S. Fortunato, Community detection in graphs, Physics Reports, vol.486, pp.75-174, 2010.

E. Satu and . Schaeffer, Graph clustering, Computer Science Review I, pp.27-64, 2007.

X. Liu, MIRACLE: A multiple independent random walks community parallel detection algorithm for big graphs, Journal of Network and Computer Applications, 2016.

D. Vincent, J. Blondel, R. Guillaume, E. Lambiotte, and . Lefebvre, Fast unfolding of community hierarchies in large networks, Journal of Statistical Mechanics Theory and Experiment, 2008.

P. Held, B. Krause, and R. Kruse, Dynamic Clustering in Social Networks using Louvain and Infomap Method, Third European Network Intelligence Conference, 2016.

P. Basuchowdhuri, K. Varsha-nagarajan, S. Mishra, S. Sikdar, and . Gupta, Subhashis Majumder: Fast Detection of Community Structures using Graph Traversal in Social Networks, 2017.

J. Su and C. Timothy, Havens: Fuzzy community detection in social networks using a genetic algortihm, FUZZ-IEEE, vol.2014, pp.2039-2046, 2014.

G. Amato, L. Candela, and D. Castelli, How Data Mining and Machine Learning Evolved from Relational Data Base to Data Science, A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, Studies in Big Data 31, 2018.

W. Cukierski, B. Hamner, and B. Yang, Graph-based features for supervised link prediction, IJCNN, vol.2011, pp.1237-1244, 2011.

M. Fazlali, E. Moradi, and . Hadi-tabatabaee-malazi, Adaptive parallel Louvain community detection on a multicore platform, Microprocessors and Microsystems -Embedded Hardware Design, vol.54, pp.26-34, 2017.

J. Pang, Y. Gu, J. Xu, and G. Yu, Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine, Neurocomputing, vol.277, pp.89-100, 2018.

R. Wang, S. Rho, and W. Cai, High-performance social networking: microblog community detection based on efficient interactive characteristic clustering, Cluster Computing, vol.20, issue.2, pp.1209-1221, 2017.

L. Bai, X. Cheng, J. Liang, and Y. Guo, Fast graph clustering with a new description model for community detection, Inf. Sci, vol.388, pp.37-47, 2017.

X. Deng, J. Zhai, T. Lv, and L. Yin, Efficient Vector Influence Clustering Coefficient Based Directed Community Detection Method, IEEE Access, vol.5, pp.17106-17116, 2017.

C. Aksoylar and J. Qian, Venkatesh Saligrama: Clustering and Community Detection With Imbalanced Clusters, IEEE Trans. Signal and Information Processing over Networks, vol.3, issue.1, pp.61-76, 2017.

A. Kanavos and I. Perikos, Ioannis Hatzilygeroudis, Athanasios K. Tsakalidis: Emotional community detection in social networks, Computers & Electrical Engineering, vol.65, pp.449-460, 2018.

H. Sethu and X. Chu, A new algorithm for extracting a small representative subgraph from a very large graph, 2012.

E. J. Mark, M. Newman, and . Girvan, Finding and Evaluating Community Structure in Networks. Physical review. E, Statistical, nonlinear, and soft matter physics, 2004.

W. Zhang, G. Pan, Z. Wu, and S. Li, Online Community Detection for Large Complex Networks, IJCAI, vol.2013, pp.1903-1909, 2013.

S. Bisma, M. A. Khan, and . Niazi, Network Community Detection: A Review and Visual Survey, 2017.

D. Kranda, The Square of Adjacency Matrices, 2012.

X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman et al., Ameet Talwalkar: MLlib: Machine Learning in Apache Spark, Journal of Machine Learning Research, vol.17, issue.7, pp.1-34, 2016.

, Sotera Distributed Graph Analytics (DGA): Sotera Defence Solution

, Zachary karate club network dataset --KONECT, 2017.

, Dolphins network dataset --KONECT, 2017.

, Hamster friendships network dataset --KONECT, 2017.

B. Klimmt and Y. Yang, Introducing the Enron corpus, CEAS conference, 2004.

A. R. Hao-yin, J. Benson, D. F. Leskovec, and . Gleich, Local Higher-order Graph Clustering, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.

S. Kumar, F. Spezzano, V. S. Subrahmanian, and C. Faloutsos, Edge Weight Prediction in Weighted Signed Networks, IEEE International Conference on Data Mining (ICDM), 2016.