s
0, a0)|s, a] (5)

The iteration converges to the optimal Q-value, Q⇤ as i ! 1 and called
value iteration algorithm [CITA].

Usually, an RL agent includes a representation of a value function that pro-
vides a prediction of how good each state or each state/action pair is (model-free
RL). One of the most one of the simplest and most popular value-based algo-
rithms, the Q-learning algorithm [CITA Watkins, 1989]

rt+1 

st+1 
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The Q-learning trading system rewards the agent with two possible functions:

Sharpe Ratio [CITA], spt =
(rpt�rft )

�pt
, and a profit function. More precisely, in

the first case the trading strategy at time t (t = 0, 1, . . . , T ) if spt
> 0 is:

8
>>><
>>>:

spt
� 4 ! reward = +10

1 < spt < 4 ! reward = +4

0 < spt  1 ! reward = +1

spt
= 0 ! reward = 0

(14)

and if spt
< 0 is: 8

>>><
>>>:

spt
 �4 ! reward = �10

�1 < spt
< �4 ! reward = �4

0 < spt
 �1 ! reward = �1

spt = 0 ! reward = 0

(15)

In the second case, the trading strategy at time t (t = 0, 1, . . . , T ) is:

8
><
>:

ifpt > 0 ! reward = 1

ifpt < 0 ! reward = �1

ifpt = 0 ! reward = 0

(16)

where pt is simple the profit at time t.
The Q-learning trading system based on the D-DQN is composed by 2 CNN

layers with 120 neurons each. In the case of DD-DQN, 2 CNN layers with 120
neurons each are followed by two streams of FC layers: the first with 60 neurons
dedicated to estimate the value function and the second with 60 neurons to
estimate the advantage function.

In both cases, the number of epochs is set to 40 as well as the batch size. For
weight optimization, the ADAM algorithm [CITA] is applied. The loss function

is the Mean Squared Error, MSE =
Pn

i=1(yi�ŷi)
2

n . The activation function is set
as the Leaky Rectified Linear Units (Leaky ReLU) function [CITA].

The discount factor, �, is set to 0.98 in both D-DQN and DD-DQN.

5 Experimental Data and Results

5.1 Bitcoin historical data

In this work, we test the proposed Q-learning trading strategies on bitcoin his-
torical data. Data can be found in the well-known Kaggle (www.kaggle.com)
platform 1. We consider bitcoin price in USD dollars from the 1st December
2014 to the 27th June 2018, sampled at 1 minute interval. For each observation,
time stamp, OHLC (Open, High, Low, Close) values, volume in bitcoin and in

1 www.kaggle.com/mczielinski/bitcoin-historical-data
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estimate the action value function. Usually Eq. 12 is used to combine V (s) and
A(s, a).

Q(s, a; ✓,↵,�) = V (s; ✓,�) + (A(s, a; ✓,↵) � max
a0

A(s, a0; ✓,↵)). (12)

In Eq. 12, � and � are parameters of the two streams of FC layers. In DD-
DQN, Wang et al. (2016) [18] propose to replace max operator with average
action value (Eq. 13).

Q(s, a; ✓, �,�) = V (s; ✓,�) + (A(s, a; ✓, �) � a

|A|A(s, a0; ✓, �)). (13)

4 Q-learning Trading System

The proposed Q-learning trading system is based on (i) D-DQN and (ii) DD-
DQN. In both cases, an agent interacts with the financial market. Given a certain
state of the financial market, the agent defines the type of the action a (buy,
hold, sell) to do on a bitcoin unit. If a bitcoin is acquired, it is then added to a
wallet.

A stop-loss (sl = �5%) and a take-profit (tp = +12%) are also applied to
the wallet. For instance, if the wallet loses more than a threshold (i.e. �5%), all
open positions are closed.

The exploration-exploitation dilemma is of fundamental importance for deep
RL techniques as well as for the proposed Q-learning trading system. Exploita-
tion concerns information about the environment (i.e. transition and reward
functions) while exploitation is about maximizing the expected return given the
current knowledge. For this reason, the agent can take a random action with
probability, ✏, and follows the policy that is believed to be optimal with proba-
bility, 1� ✏ (✏-greedy technique). In the proposed trading system, an ✏initial = 1
is selected for the first observations (nobs = 300) and then is set to a new value
✏new = 0.12. For a more realistic study, a trade transition cost equal to 0.3% is
applied both for long and short actions.

The Q-learning trading system rewards the agent with two possible functions:

(i) Sharpe ratio [14], spt =
(%pt�%f )

�pt
, where %pt is the return of the portfolio or

merely the return of the asset, %f is the risk-free rate (%f = 0 in our work), �pt

is the standard deviation of portfolio’s return and (ii) a simple profit function,
gprofit = (pt � pt�1) (i.e. nominal return), where pt is the asset price at time t
and pt�1 the asset price at time t�1. More precisely, in the first case, if spt

> 0,
the trading strategy at time t is:

8
>>><
>>>:

spt
� 4 ! reward = +10

1 < spt
< 4 ! reward = +4

0 < spt  1 ! reward = +1

spt = 0 ! reward = 0

(14)

The Q-learning trading system based on the D-DQN is composed by 2 CNN
layers with 120 neurons each. In the case of DD-DQN, 2 CNN layers with 120
neurons each are followed by two streams of FC layers: the first with 60 neurons
dedicated to estimate the value function and the second with 60 neurons to
estimate the advantage function. In both cases, the number of epochs is set to
40 as well as the batch size. For weight optimization, the ADAM algorithm [11]

is applied. The loss function is the Mean Squared Error, MSE =
∑n

i=1(yi−ŷi)2
n .

The activation function is set as the Leaky Rectified Linear Units (Leaky ReLU)
function [14]. The discount factor, γ, is set to 0.98 in both D-DQN and DD-DQN.

A similar setting is also used to implement the trading strategies based on
DQN.
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5 Experimental Data and Results

5.1 Bitcoin historical data

The proposed Q-learning trading systems are tested on bitcoin historical data.
Data can be found on the well-known Kaggle (www.kaggle.com) platform1. We
considered bitcoin price in USD dollars from the 1st December 2014 to the 27th

June 2018, sampled at 1 minute interval. For each observation, time stamp,
OHLC (Open, High, Low, Close) values, volume in bitcoin, volume in USD
dollars, and weighted bitcoin price are collected. The dataset is composed by
roughly 2 million rows and 8 variables. Based on the time stamp, data is hourly
aggregated obtaining a final dataset with more than 30.000 observations and the
same number of variables.

Fig. 2. Average percentage returns over the 10 trading periods, i.e. different combina-
tions of start and end dates for the trading activity.

1 www.kaggle.com/mczielinski/bitcoin-historical-data
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5.2 Results

The Q-learning trading system is tested with four different settings based on:

1- Double Deep Q-Network with a profit reward function (ProfitD-DQN);
2- Double Deep Q-Network with Sharpe ratio reward function (SharpeD-DQN);
3- Dueling Double Deep Q-Network with a profit reward function (ProfitDD-

DQN);
4- Dueling Double Deep Q-Network with Sharpe ratio reward function (SharpeDD-

DQN);

The four settings are compared with a Deep Q-Network with profit reward func-
tion (ProfitDQN) and a Deep Q-Network with Sharpe ratio reward function
(SharpeDQN).

Table 1. Average performance over the 10 trading periods.

Trading System Avg. Return (%) Max. Return (%) Min. Return (%) St. Dev.

ProfitD-DQN 3.74 21.31 -10.74 4.87
ProfitDD-DQN 4.85 17.34 -8.49 5.10
ProfitDQN 2.32 22.59 -17.97 7.93
SharpeD-DQN 5.81 26.14 -5.64 5.26
SharpeDD-DQN 3.04 13.03 -8.49 3.81
SharpeDQN 1.83 15.80 -9.29 5.46

Test 1. All Q-learning trading system settings are compared sampling 10 differ-
ent periods of size 4.000. For each period, 80% is dedicated for training purpose
and 20% for testing the performance.

In Fig. 2, the cumulative average return (%) over the 10 test sets is reported.
95% confidence intervals around the mean are also included. DD-DQN and D-
DQN trading systems clearly outperform the simpler DQN system. In average
the best cumulative return (%) is reached by the SharpeD-DQN.

Table 1 summarizes main statistical indicators. The trading systems based on
DD-DQN and D-DQN reaches higher cumulative average return (%). In fact, the
ProfitDQN and SharpeDQN obtain the worst results over all the test periods.
Furthermore, DQN has the highest standard deviation demonstrating high in-
stability. SharpeD-DQN has the highest average return (5.81%) over all the test
period. It reaches a maximum value of return percentage equal to 26.14% and
a minimum value equal to -5.64%. The DD-DQN and D-DQN trading systems
based on the profit reward function have comparable results.

From this preliminary analysis, the SharpeD-DQN has demonstrated to be
the best Q-learning trading system.
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Test 2. Given the previous results, the SharpeD-DQN is tested on the entire
period (from the 1st December 2014 to the 27th June 2018).
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Fig. 3. SharpeD-DQN performance over the entire period.

Observations from 1st December 2014 to 1st November 2017 are used by
SharpeD-DQN system to learn how to trade the cryptocurrency. After that pe-
riod, SharpeD-DQN system has acted as an autonomous algorithmic trading
system (from 2st November 2017 to 26th June 2018). It had an average per-
centage return (%) of almost 8% with a standard deviation 2.77. In Fig. 3, the
cumulative percentage return over the entire period is shown.

6 Conclusions and Future Work

In this work, the performance of different trading systems based on Deep Rein-
forcement Learning were tested on hourly cryptocurrency (i.e. bitcoin) prices.
The trading systems were based on Double and Dueling Double Deep Q-learning
Networks. Furthermore, the previous trading systems were compared with a sim-
pler Deep Q-learning Network. Each of them were tested with two different re-
ward functions. The first function was based on the Sharpe ratio, a measure of
the risk-adjusted return on an investment, and the second function was related
to profit. Then, six different Q-learning trading system settings where tested on
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bitcoin data from the 1st December 2014 to the 27th June 2018. Performance
were evaluated in terms of percentage returns.

All systems produced positive return (in average) for a set of shorter trading
periods (different combinations of start and end dates for the trading activ-
ity). The trading systems based on Double Q-learning and Sharpe ratio reward
function (SharpeD-DQN) achieved larger return values. SharpeD-DQN was also
tested over the entire considered period producing a positive percentage return
value (average percentage return 8%).

It is important to stress that this work has some limitations. First, a broader
set of performance indicators should be used to compare the different approaches.
Second, the proposed Deep Reinforcement Learning techniques should be com-
pared with recent AI approaches for a more accurate comparison study. Third,
a parameter optimization should be done to improve the performance of the
learning techniques. Given that, the presented methods were able to generate
positive returns on all conducted tests. Extending the current analysis by con-
sidering these elements is a direction for future work.

A different yet promising approach is to study the impact of social media
on bitcoin and other cryptocurrency fluctuation prices and incorporating news
and public opinion into the Deep Reinforcement Learning approach. In addition,
uncertainty estimations should be investigated since uncertainty is essential for
efficient reinforcement learning.

Lastly, the proposed approaches can be extended for anomaly detection. Fol-
lowing the work of Du, M. et al. (2017) [8], Q-learning approaches can be used
to build a framework for online log anomaly detection and diagnosis. Such an
approach could be a critical step towards building a secure and trustworthy
anomaly detection system.
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