
HAL Id: hal-02331329
https://inria.hal.science/hal-02331329

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Design-Parameters Optimization of a Deep-Groove Ball
Bearing for Different Boundary Dimensions, Employing

Amended Differential Evolution Algorithm
Parthiv B. Rana, Jigar L. Patel, D. I. Lalwani

To cite this version:
Parthiv B. Rana, Jigar L. Patel, D. I. Lalwani. Design-Parameters Optimization of a Deep-Groove Ball
Bearing for Different Boundary Dimensions, Employing Amended Differential Evolution Algorithm.
15th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI),
May 2019, Hersonissos, Greece. pp.213-222, �10.1007/978-3-030-19823-7_17�. �hal-02331329�

https://inria.hal.science/hal-02331329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Design-parameters optimization of a deep-groove 

ball bearing for different boundary dimensions, 

employing Amended Differential Evolution 

Algorithm 

Parthiv B. Rana1, Jigar L. Patel2 and D. I. Lalwani 3 

1, 2 Research Scholar, Mechanical Engineering Department, SVNIT, Surat, Gujarat, INDIA 
3 Associate Professor, Mechanical Engineering Department, SVNIT, Surat, Gujarat, INDIA 

ranaparthiv@gmail.com 

Abstract. Rolling-element bearing that is mostly used wherever rotary motion is 

provided to a shaft in rotating machineries. A deep-groove ball bearing is one 

type of rolling-element bearing which is used to support radial load, axial load or 

combination of both. After proper installation and condition, ball bearings usu-

ally fail because of fatigue under normal operating conditions. Therefore, the fa-

tigue-life optimization is a prime objective in designing a ball bearing. In the 

present work, eleven different problems of a deep-groove ball bearing by chang-

ing boundary dimensions are optimize to obtain maximum fatigue life. Amended 

Differential Evolution Algorithm (ADEA), which is modified version of Differ-

ential Evolution (DE) algorithm along with constraint handling technique, is ap-

plied to these eleven problems and optimum results in the form of optimal design-

parameters and fatigue life is reported. The design parameters are bearing pitch 

diameter, ball diameter, number of balls and curvature coefficient of the outer 

and inner raceway groove are considered. Further, optimal results are compared 

with the other researcher’s work and standard catalogue for the same problems. 

Better results for fatigue life are obtained using ADEA. 

Keywords: design-parameter optimization, constraint optimization, a ball bear-

ing, Amended Differential Evolution Algorithm (ADEA). 

1 Introduction 

Rolling element bearings are critical element of any rotating machinery and it is used 

in variety of applications such as machine tools, electrical equipments, automobile, 

household appliances, medical equipments and aeroplanes. Rolling element bearings 

are also called as antifriction bearings. Different types of rolling element bearings are 

used depending upon the loading condition, i.e., radial load, axial load and combination 

of both. Radial bearings are used to support the load which is perpendicular to the shaft 

whereas thrust bearings are used to support the load which acts along axis of the shaft. 

Among the various types of rolling element bearing, a single-raw, deep-groove ball 

bearing is most frequently used bearing because it can take radial as well as some thrust 

https://en.wikipedia.org/wiki/Rolling-element_bearing
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load and withstand a small amount of shaft misalignment or deflection [1]. A single-

raw, deep-groove ball bearings rely on balls to support loads between rotating and sta-

tionary machine elements. Ball bearings have high load carrying capacity, generates 

less noise and low resultant temperature because of point contact. Deep-groove ball 

bearings are available in variety of bore dimensions up to 400 mm [2]. The internal 

structural-parameters (design parameters) affect the bearing characteristics such as 

bearing life, lubrication, load distribution, stresses and deflection.  Generally, ball bear-

ings are designed to determine the geometric structure and their relative design param-

eters for smooth operation and bearing life.  

 Researchers have worked to optimize design parameters of various rolling-ele-

ment bearing but some important and relevant literatures on optimization of a ball bear-

ing are discussed here. Changsen [3] discussed a design method for rolling element 

bearing using a gradient based numerical optimization technique; he defined five dif-

ferent non-linear objectives for rolling element bearing design, i.e., maximum frictional 

moment, maximum wear life, maximum static load rating, maximum spin to roll ratio 

and maximum fatigue life. Further, he proposed concept of multi-objective optimiza-

tion of above objectives and also introduced basic concepts and optimization techniques 

to solve problems. Chakraborty et al. [4] optimized the design parameters of deep-

groove ball bearings using Genetic Algorithm (GA), where five design parameters were 

considered to maximize fatigue life of a bearing. Rao and Tiwari [5] refined the prob-

lem proposed by Chakraborty et al. [4] to obtain more realistic optimum design param-

eters, where five design variables, five various constants of constraints and eight con-

straints, were used to maximize dynamic load rating of a deep-groove ball bearing using 

GA.  

 In the present work, eleven different problems of a deep-groove ball bearing by 

changing boundary dimensions are considered. These problems are modified by Rao 

and Tiwari [5] and used to optimize the design parameters using Amended Differential 

Evolution Algorithm (ADEA) [6]. The optimized results are compared with the results 

of Genetic Algorithm (GA) [5] and standard catalogue [1]. The rest of the paper is 

organized as follow: Section 2 describes mathematical model of ball bearing design 

problem; section 3 presents flow chart of Amended Differential Evolution Algorithm 

(ADEA); section 4 presents results and discussion and section 5 concludes the work. 

2 Mathematical modelling of ball bearing design problem 

On the basis of operating requirements, one of the most important objectives is the 

requirement of the longest bearing life (fatigue life). In normal operating conditions of 

ball bearings, fatigue failure is the main mode of failure at the surfaces of balls and 

races. The fatigue life of an individual ball bearing is defined as the number of revolu-

tions, which the bearing runs before the first evidence of fatigue crack in balls or races. 

The Anti-Friction Bearing Manufacturing Association (AFBMA) standard states that 

the failure criterion is the first evidence of fatigue. AFBMA sanctioned a term ‘rating 

life’ of  a bearing that is used by most of the bearing manufacturers and it is defined as 

‘the number of revolutions or hours at some given constant speed that 90 per cent of 
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group of a bearings will complete or exceed before the failure criterion develops’. The 

fatigue life (or rating life) of bearing is based on the dynamic load capacity (dynamic 

load rating or basic dynamic capacity or specific dynamic capacity [1]). The dynamic 

load capacity (C) is defined as the dynamic equivalent radial load in deep-groove ball 

bearings that can be carried for a minimum life of one million revolutions. The fatigue 

life of bearing can be improved by maximizing dynamic load capacity for a given size 

of bearing boundary dimensions (i.e., bearing bore, d, and outside diameter, D and bear-

ing width, w). The fatigue life of a bearing (in millions of revolutions) that is subjected 

to applied dynamic equivalent radial load F is given as: 

 𝐿10 =  (
𝐶

𝐹
)

𝑎

and 𝐿10ℎ =
106

60𝑛
𝐿10  

(1) 

where 𝐿10 is rated bearing life (in millions of revolutions), C is dynamic load capacity 

(N), F is applied dynamic equivalent radial load (N) and a is 3 for ball bearings, 𝐿10ℎ is 

rated bearing life (in operating hours) and n is rotational speed in rpm. The bounds of 

design parameters, objective function and constraints are taken from Rao and Tiwari 

[5] and briefly discussed below. 

 

Fig. 1. Internal diagram of ball bearing [4]. 

2.1 Design parameters 

The design parameters are basically internal structural dimensions of a ball bearing as 

shown in Fig. 1. The five design parameters of ball bearing are: diameter of ball (Db), 

number of balls (Z), pitch diameter (Dm) and curvature coefficient of the outer raceway 

groove (fo = ro/Db) and inner raceway groove (fi = ri/Db). ro and ri are the curvature 

radius of outer and the inner raceway groove, respectively [5]. Table 1 shows the design 

parameters and their ranges. 

Table 1. Design parameters and their ranges [5] 

Design parameters Ranges 

Diameter of ball (Db) 0.15(D-d) to 0.45(D-d) 

Pitch diameter (Dm) 0.5(D+d) to 0.6(D+d) 

Number of balls (Z) 4 to 50 

Curvature coefficient of the inner raceway groove (fi) 0.515 to 0.52 

Curvature coefficient of the outer raceway groove (fo) 0.515 to 0.53 
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2.2 Objective function 

The objective is to obtain the fatigue life of a ball bearing that is based on the dynamic 

load capacity (C). The dynamic load capacity (C) is a function of 𝐷𝑏 , 𝐷𝑚 , 𝑍, 𝑓𝑖 and 𝑓𝑜, 

and can be expressed as  

Maximize, 𝐶 = [𝑓𝑐 𝑍2/3 𝐷𝑏
1.8]        when Db ≤ 25.4 mm, 

        = 3.647 𝑓𝑐 𝑍2/3𝐷𝑏
1.4   when Db > 25.4 mm. 

(2) 

where 𝑓𝑐 for deep-groove ball bearings is given as 

𝑓𝑐 = 37.91 [1 + {1.04 (
1 − 𝛾

1 + 𝛾
)

1.72

(
𝑓𝑖(2𝑓𝑜 − 1)

𝑓𝑜(2𝑓𝑖 − 1)
)

0.41

}
10 3⁄

]

−0.3

[
𝛾0.3(1 − 𝛾)1.39

(1 + 𝛾)
1

3⁄
] [

2𝑓𝑖

2𝑓𝑖 − 1
]

0.41

     

  (3) 

where 𝛾 is 𝐷𝑏𝑐𝑜𝑠𝛼 𝐷𝑚⁄  and α is free contact angle that is zero for deep-groove ball 

bearings. 

2.3 Constraints 

Ten constraints that are proposed by Rao and Tiwari [5] are considered in the present 

work. Out of ten constraints, five constraints are refined by Rao and Tiwari [5] that 

were proposed by Chakraborty et al [4]. In the present work, constraints for curvature 

coefficient of inner and outer raceway groove (constraints 9 and 10 of Rao and Tiwari 

[5]) are in the form of range (bounds) that are already considered as design parameters 

and given in Table 2. Therefore, constraints for 𝑓𝑖 and 𝑓𝑜 are not discussed. The remain-

ing eight constraints are discussed below [5]. 

Constraint 1: For a number of balls 

For the convenience of the bearing assembly, the number of balls should satisfy the 

following equation, 𝑔1(𝑥): 

𝑔1(𝑥) = 𝑍 ≤ 1 +
∅0

2𝑆𝑖𝑛−1(𝐷𝑏 / 𝐷𝑚)
 

(4) 

can  be written as, 𝑔1(𝑥) = 𝑍 − 1 −
∅0

2𝑆𝑖𝑛−1(𝐷𝑏 / 𝐷𝑚)
≤ 0 (5) 

where ∅0 is the maximum assembly angle and it is given as 

∅0 = 2𝜋 − 2 𝑐𝑜𝑠−1 [
𝑈2+(

𝐷

2
−𝑇−𝐷𝑏)

2
−(

𝑑

2
+𝑇)

2

2𝑈(
𝐷

2
−𝑇−𝐷𝑏)

], 
(6) 

and T and U are defined as 

𝑇 =
(𝐷−𝑑−2𝐷𝑏)

4
  and 𝑈 =

(𝐷−𝑑)

2
−

3(𝐷−𝑑−2𝐷𝑏)

4
 

(7) 

In the constraints 2 to 8, some constraint constants are used and their range (bounds) 

are shown in Table 2 except constraint 6. 

Constraints 2 and 3: For diameter of balls 

For the convenience of the bearing assembly, the diameter of balls should be within a 

following range: 
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𝑔2(𝑥) = 2𝐷𝑏 ≥ 𝐾𝐷 𝑚𝑖𝑛(𝐷 − 𝑑), 
(8) 

can be written as, 𝑔2(𝑥) = 𝐾𝐷 𝑚𝑖𝑛(𝐷 − 𝑑) − 2𝐷𝑏 ≤ 0, 
(9) 

𝑔3(𝑥) = 2𝐷𝑏 ≤ 𝐾𝐷 𝑚𝑎𝑥(𝐷 − 𝑑), (10) 

can  be written as, 𝑔3(𝑥) = 2𝐷𝑏 − 𝐾𝐷 𝑚𝑎𝑥(𝐷 − 𝑑) ≤ 0, (11) 
where 𝐾𝐷 𝑚𝑖𝑛 and 𝐾𝐷 𝑚𝑎𝑥 are the minimum and the maximum values of the ball diam-

eter constants, respectively. The range of  𝐾𝐷 𝑚𝑖𝑛 is 0.4 to 0.5 and range 𝐾𝐷 𝑚𝑎𝑥 is 0.6 

to 0.7. 

Constraints 4 and 5: For running mobility of a bearing  

For the running mobility of bearings, the difference between the pitch diameter and the 

average diameter in a bearing should satisfy below constraints.  

𝑔4(𝑥) = 𝐷𝑚 −
𝐷 + 𝑑

2
≤ −𝑒(𝐷 + 𝑑), 

  

(12) 

 can  be written as, 𝑔4(𝑥) = 𝐷𝑚 −
𝐷+𝑑

2
+ 𝑒(𝐷 + 𝑑) ≤ 0, 𝑎𝑛𝑑 (13) 

𝑔5(𝑥) = 𝐷𝑚 −
𝐷 + 𝑑

2
≥ 𝑒(𝐷 + 𝑑), 

(14) 

can be written as, 𝑔5(𝑥) = 𝑒(𝐷 + 𝑑) − 𝐷𝑚 +
𝐷+𝑑

2
≤ 0 (15) 

where e is a constant and its value depends on mobility condition of the balls. The range 

of e is taken here 0.03 to 0.08. 

Constraint 6: For relationship between inner and outer ring thickness 

In normal operating conditions, the stress on the inner ring is always more than the 

outer ring of a ball bearing. Therefore, outer ring thickness should be less than or equal 

to the inner ring thickness. 

𝑔6(𝑥) =
𝐷 − 𝑑0

2
≤

𝑑𝑖 − 𝑑

2
, 

(16) 

    can be written as, 𝑔6(𝑥) =
𝐷−𝑑0

2
−

𝑑𝑖−𝑑

2
≤ 0, (17) 

where 𝑑𝑖 and 𝑑𝑜 are the inner and outer raceway diameters at the grooves. 

Constraint 7: For thickness of bearing ring at outer raceway bottom 

The average diameter of bearing is usually less than the pitch diameter. Therefore, 

thickness of bearing ring at outer raceway bottom should not be less than 𝜀𝐷𝑏  and the 

following equation, 𝑔7(𝑥) should satisfy: 

𝑔7(𝑥) = 𝜀𝐷𝑏 ≤ 0.5(𝐷 − 𝐷𝑚 − 𝐷𝑏) 
(18) 

   can be written as,  𝑔7(𝑥) = 𝜀𝐷𝑏 − 0.5(𝐷 − 𝐷𝑚 − 𝐷𝑏) ≤ 0 
(19) 

where ε is a constant that is obtained using simple strength consideration of outer ring 

and the range of ε is 0.3 to 0.35. 

Constraint 8: For relation between ball bearing width and ball diameter 

𝑔8(𝑥) = 𝐷𝑏 ≤ 𝛽𝑤 
(20) 
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can be written as,  𝑔8(𝑥) = 𝐷𝑏 − 𝛽𝑤 ≤ 0 
(21) 

where 𝛽 is a constant and the range of 𝛽 is 0.7 to 0.85. The ranges of various constants 

used in constraints are given in Table 2. 

Table 2. Range of various constants [5] 

Constants Range [Lower Bound (LB), Upper Bound (UB)] 

𝐾𝐷 𝑚𝑖𝑛     0.4 to 0.5  [0.4,0.5] 

𝐾𝐷 𝑚𝑎𝑥     0.6 to 0.7  [0.6,0.7] 

e      0.03 to 0.08 [0.03,0.08] 

𝜀      0.3 to 0.35  [0.3,0.35] 

𝛽     0.7 to 0.85  [0.7,0.85] 

3 Amended Differential Evolution Algorithm (ADEA) 

Amended Differential Evolution Algorithm is the modified version of Differential Evo-

lution (DE) algorithm and it uses ‘Σ𝑐𝑜𝑛𝑠𝑡-constraint handling method’ to solve con-

strained optimization problems [6]. Fig. 2 shows the flow chart of ADEA that is adapted 

from reference [6]. 

In the present work, maximization problems of deep-groove ball bearing are con-

verted into minimization problems and all the constraints are converted into ≤  0 type. 

The design parameters of deep-groove ball bearing problems are optimized using 

ADEA. Following parameters are used in ADEA: Population Size (PS) = 50, number 

of generations (G) = 500, number of runs = 30, scale factor: Fmin = 0.5, Fmax = 0.8, 

crossover rate: CRmin = 0.85, CRmax = 0.95. The program is written in MATLAB® for 

ADEA and results are reported. 
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Fig. 2. Flow chart of ADEA (adopted from [6]) 
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4 Results and Discussion 

ADEA is successfully applied to optimize design-parameters of single raw, deep-

groove ball bearing problems for maximizing dynamic load capacity (𝐶). Results ob-

tained using ADEA are reported in Tables 3-5. 

Table 3 shows the optimum design-parameters and value of constants (used in con-

straints) that are obtained using ADEA. When optimal value of any parameter is exactly 

either the start value (lower bound) or the end value (upper bound) of range, algorithm 

requires greater number of generations (iterations) to converge. However, ADEA algo-

rithm converges to lower bound value for two design parameters, namely, fo and fi, 

within 500 generations (Table 3). Further, ADEA attains lower bound value for 𝜺 (con-

stant-constraint). Thus, ADEA is capable to converge the bound value within reasona-

ble generations. 

Table 4 presents the values of optimum design parameters, constraints 

(𝑔1(𝑥) to 𝑔8(𝑥)) and dynamic load capacity (𝐶). The value of design parameters, i.e., 

Db and Dm, are reported up to 3 decimal accuracy and accordingly other results are 

reported. It is clear from Table 4 that 𝑔6(𝑥) and 𝑔7(𝑥) constraints are active constraints 

(i.e., 𝑔6(𝑥) = 0 and 𝑔7(𝑥) = 0) for some boundary dimensions. Two constraints, 

𝑔1(𝑥) and 𝑔7(𝑥), are difficult constraints for some boundary dimensions because value 

of constraint is neither zero nor negative value but very nearer to zero value, i.e., 0.0001.  

Table 5 shows the comparison of the results with the results of Genetic Algorithm 

(GA) [5] and standard catalogue [1] for dynamic load capacity (C). The comparison 

shows that ADEA provides better results for all boundary dimensions. Further, per cent 

improvement in dynamic load capacity with respect to GA and standard catalogue is 

presented in Table 5. The maximum and minimum per cent improvement over standard 

catalogue are 68.50 % and 8.24 %, respectively. Similarly, the maximum and minimum 

per cent improvement over GA are 11.11 % and 1.35 %, respectively.  

 



Table 3. Results obtained using ADEA in terms of optimized design-parameters and value of constants (used in 

constraints) for eleven boundary dimensions. 

Boundary 

Dimension (mm) 
Design Parameters 

Values of constants obtained in 

constraints 

D d w 
Db 

(mm) 

Dm 

(mm) 
Z fi fo KD min KD max e 𝜺 𝜷 

30 10 9   6.213   20.059 7 0.515 0.515 0.442 0.649 0.072 0.3 0.793 

35 15 11   6.25   25 8 0.515 0.515 0.428 0.681 0.055 0.3 0.708 

47 20 14   8.438   33.5 8 0.515 0.515 0.435 0.664 0.065 0.3 0.762 

62 30 16 10   46 9 0.515 0.515 0.403 0.653 0.069 0.3 0.810 

80 40 18 12.5   60 9 0.515 0.515 0.412 0.667 0.048 0.3 0.812 

90 50 20 12.5   70 10 0.515 0.515 0.455 0.678 0.08 0.3 0.758 

110 60 22 15.625   85 10 0.515 0.515 0.456 0.656 0.044 0.3 0.750 

125 70 24 16.732   98.228 11 0.515 0.515 0.420 0.609 0.069 0.3 0.741 

140 80 26 18.75 110 11 0.515 0.515 0.402 0.648 0.05 0.3 0.768 

160 90 30 21.426 125.719 11 0.515 0.515 0.417 0.674 0.055 0.3 0.787 

170 95 32 22.752 133.597 11 0.515 0.515 0.435 0.682 0.051 0.3 0.786 

 

  



Table 4. Results obtained using ADEA in terms of optimized design-parameters, value of constraints and dynamic load capacity (C) for eleven bound-

ary dimensions. 

Boundary 

 Dimension 

(mm) 

Design Parameters Value of Constraints 
Dynamic 

load  

capacity, 𝑪  

(N) D d w 
Db 

(mm) 

Dm 

(mm) 
Z fi fo 𝒈𝟏(𝒙) 𝒈𝟐(𝒙) 𝒈𝟑(𝒙) 𝒈𝟒(𝒙) 𝒈𝟓(𝒙) 𝒈𝟔(𝒙) 𝒈𝟕(𝒙) 𝒈𝟖(𝒙) 

30 10 9 6.213 20.059 7 0.515 0.515 0* -3.59 -0.55 -2.94 -2.82 -0.06 0* -0.92 6032.33 

35 15 11 6.25 25 8 0.515 0.515 -0.15 -3.94 -1.12 -2.65 -2.75 0 0 -1.54 7059.09 

47 20 14 8.438 33.5 8 0.515 0.515 -0.10 -5.13 -1.05 -4.36 -4.36 0 0* -2.23 12100.67 

62 30 16 10 46 9 0.515 0.515 -0.06 -7.10 -0.90 -6.35 -6.35 0 0 -2.96 18113.18 

80 40 18 12.5 60 9 0.515 0.515 -0.37 -8.52 -1.68 -5.76 -5.76 0 0 -2.12 27144.31 

90 50 20 12.5 70 10 0.515 0.515 -0.60 -6.80 -2.12 -11.2 -11.2 0 0 -2.66 29174.48 

110 60 22 15.625 85 10 0.515 0.515 -0.35 -8.45 -1.55 -7.48 -7.48 0 0 -0.88 43620.92 

125 70 24 16.732 98.228 11 0.515 0.515 0* -10.36 -0.03 -14.18 -12.77 -0.73 0* -1.05 52452.58 

140 80 26 18.75 110 11 0.515 0.515 -0.01 -13.38 -1.38 -11 -11 0 0 -1.22 64386.86 

160 90 30 21.426 125.719 11 0.515 0.515 0* -13.66 -4.33 -14.47 -13.03 -0.72 0* -2.18 81862.64 

170 95 32 22.752 133.597 11 0.515 0.515 0* -12.88 -5.65 -14.61 -12.42 -1.10 0* -2.4 91203.51 
 * indicates constraint value less than or equal to 1×10-4 (1E-4) and considered as zero (0).  

 

 

 

 

 

 

 

 



11 

Table 5. Comparison of results of ADEA with GA and catalogue for dynamic load capacity (𝐶) 

Boundary 

 Dimension (mm) 
Dynamic load capacity, 𝑪 (N) % improvement 

D d w ADEA 
GA 

[5] 

Catalogue 

 [1] 

𝐀𝐃𝐄𝐀 − 𝐆𝐀

𝐆𝐀
× 𝟏𝟎𝟎 

𝐀𝐃𝐄𝐀 − 𝐂𝐚𝐭𝐚𝐥𝐨𝐠𝐮𝐞

𝐂𝐚𝐭𝐚𝐥𝐨𝐠𝐮𝐞
× 𝟏𝟎𝟎 

30 10 9 6032.33 5942.36 3580     1.51    68.50 

35 15 11 7059.09 6955.35 5870     1.49    20.26 

47 20 14 12100.67 10890.9 9430   11.11    28.32 

62 30 16 18113.18 16387.4 14900   10.53    21.56 

80 40 18 27144.31 26678.4 22500     1.75    20.64 

90 50 20 29174.48 28789.3 26900     1.35      8.46 

110 60 22 43620.92 42695.3 40300     2.17      8.24 

125 70 24 52452.58 51117.4 47600     2.61    10.19 

140 80 26 64386.86 59042.9 55600     9.05    15.80 

160 90 30 81862.64 75466.8 73900     8.48    10.77 

170 95 32 91203.51 89244.7 83700     2.21      8.96 

ADEA: results obtained using Amended Differential Evolution Algorithm, GA: Genetic Algorithm and results are 

taken from reference [5], Catalogue: values of dynamic load capacity for 02-series deep-groove ball bearing are 

taken from bearing catalogue [1] 

 

 

 

 

 

 

 

 



5 Conclusions 

ADEA is used to optimize the design-parameters of single raw, deep-groove ball bear-

ing for maximizing dynamic load capacity (fatigue life) for eleven boundary dimen-

sions. From the optimization results, following conclusions are drawn:  

 Comparison of the results shows that ADEA provides better results than GA and 

catalogue for all boundary dimensions of deep-groove ball bearing. 

 The maximum per cent improvement in dynamic load capacity is 68.50 % over cat-

alogue and 11.11 % over GA. 

 ADEA is capable to obtain optimum design-parameters or constants that are extreme 

value of the range within reasonable generations. 

 ADEA can be used to solve other design problems such as angular contact bearing, 

journal bearing problem, heat exchanger problems and truss problem. 
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