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Abstract

The EM algorithm is one of the most popular algorithm for inference in latent data
models. For large datasets, each iteration of the algorithm can be numerically involved.
To alleviate this problem, (Neal and Hinton, 1998) has proposed an incremental
version in which the conditional expectation of the latent data (E-step) is computed
on a mini-batch of observations. In this paper, we analyse this variant and propose
and analyse the Monte Carlo version of the incremental EM in which the conditional
expectation is evaluated by a Markov Chain Monte Carlo (MCMC). We establish the
almost-sure convergence of these algorithms, covering both the mini-batch EM and
its stochastic version. Various numerical applications are introduced in this article
to illustrate our findings.

1 Introduction

Many problems in computational statistics reduce to maximising a function, defined on a
feasible set Θ, of the following form:

g(θ) ,
∫
Z
f(z, θ)µ(dz) , (1)

where f : Z×Θ→ R+ is a positive function and µ is a σ-finite measure. In the incomplete
data framework, the function g is the incomplete data likelihood, z is the missing data
vector and f stands for the complete data likelihood, that is the joint likelihood of the
observations and the missing data.

When the direct optimisation of the function g is difficult, the EM algorithm may be
an option. The EM algorithm iteratively computes a sequence of estimates {θk, k ∈ N}
starting from some initial parameter θ0. Each iteration of the EM algorithm may be
decomposed into two steps. In the E-step, the following surrogate function

θ 7→ Q(θ, θk−1) ,
∫
Z

log f(z, θ)p(z, θk−1)µ(dz)
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is computed, where p(z, θk−1) , f(z, θk−1)/g(θk−1) is the conditional probability density
of the latent variables given the observations at the current fit of the parameter θk−1. In
the M-step, this surrogate function is maximised yielding to a new fit of the parameter
θk = argmaxθ∈ΘQ(θ, θk−1). The EM algorithm has been the object of considerable
interest since its introduction in (Dempster et al., 1977); the scope of the algorithm and
many applications are presented in the reference book (McLachlan and Krishnan, 2008).
The EM algorithm has a number of interesting features: it is monotone - at each iteration,
the algorithm improves the objective function or leaves it unchanged if a local maximum
has been achieved - , it is invariant in the choice of the parametrisation, it is numerically
very stable - when the optimisation set is well defined - and easy to implement on a large
class of models.

Many possible improvements have been proposed. In a landmark paper, (Neal
and Hinton, 1998) have proposed an incremental version of the algorithm. In many
applications, log f(z, θ) can be written as a large sum of functions: it is therefore possible
to update at each iteration only a subsample of the terms in this sum and then to
perform the M-step. As this algorithm makes use of the new information immediately, it
is expected that it might improves the convergence of the EM algorithm in this context.
This algorithm has had an enormous impact in applied statistics and machine learning;
see among many others (Thiesson et al., 2001) for maximum likelihood estimation with
missing data in large datasets, (Hsiao et al., 2006) for PET tomographic reconstruction,
(Vlassis and Likas, 2002; Ng and McLachlan, 2003) for Gaussian mixture learning, (Likas
and Galatsanos, 2004) for blind image deconvolution, (Ng and McLachlan, 2004) for
segmentation of magnetic resonance images, (Blei et al., 2017) for variational inference
and (Ablin et al., 2018) for Independent Component Analysis. A closely related version of
the EM has been introduced in (Cappé and Moulines, 2009; Cappé, 2011); the objective
is therefore slightly different, since in this case the observations are processed online.

In a recent paper, closing the gap between the practical use of EM and its theoretical
understanding, (Balakrishnan et al., 2017) developed a ”sample-splitting EM” algorithm
where the parameters are obtained, at each iteration, using a subset of the observations.
The authors give quantitative characterisation of the region of attraction around the
global optimum for both finite sample sets and the idealized limit of infinite samples.
Even though this comprehensive work gives strong theoretical guarantees of the EM
algorithm and its subsample-based variant, it does not deal with the incremental version
of the EM algorithm we are studying here since the update of this ”sample-splitting” EM
algorithm does not include any terms of previous iterations.

The convergence of the incremental version of the EM algorithm was first tackled
by (Gunawardana and Byrne, 2005) exploiting the interpretation of the EM algorithm
as an alternating minimisation procedure under the information geometric framework
developed in (Csiszár and Tusnády, 1984). Nevertheless, (Gunawardana and Byrne, 2005)
assume that the latent variables take only a finite number of values and the order in
which the observations are processed remains the same from one pass to the other. There
is no obvious way to extend this analysis to more general latent variables and sampling
schemes.
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In the high-dimensional setting, exact maximisation based M-step reveals to be very
time consuming, or even ill-posed, thus gradient EM (Wang et al., 2014) can be very
attractive. In (Zhu et al., 2017), the authors propose a novel high-dimensional EM
algorithm by incorporating variance reduction into the stochastic gradient method for
EM. In this algorithm, the full gradient is calculated incrementally, updating only a
mini-batch of components at each iteration. This method is widely inspired by recent
advances in stochastic optimisation (Roux et al., 2012; Defazio et al., 2014) and can be
appealing when the dimension is much larger than the sample size. Their algorithm has
an improved overall computational complexity over (Wang et al., 2014) gradient EM and
converges at a linear rate to a local optimum (see the results and proofs therein).

The Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990) has been proposed,
when the quantity computed at the E-step involves infeasible computations. It lies in
splitting the E-step in a first step where the latent variables are simulated and then
computing a Monte Carlo integration of the intractable expectation of the complete log
likelihood. The M-step remains unchanged. The MCEM algorithm has been successfully
applied in mixed effects models (McCulloch, 1997; Hughes, 1999; Baey et al., 2016) or
to do inference for joint modelling of time to event data coming from clinical trials in
(Chakraborty and Das, 2010), among other applications.

This algorithm has been initially studied in (Chan and Ledolter, 1995) followed by
many authors such as (Sherman et al., 1999) showing the convergence of the MCEM
when the Monte Carlo integration is done using independent Markov chains generated
by a Gibbs sampler, (Levine and Casella, 2001; Booth et al., 2001) giving details on the
implementation of the MCEM, (Fort et al., 2003) generalizing the results of (Sherman
et al., 1999) for a wide class of MCMC simulation techniques, and then in (McLachlan
and Krishnan, 2008) and (Neath et al., 2013).

In this contribution, we propose the stochastic version of the mini-batch EM algorithm,
called the mini-batch MCEM (MBMCEM). The mini-batch of surrogate functions,
computed at each iteration, is no longer determnistic but is rather approximated using
Monte Carlo integration. The incremental framework developed in (Mairal, 2015),
called MISO (Minimisation by Incremental Surrogate Optimisation), used to analyse
the MBEM in this paper, can not be applied in this context and we provide, in this
article, its extension so that convergence guarantees of the objective function and similar
stationary point condition are established.

We summarise the main contributions of this paper as follows. Using the MISO
framework (Mairal, 2015) we establish, under mild assumptions on the incomplete
model and the auxiliary Q-function, the almost-sure convergence of the mini-batch EM
algorithm by constructing suitable surrogate functions. We then establish the almost-sure
convergence of the mini-batch version of the MCEM using an extension of the MISO
framework when the surrogate functions are stochastic.

The remainder of this paper is organised as follows. Section 2 provides the assumptions
on the model, the MBEM algorithm and sets out the convergence of the objective function.
Section 3 introduces the MBMCEM algorithm and its convergence theorem. Each section
also provides the executed algorithm when the complete model belongs to the curved
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exponential family. Section 4 investigates, through a simulation study on a mixed effect
model and a logistic regression, how these algorithms converge with respect to the
mini-batch size. Section 5 is devoted to the technical proofs of our results.

2 Convergence of the mini-batch EM algorithm

2.1 Model assumptions and notations

M 1. The parameter set Θ is a closed convex subset of Rp.

Let N be an integer and for i ∈ J1, NK, Zi be a subset of Rmi , µi be a σ-finite
measure on the Borel σ-algebra Zi = B(Zi) and {fi(zi, θ), θ ∈ Θ} be a family of positive
µi-integrable Borel functions on Zi. Set z = (zi ∈ Zi, i ∈ J1, NK) ∈ Z where Z = ×Nn=1Zi
and µ is the product of the measures (µi, i ∈ J1, NK).
Define, for all i ∈ J1, NK and θ ∈ Θ:

gi(θ) ,
∫
Zi

fi(zi, θ)µi(dzi) and pi(zi, θ) ,

{
fi(zi,θ)
gi(θ)

if gi(θ) 6= 0

0 otherwise
. (2)

Note that pi(zi, θ) defines a probability density function with respect to µi. Thus
Pi = {pi(zi, θ); θ ∈ Θ} is a family of probability density. We denote by {Pi,θ; θ ∈ Θ} the
associated family of probability measures. For all θ ∈ Θ, we set

f(z, θ) =
N∏
i=1

fi(zi, θ), g(θ) =
N∏
i=1

gi(θ) and p(z, θ) =
N∏
i=1

pi(zi, θ) . (3)

Remark 1. An example of this setting is the incomplete data framework. In this case,
we consider N independent observations (yi ∈ Yi, i ∈ J1, NK) where Yi is a subset of R`i

and missing data (zi ∈ Zi, i ∈ J1, NK). In this framework,

• fi(zi, θ) is the complete data likelihood that is the likelihood of the observed data yi
augmented with the missing data zi.

• gi(θ) is the incomplete data likelihood that is the likelihood of the observed data yi.

• pi(zi, θ) is the posterior distribution of the missing data zi given the observed data
yi.

Our objective is to maximise the function θ → log g(θ) or equivalently to minimise
the objective function ` : Θ 7→ R defined as:

`(θ) , − log g(θ) =
N∑
i=1

`i(θ) for all θ ∈ Θ , (4)

where `i(θ) , − log gi(θ). The EM algorithm is an iterative optimisation algorithm that
minimises the function θ → `(θ) when its direct minimisation is difficult. Denote by θk−1
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the current fit of the parameter at iteration k. The k-th step of the EM algorithm might
be decomposed into two steps. The E-step consists in computing the surrogate function
defined for all θ ∈ Θ as :

Q(θ, θk−1) , −
∫
Z
p(z, θk−1) log f(z, θ)µ(dz) (5)

= −
N∑
i=1

∫
Zi

pi(zi, θ
k−1) log fi(zi, θ)µi(dzi) =

N∑
i=1

Qi(θ, θ
k−1) , (6)

where:

Qi(θ, θ
k−1) , −

∫
Zi

pi(zi, θ
k−1) log fi(zi, θ)µi(dzi) . (7)

In the M-step, the value of θ minimising Q(θ, θk−1) is calculated. This yields the new
parameter estimate θk. These two steps are repeated until convergence. The essence of
the EM algorithm is that decreasing Q(θ, θk−1) forces a decrease of the function θ → `(θ)
(Dempster et al., 1977). The mini-batch version of the EM algorithm is described as
follows:

Algorithm 1 mini-batch EM algorithm

Initialisation: given an initial parameter estimate θ0, for all i ∈ J1, NK compute a
surrogate function ϑ→ R0

i (ϑ) = Qi(ϑ, θ
0) defined by (7).

Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ J1, NK, card(A) = p}.

2. For all i ∈ Ik, compute ϑ→ Qi(ϑ, θ
k−1) defined by (7).

3. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1R

k
i (ϑ) where Rki (ϑ) are defined recursively as follows:

Rki (ϑ) =

{
Qi(ϑ, θ

k−1) if i ∈ Ik
Rk−1
i (ϑ) otherwise

(8)

We remark that, for all i ∈ J1, NK and θ ∈ Θ:

Rki (θ) = Qi(θ, θ
τi,k) , (9)

where for all i ∈ J1, NK, τi,0 = 0 and k ≥ 1 the indices τi,k are defined recursively as
follows:

τi,k =

{
k − 1 if i ∈ Ik
τi,k−1 otherwise

(10)

As noted in (Gunawardana and Byrne, 2005) and (Neal and Hinton, 1998), there is
no guarantee, unlike the EM algorithm, that the objective function θ → `(θ) decreases

5



at each iteration. We also remark that we recover the full EM algorithm when the
mini-batch size p is set to be equal to N . Let T (Θ) be a neighborhood of Θ. To study
the convergence of the MBEM algorithm we consider the following assumptions:

M 2. For all i ∈ J1, NK, assume that:

a. For all θ ∈ Θ and zi ∈ Zi, fi(zi, θ) is strictly positive, the function θ → fi(zi, θ) is
two-times differentiable on T (Θ) for µi almost every zi and for all ϑ ∈ Θ:∫

Zi

|∇fi(zi, θ)|µi(dzi) <∞ and

∫
Zi

pi(zi, ϑ)| log fi(zi, θ)|µi(dzi) <∞ . (11)

b. For all θ ∈ Θ, there exist δ > 0 and a measurable function ψθ : Zi → R such that

sup
‖ϑ−θ‖≤δ

|∇2fi(zi, ϑ)| ≤ ψθ(zi)

for µi almost every zi with
∫
Zi
ψθ(zi)µi(dzi) <∞.

c. There exist a measurable function φi : Zi → R and Li <∞ such that

sup
θ∈Θ
|∇2 log fi(zi, θ)| ≤ φi(zi)

for µi almost every zi with sup
θ∈Θ

∫
Zi
pi(zi, θ)φi(zi)µi(dzi) ≤ Li.

d. For all i ∈ J1, NK and θ ∈ Θ, sup
θ∈Θ
|∇2li(θ)| <∞.

It is easily checked that these assumptions imply for all i ∈ J1, NK that:

1. The function θ → gi(θ) is continuously differentiable on T (Θ) and the Fisher
identity (Fisher, 1925) holds:

∇`i(θ) = −
∫
Zi

pi(zi, θ)∇ log fi(zi, θ)µi(dzi) . (12)

2. For all ϑ ∈ Θ, the function θ → Qi(θ, ϑ) is continuously differentiable on T (Θ) and
is Li−smooth, i.e., for all (θ, θ′) ∈ Θ and Li > 0:

‖∇Qi(θ, ϑ)−∇Qi(θ′, ϑ)‖ ≤ Li‖θ − θ′‖ . (13)

3. For all i ∈ J1, NK and θ ∈ Θ, Louis Formula (Louis, 1982) yields that:

∇2li(θ) =−
∫
Zi

pi(zi, θ)∇2 log fi(zi, θ)µi(dzi) (14)

−
∫
Zi

pi(zi, θ) (∇ log fi(zi, θ))
>∇ log fi(zi, θ)µi(dzi) (15)

+

(∫
Zi

pi(zi, θ)∇ log fi(zi, θ)µi(dzi)

)> ∫
Zi

pi(zi, θ)∇ log fi(zi, θ)µi(dzi) .

(16)
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Thus, sufficient conditions to verify M 2d. are M 2c. and the following condi-
tion: There exist a measurable function Ni : Zi → R such that for all θ ∈ Θ,
|∇ log fi(zi, θ)| ≤ Ni(zi) for µi almost every zi with

∫
Zi
pi(zi, θ)N

2
i (zi)µi(dzi) <∞.

M 3. For all i ∈ J1, NK, the objective function `i is bounded from below, i.e. there exist
Mi ∈ R such that for all θ ∈ Θ :

`i(θ) ≥Mi . (17)

For θ ∈ Θ, we say that a function Bi,θ is a surrogate of `i at θ if the three following
properties are satisfied:

S.1 the function ϑ→ Bi,θ(ϑ) is continuously differentiable on T (Θ)

S.2 for all ϑ ∈ Θ, Bi,θ(ϑ) ≥ `i(ϑ)

S.3 Bi,θ(θ) = `i(θ) and ∇Bi,θ(ϑ)
∣∣∣
ϑ=θ

= ∇`i(ϑ)
∣∣∣
ϑ=θ

.

For all i ∈ J1, NK and (θ, θ′) ∈ Θ2, define the Kullback-Leibler Divergence from Pi,θ′ to
Pi,θ as:

KL(Pi,θ ‖ Pi,θ′) ,
∫
Zi

pi(zi, θ) log
pi(zi, θ)

pi(zi, θ′)
µi(dzi) (18)

and the negated entropy function Hi(θ) as:

Hi(θ) ,
∫
Zi

pi(zi, θ) log pi(zi, θ)µi(dzi) . (19)

To analyse the MBEM algorithm, we introduce for i ∈ J1, NK and θ ∈ Θ the function
ϑ→ Bi,θ(ϑ) defined by:

Bi,θ(ϑ) , Qi(ϑ, θ) +Hi(θ) . (20)

We will show below that for i ∈ J1, NK and θ ∈ Θ, Bi,θ is a surrogate of li at θ. Let us
note that this function can be rewritten as follows:

Bi,θ(ϑ) =

∫
Zi

pi(zi, θ) log
pi(zi, θ)

fi(zi, ϑ)
µi(dzi) (21)

=

∫
Zi

pi(zi, θ) log
pi(zi, θ)

pi(zi, ϑ)
µi(dzi) + `i(ϑ) (22)

= KL(Pi,θ ‖ Pi,ϑ) + `i(ϑ) . (23)

We verify S.1 using assumption M 2. Since ϑ→ KL(Pi,θ ‖ Pi,ϑ) is always positive and
is equal to zero if θ = ϑ, we verify S.2 and the first part of S.3. The second part of
S.3 follows from the Fisher identity (12). The difference between the surrogate function
and the objective function denoted, for all ϑ ∈ Θ, hi(ϑ) , Bi,θ(ϑ) − li(ϑ) plays a key
role in the convergence analysis. Here, for all i ∈ J1, NK and ϑ ∈ Θ the error reads
hi(ϑ) = KL(Pi,θ ‖ Pi,ϑ). Under M 2c. and M 2d., we obtain that for all i ∈ J1, NK, the
function ϑ → hi(ϑ) is Li−smooth. Since for all i ∈ J1, NK and θ ∈ Θ, the surrogate
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function ϑ→ Bi,θ(ϑ) is equal to ϑ→ Qi(ϑ, θ) up to a constant, the MBEM algorithm is
equivalent to the following theoretical algorithm:

Algorithm 2 Theoretical MBEM algorithm

Initialisation: given an initial parameter estimate θ0, for all i ∈ J1, NK compute a
surrogate function ϑ→ A0

i (ϑ) = Bi,θ0(ϑ) defined by (21).
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ J1, NK, card(A) = p}.

2. For all i ∈ Ik, compute a surrogate function ϑ→ Bi,θk−1(ϑ) defined by (21).

3. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1A

k
i (ϑ) where Aki (ϑ) are defined recursively as follows:

Aki (ϑ) =

{
Bi,θk−1(ϑ) if i ∈ Ik
Ak−1
i (ϑ) otherwise

(24)

We remark that, for all i ∈ J1, NK and ϑ ∈ Θ:

Aki (ϑ) = Bi,θτi,k (ϑ) (25)

using the notation introduced in (10). Denote by 〈·,·〉 the scalar product. We now state
the convergence theorem of the MBEM algorithm:

Theorem 1. Assume M1-M3. Let
(
θk
)
k≥1

be a sequence generated from θ0 ∈ Θ by the
iterative application described by algorithm 1. Then:

(i)
(
`(θk)

)
k≥1

converges almost surely.

(ii)
(
θk
)
k≥1

satisfies the Asymptotic Stationary Point Condition, i.e.

lim inf
k→∞

inf
θ∈Θ

〈∇`(θk), θ − θk〉
‖θ − θk‖2

≥ 0 (26)

Proof. The proof is postponed to section 5.1

We observe that in the unconstrained case, we have:

inf
θ∈Rd

〈∇`(θk), θ − θk〉
‖θ − θk‖2

= −‖∇`(θk)‖ , (27)

which yields to lim
k→∞

‖∇`(θk)‖ = 0.
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2.2 MBEM for a curved exponential family

In the particular case where for all i ∈ J1, NK and zi ∈ Zi, the function θ → fi(zi, θ)
belongs to the curved exponential family, we assume that:

E 1. For all i ∈ J1, NK and θ ∈ Θ:

log fi(zi, θ) = Hi(zi)− ψi(θ) + 〈S̃i(zi), φi(θ)〉. (28)

where ψi : Θ 7→ R and φi : Θ 7→ Rdi are twice continuously differentiable func-
tions of θ, Hi : Zi 7→ R is a twice continuously differentiable function of zi and
S̃i : Zi 7→ Si is a statistic taking its values in a convex subset Si of Rdi and such
that

∫
Zi
|S̃i(zi)|pi(zi, θ)µi(dzi) <∞.

Define for all θ ∈ Θ and i ∈ J1, NK the function s̄i : Θ→ Si as:

s̄i(θ) ,
∫
Zi

S̃i(zi)pi(zi, θ)µi(dzi). (29)

Define, for all θ ∈ Θ and s = (si, i ∈ J1, NK) ∈ S where S = ×Nn=1Si, the function L(s; θ)
by:

L(s; θ) ,
N∑
i=1

ψi(θ)−
N∑
i=1

〈si, φi(θ)〉. (30)

E 2. There exist a function θ̂ : S 7→ Θ such that for all s ∈ S, :

L(s; θ̂(s)) ≤ L(s; θ). (31)

In many models of practical interest for all s ∈ S, θ 7→ L(s, θ) has a unique minimum.
In the context of the curved exponential family, the MBEM algorithm can be formulated
as follows:

Algorithm 3 mini-batch EM for a curved exponential family

Initialisation: given an initial parameter estimate θ0, for all i ∈ J1, NK compute
s0
i = s̄(θ0).
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ J1, NK, card(A) = p}.

2. For i ∈ J1, NK, compute ski such as:

ski =

{
s̄i(θ

k−1) if i ∈ Ik.
sk−1
i otherwise.

(32)

3. Set θk = θ̂(sk) where sk = (ski , i ∈ J1, NK).
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Example 1. We observe N independent and identically distributed (i.i.d.) random
variables (yi, i ∈ J1, NK). Each one of these observations is distributed according to
a mixture model. Denote by (cj , j ∈ J1, JK) the distribution of the component of the
mixture and (πj , j ∈ J1, JK) the associated weights. Consider the complete data likelihood
for each individual fi(zi, θ):

fi(zi, θ) =

J∏
j=1

(πjc
j(yi, δ))

1zi=j . (33)

We restrict this study to a mixture of Gaussian distributions. In such case θ =
((πj , µj , σj), j ∈ J1, JK) and the individual complete log likelihood is expressed as:

log fi(zi, θ) =
J∑
j=1

1zi=j log(πj) +
J∑
j=1

1zi=j

[
−(yi − µj)2

2σ2
j

− 1

2
log σ2

j

]
. (34)

The complete data sufficient statistics are given for all i ∈ J1, NK and j ∈ J1, JK, by
S̃1,j
i (yi, zi) , 1zi=j , S̃

2,j
i (yi, zi) , 1zi=jyi and S̃3,j

i (yi, zi) , 1zi=jy
2
i . At each iteration k,

algorithm 3 consists in picking a set Ik and for i ∈ Ik, computing the following quantities:

(s̄ki )
1,j =

∫
Zi

1zi=jpi(zi, θ
k−1)µi(dzi) = pij(θ

k−1) , (35)

(s̄ki )
2,j =

∫
Zi

1zi=jyipi(zi, θ
k−1)µi(dzi) = pij(θ

k−1)yi , (36)

(s̄ki )
3,j =

∫
Zi

1zi=jy
2
i pi(zi, θ

k−1)µi(dzi) = pij(θ
k−1)y2

i , (37)

where the quantity pij(θ
k−1) , Pi,θk−1(zi = j) is obtained using the Bayes rule:

pij(θ
k−1) =

Pi(zi = j)pi(yi|zi = j; θk−1)

pi(yi; θk−1)
=

πk−1
j cj(yi;µ

k−1
j , σk−1

j )∑J
l=1 π

k−1
l cl(yi;µ

k−1
l , σk−1

l )
. (38)

For i /∈ Ik, j ∈ J1, JK, and d ∈ J1, 3K (s̄ki )
d,j = (s̄k−1

i )d,j . Finally the maximisation step
yields:

πkj =

∑N
i=1 (s̄ki )

1,j

N
, (39)

µkj =

∑N
i=1 (s̄ki )

2,j∑N
i=1 (s̄ki )

1,j
, (40)

σkj =

∑N
i=1 (s̄ki )

3,j∑N
i=1 (s̄ki )

1,j
− (µkj )

2 . (41)
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3 Convergence of the mini-batch MCEM algorithm

We now consider the stochastic version of the MBEM algorithm called the mini-batch
MCEM algorithm. At iteration k, the MBMCEM approximates the quantity defined by
(7) by Monte Carlo integration, i.e. for all i ∈ Ik, ϑ ∈ Θ and k ≥ 1:

Q̂ki (ϑ, θ
k−1) ,

1

Mk

Mk−1∑
m=0

log fi(z
k,m
i , ϑ) , (42)

where {zk,mi }Mk−1
m=0 is a Monte Carlo batch. In simple scenarios, the samples {zk,mi }Mk−1

m=0

are conditionally independent and identically distributed with distribution pi(zi, θ
k−1).

Nevertheless, in most cases, sampling exactly from this distribution is not an option and
the Monte Carlo batch is sampled by Monte Carlo Markov Chains (MCMC) algorithm.
MCMC algorithms are a class of methods allowing to sample from complex distribution
over (possibly) large dimensional space.

Recall that a Markov kernel P on a measurable space (E, E) is an application on E×E,
taking values in [0, 1] such that for any z ∈ E, P (z, ·) is a probability measure on E and
for any A ∈ E, P (·, A) is measurable. We denote by P k the k−th iterate of P defined
recursively as P 0(z,A) , 1A(z) and for k ≥ 1, P k(z,A) ,

∫
A P

k−1(z, dz′)P (z′, A). The
probability π is said to be stationary for P if

∫
E π(dz)P (z,A) = π(A) for any A ∈ E. We

refer the reader to (Meyn and Tweedie, 2012) for the definitions of basic properties of
Markov chains.

For i ∈ J1, NK and θ ∈ Θ, let Pi,θ be a Markov kernel with stationary distribution
πi,θ(Ai) =

∫
Ai
pi(zi, θ)µi(dzi) where Ai ∈ Zi. For example, Pi,θ might be either a Gibbs

or a Metropolis-Hastings samplers with target distribution πi,θ. For θ ∈ Θ, let λi,θ be
a probability measure on Zi × Zi. We will use λi,θ as an initial distribution and allow
this initial distribution to depend on the parameter θ. For example, λi,θ might be the
Dirac mass at some given point but more clever choice can be made. We denote by Ei,θ
the expectation of the canonical Markov chain {zmi }∞m=0 with initial distribution λi,θ and
transition kernel Pi,θ.

In this setting, the Monte Carlo mini-batch {zk,mi }Mk−1

m=0 is a realisation of a Markov
Chain with initial distribution λi,θk−1 and transition kernel Pi,θk−1 . The MBMCEM
algorithm can be summarised as follows:

11



Algorithm 4 mini-batch MCEM algorithm

Initialisation: given an initial parameter estimate θ0, for all i ∈ J1, NK and m ∈
J0,M0 − 1K, sample a Markov Chain {z0,m

i }M0−1
m=0 with initial distribution λi,θ0 and

transition kernel Pi,θ0 and compute a function ϑ→ R̂0
i (ϑ) = Q̂0

i (ϑ, θ
0) defined by (42).

Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ J1, NK, card(A) = p}.

2. For all i ∈ Ik and m ∈ J0,Mk− 1K, sample a Markov Chain {zk,mi }Mk−1
m=0 with initial

distribution λi,θk−1 and transition kernel Pi,θk−1 .

3. For all i ∈ Ik, compute the function ϑ→ Q̂ki (ϑ, θ
k−1) defined by (42).

4. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1 R̂

k
i (ϑ) where R̂ki (ϑ) are defined recursively as follows:

R̂ki (ϑ) =

{
Q̂ki (ϑ, θ

k−1) if i ∈ Ik
R̂k−1
i (ϑ) otherwise

(43)

Whether we use Markov Chain Monte Carlo or direct simulation, we need to control
the supremum norm of the fluctuations of the Monte Carlo approximation. Let i ∈ J1, NK,
{qi(zi, ϑ), zi ∈ Zi, ϑ ∈ Θ} be a family of measurable functions, λi a probability measure
on Zi ×Zi. We define:

Ci(qi) , sup
θ∈Θ

sup
M>0

M−1/2Ei,θ

[
sup
ϑ∈Θ

∣∣∣∣∣
M−1∑
m=0

{
qi(z

m
i , ϑ)−

∫
Zi

qi(zi, ϑ)pi(zi, θ)λi(dzi)

}∣∣∣∣∣
]
.

(44)

M 4. For all i ∈ J1, NK:

Ci(log fi) <∞ and Ci(∇ log fi) <∞ . (45)

The assumption M 4 is based on maximal inequality for beta-mixing sequences
obtained in (Doukhan et al., 1995). This condition can be translated in terms of drift
and minorisation conditions (see (Meyn and Tweedie, 2012)). Finally, we consider the
following assumption on the number of simulations:

M 5. {Mk}k≥0 is a non deacreasing sequence of integers which satisfies
∑∞

k=0M
−1/2
k <

∞.

We now state the convergence theorem for the MBMCEM algorithm:

Theorem 2. Assume M1-M5. Let
(
θk
)
k≥1

be a sequence generated from θ0 ∈ Θ by the
iterative application described by algorithm 4. Then:

(i)
(
`(θk)

)
k≥1

converges almost surely.

12



(ii)
(
θk
)
k≥1

satisfies the Asymptotic Stationary Point Condition.

Proof. The proof is postponed to section 5.2

3.1 MBMCEM for a curved exponential family

Using the notations introduced in section 2.2, we can write the mini-batch MCEM
algorithm can be described as follows:

Algorithm 5 mini-batch MCEM for a curved exponential family

Initialisation: given an initial parameter estimate θ0, for all i ∈ J1, NK and m ∈
J0,M0 − 1K, sample a Markov Chain {z0,m

i }M0−1
m=0 with initial distribution λi,θ0 and

transition kernel Pi,θ0 and compute s0
i = 1

M0

∑M0
m=1 S̃i(z

0,m
i ).

Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ J1, NK, card(A) = p}.

2. For all i ∈ Ik and m ∈ J0,Mk− 1K, sample a Markov Chain {zk,mi }Mk−1
m=0 with initial

distribution λi,θk−1 and transition kernel Pi,θk−1 .

3. Compute ski such as:

ski =

{
1
Mk

∑Mk−1
m=1 S̃i(z

k,m
i ) if i ∈ Ik

sk−1
i otherwise

(46)

4. Set θk = θ̂(sk) where sk = (ski , i ∈ J1, NK)

Example 2. For illustration purposes we can apply the MBMCEM to the Gaussian
Mixture Model example of Section 2.2 even though the conditional expectation (38) is
tractable.

At iteration k of the MBMCEM algorithm, pick a set Ik and for i ∈ Ik, m ∈ J0,Mk−1K
and j ∈ J1, JK, draw a Monte Carlo batch {zk,mi }Mk−1

m=0 from the conditional posterior

distribution pi(zi, θ
k−1) and update the sufficient statistics as S̃1,j

i (yi, z
k,m
i ) , 1

zk,mi =j
,

S̃2,j
i (yi, z

k,m
i ) , 1

zk,mi =j
yi and S̃3,j

i (yi, z
k,m
i ) , 1

zk,mi =j
y2
i . For i /∈ Ik, j ∈ J1, JK, m ∈

J0,Mk − 1K and d ∈ J1, 3K, zk,mi = zk−1,m
i and S̃d,ji (yi, z

k,m
i ) = S̃d,ji (yi, z

k−1,m
i ). Finally

13



the maximisation step yields:

πkj =

∑N
i=1 S̃

1,j
i (yi, z

k,m
i )

N
, (47)

µkj =

∑N
i=1 S̃

2,j
i (yi, z

k,m
i )∑N

i=1 S̃
1,j
i (yi, z

k,m
i )

, (48)

σkj =

∑N
i=1 S̃

3,j
i (yi, z

k,m
i )∑N

i=1 S̃
1,j
i (yi, z

k,m
i )

− (µkj )
2 . (49)

4 Numerical examples

4.1 A Linear mixed effects model

4.1.1 The model

We consider, in this section, a linear mixed effects model (Lavielle, 2014). We denote by
y = (yi ∈ Rni , i ∈ J1, NK) the observations where for all i ∈ J1, NK:

yi = Aiθ +Bizi + εi . (50)

Ai ∈ Rni×p and Bi ∈ Rni×m are design matrices, θ ∈ Rp is a vector of parameters,
zi ∈ Rm are the latent data (i.e. the random effects in the context of mixed effects
models) which are assumed to be distributed according to a multivariate Gaussian
distribution N (0,Ω) where Ω ∈ Rm×m. We also assume that the residual errors εi ∈ Rni

are distributed according to N (0,Σ), where Σ ∈ Rni×ni , and that the sequences of
variables (zi, i ∈ J1, NK) and (εi, i ∈ J1, NK) are i.i.d. and mutually independent. The
covariance matrices Ω and Σ are assumed to be known. For all i ∈ J1, NK, the conditional
distribution of the observations given the latent variables yi|zi and of the latent variables
given the observations zi|yi are respectively given by:

yi|zi ∼ N (Aiθ +Bizi,Σ), (51)

zi|yi ∼ N (µi,Γi). (52)

where:

Γi = (B>i Σ−1Bi + Ω−1)−1, (53)

µi = ΓiB
>
i Σ−1(yi −Aiθ). (54)

This model belongs to the curved exponential family introduced in section 2.2 where for
all i ∈ J1, NK:

S̃i(zi) , zi and s̄i(θ) = ΓiB
>
i Σ−1(yi −Aiθ) (55)

ψi(θ) , (yi −Aiθ)>Σ−1(yi −Aiθ) (56)

φi(θ) , B>Σ−1(yi −Aiθ) (57)
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Figure 1: Convergence of the vector of parameter estimates θk function of passes over
the data.

Maximising L(s, θ), defined in (30), with respect to θ yields the following maximisation
function for all s = (si ∈ Rm, i ∈ J1, NK):

θ̂(s) ,

(
N∑
i=1

A>i Σ−1Ai

)−1 N∑
i=1

A>i Σ−1(yi −Bisi).

Thus, the k − th update of the MBEM algorithm consists in sampling a subset of indices
Ik and computing θk = θ̂(sk) where:

ski =

{
s̄i(θ

k−1) if i ∈ Ik.
sk−1
i otherwise.

4.1.2 Simulation and runs

We generate a synthetic dataset, with d = 2, θ : (θ1 : 4, θ2 : 9), N = 10000 and for all
i ∈ J1, NK, ni = 10 observations per individual and random design matrices (Ai, i ∈ J1, NK)
and (Bi, i ∈ J1, NK). Two runs of the MBEM are executed starting from different initial
values ((θ0

1 : 1, θ0
2 : 5) and (θ0

1 : 3, θ0
2 : 7)) to study the convergence behaviour of these

algorithms depending on the initialisation. Figure 1 shows the convergence of the vector
of parameter estimates (θk1 , θ

k
2)Kk=0 over passes of the EM algorithm, the MBEM algorithm

where half of the data is considered at each iteration and the Incremental EM algorithm
(i.e. a single data point is considered at each iteration). The speed of convergence is a
monotone function of the batch size in this case, the smaller the batch the faster the
convergence.
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4.2 Logistic regression for a binary variable

4.2.1 The model

Let y = (yi, i ∈ J1, NK) be the vector of binary responses where for each individual i,
yi = (yij , j ∈ J1, niK) is a sequence of conditionally independent random variables taking
values in {0, 1} which corresponds to the j-th responses for the i-th subject. We consider
a logistic regression problem in which the parameters depend upon each individual i.
Denote by zi ∈ Rm the vector of regression coefficients (the latent data) for individual
i and (dij ∈ Rm, j ∈ J1, niK) the associated explanatory variables. The conditional
distribution of the observations yi given the latent variables zi is given by:

logit(P(yij = 0|zi)) = d>ijzi.

For all i ∈ J1, NK, we assume that zi are independent and marginally distributed according
to N (β,Ω) where β ∈ Rm and Ω ∈ Rm×m. The complete log-likelihood is expressed as:

log f(z, θ) ∝
N∑
i=1

ni∑
j=1

{
yijd

>
ijzi − log(1 + ed

>
ijzi)

}
(58)

−
N∑
i=1

{
1

2
log(|Ω|) +

1

2
Tr
(

Ω−1(zi − β)(zi − β)>
)}

. (59)

Since the expectation of the complete log likelihood with respect to the conditional
distribution of the latent variables given the observations is intractable, we use the
MCEM and the MBMCEM algorithms, which require to simulate random draws from
this conditional distribution. We use the saemix R package (Comets et al., 2017) to run
a Metropolis-Hastings within Gibbs sampler (Brooks et al., 2011) where for all i ∈ J1, NK
we denote the vector of regression coefficients zi = (zi,d ∈ R, d ∈ J1,mK). Thus for all
dimension d ∈ J1,mK of the parameter, the Markov Chain is constructed as follows:
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Algorithm 6 Random Walk Metropolis

Initialisation: given the current parameter estimates (βk−1
d , ωk−1

d ) set T (0)
d = ωk−1

d and

sample the initial state z
(0)
i,d ∼ N (βk−1

d , T (0)
d )

Iteration t: given the current chain state z
(t−1)
d :

1. Sample a candidate state:

z
(c)
i,d ∼ N (z

(t−1)
i,d , T (t−1)

d ) (60)

2. Accept with probability min
(

1, α(t)(z
(c)
i,d , z

(t−1)
i,d )

)
3. Update the variance of the proposal as follows:

T (t)
d = T (t−1)

d + (1 + δ(α(t) − α∗)) (61)

where δ = 0.4, α(t) is the MH acceptance ratio at iteration t and α∗ = 0.4 is the
optimal acceptance ratio (Robert and Casella, 2005). This model belongs to the curved
exponential family introduced in section 2.2 where for all i ∈ J1, NK, S̃i(zi) , (zi, z

>
i zi).

At iteration k, the MBMCEM algorithm consists in:

1. Picking a set Ik uniformly on {A ⊂ J1, NK, card(A) = p}.

2. For all i ∈ Ik and m ∈ J0,Mk − 1K, sampling a Markov Chain {zk,mi }Mk−1
m=0 using

algorithm 6.

3. Computing ski = (s1,k
i , s2,k

i ) such as:

(s1,k
i , s2,k

i ) =

{(
1
Mk

∑Mk−1
m=0 zk,mi , 1

Mk

∑Mk−1
m=0 (zk,mi )>zk,mi

)
if i ∈ Ik

(s1,k−1
i , s2,k−1

i ) otherwise
(62)

4. Updating the parameters as follows:

βk =
1

N

N∑
i=1

s1,k
i , (63)

Ωk =
1

N

N∑
i=1

s2,k
i − (βk)>βk . (64)

4.2.2 Simulation and runs

In the sequel, m = 3, N = 1200 and for all i ∈ J1, NK, ni = 15. For all i ∈ J1, NK
and j ∈ J1, niK, the design vector dij is defined as: dij = (1,−20 + 5(j − 1), 10d3i/Ne).
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Figure 2: Convergence of the vector of fixed parameters β for different batch sizes function
of passes over the data.

We generate a synthetic dataset using the following generating values for the fixed and
random effects (β1 = −4, β2 = −0.5, β3 = 1, ω1 = 0.3, ω2 = 0.2, ω3 = 0.2). We run the
MBMCEM algorithm with the size of the Monte Carlo batch increasing polynomially,
Mk , M0 + k2 with M0 = 50. Figure 2 shows the convergence of the fixed effects
(β1, β2, β3) estimates obtained with both the MCEM and the MBMCEM algorithms for
different batch sizes. The effect of the batch size on the convergence rate differs from the
previous example. Whereas smaller batches implied faster convergence for the mini batch
EM algorithm, here, an optimal batch size of 50% accelerates the algorithm. Figure 2
highlights a non monotonic evolution of the convergence rate with respect to the size of
the batch.

5 Proofs

5.1 Proof of Theorem 1

5.1.1 Proof of (i)

First, let us define for θ ∈ Θ

Āk(θ) ,
N∑
i=1

Aki (θ) , (65)

where for all i ∈ J1, NK, Aki is defined in (24). For any k ≥ 1 and for all θ ∈ Θ the
following decomposition plays a key role:

Āk(θ) = Āk−1(θ) +
∑
i∈Ik

Bi,θk−1(θ)−
∑
i∈Ik

Ak−1
i (θ). (66)

Since by construction Āk(θk) ≤ Āk(θk−1), we get:

Āk(θk) ≤ Āk−1(θk−1) +
∑
i∈Ik

Bi,θk−1(θk−1)−
∑
i∈Ik

Ak−1
i (θk−1). (67)
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Since for i ∈ Ik, Bi,θk−1 is a surrogate of `i at θk−1 we get that Bi,θk−1(θk−1) = `i(θ
k−1).

On the other hand, for i ∈ J1, NK, Ak−1
i ≡ Bi,θτi,k−1 and Bi,θτi,k−1 is a surrogate of `i at

θτi,k−1 , thus we obtain that `i(θ
k−1)−Ak−1

i (θk−1) ≤ 0. Plugging these two relations in
(67) we obtain:

Āk(θk) ≤ Āk−1(θk−1) +
∑
i∈Ik

`i(θ
k−1)−

∑
i∈Ik

Ak−1
i (θk−1) (68)

≤ Āk−1(θk−1) . (69)

As a result, the sequence
(
Āk(θk)

)
k≥0

is monotonically decreasing. Since, under as-
sumption M 3, this quantity is bounded from below with probability one, we obtain
its almost sure convergence. Taking the expectations with respect to the sampling
distributions of the previous inequalities implies the convergence of the (deterministic)
sequence

(
E[Āk(θk)]

)
k≥0

. Let us denote for all θ ∈ Θ and a subset J ⊂ J1, NK:

`J(θ) ,
∑
i∈J

`i(θ) , (70)

Ak−1
J (θ) ,

∑
i∈J

Ak−1
i (θ) . (71)

Inequality (67) gives :

0 ≤
n∑
k=1

Ak−1
Ik

(θk−1)− `Ik(θk−1) ≤
n∑
k=1

Āk−1(θk−1)− Āk(θk) = Ā0(θ0)− Ān(θn) . (72)

Consequently, the sum of positive terms
(∑n

k=1A
k−1
Ik

(θk−1)− `Ik(θk−1)
)
n≥1

converges

almost surely and
(
Ak−1
Ik

(θk−1)− `Ik(θk−1)
)
k≥1

converges almost surely to zero. The

Beppo-Levi theorem and the Tower property of the conditional expectation imply:

M , E

[ ∞∑
k=0

Ak−1
Ik

(θk−1)− `Ik(θk−1)

]
=
∞∑
k=0

E
[
Ak−1
Ik

(θk−1)− `Ik(θk−1)
]

(73)

=
∞∑
k=0

E
[
E
[
Ak−1
Ik

(θk−1)− `Ik(θk−1)
∣∣∣Fk−1

]]
,

(74)

with

E
[
`Ik(θk−1)

∣∣∣Fk−1

]
=

p

N
`(θk−1) ,

E
[

[Ak−1
Ik

(θk−1)
∣∣∣Fk−1

]
=

p

N

N∑
i=1

Ak−1
i (θk−1) =

p

N
Āk−1(θk−1) ,
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where Fk−1 = σ(Ij , j ≤ k − 1) is the filtration generated by the sampling of the indices.
We thus obtain:

M =
p

N

∞∑
k=0

E
[
Āk−1(θk−1)− `(θk−1)

]
=

p

N
E

[ ∞∑
k=0

Āk−1(θk−1)− `(θk−1)

]
<∞ . (75)

This last equation shows that:

lim
k→∞

Āk(θk)− `(θk) = 0 a.s. (76)

which implies the almost sure convergence of
(
`(θk)

)
k≥0

.

5.1.2 Proof of (ii)

Let us define, for all k ≥ 0, h̄k as:

h̄k : ϑ→
N∑
i=1

Aki (ϑ)− `i(ϑ) . (77)

h̄k is L-smooth with L =
∑N

i=1 Li since each of its component is Li-smooth by definition
of the surrogate functions. Using the particular parameter ϑk = θk − 1

L∇h̄k(θk) we have
the following classical inequality for smooth functions (cf. Lemma 1.2.3 in (Nesterov,
2007)):

0 ≤ h̄k(ϑk) ≤ h̄k(θk)− 1

2L
‖∇h̄k(θk)‖22 (78)

=⇒ ‖∇h̄k(θk)‖22 ≤ 2Lh̄k(θk) . (79)

Using (76), we conclude that lim
k→∞

‖∇h̄k(θk)‖2 = 0 a.s. Then, the decomposition of

〈∇`(θk), θ − θk〉 for any θ ∈ Θ yields:

〈∇`(θk), θ − θk〉 = 〈∇Āk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉 . (80)

Note that θk is the result of the minimisation of the sum of surrogates Āk(θ) on the
constrained set Θ, therefore 〈∇Āk(θk), θ − θk〉 ≥ 0. Thus, we obtain, using the Cauchy-
Schwarz inequality:

〈∇`(θk), θ − θk〉 ≥ −〈∇h̄k(θk), θ − θk〉 (81)

≥ −‖∇h̄k(θk)‖2‖θ − θk‖2 . (82)

By minimising over Θ and taking the infimum limit on k, we get:

lim inf
k→∞

inf
θ∈Θ

〈∇`(θk), θ − θk〉
‖θ − θk‖2

≥ − lim
k→∞

‖∇h̄k(θk)‖2 = 0 , (83)

which is the Asymptotic Stationary Point Condition (ASPC).
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5.2 Proof of Theorem 2

We preface the proof by the following lemma which is of independent interest:

Lemma 1. Let (Vk)k≥0 be a non negative sequence of random variables such that E[V0] <
∞. Let (Xk)k≥0 a non negative sequence of random variables and (Ek)k≥0 be a sequence
of random variables such that

∑∞
k=0 E[|Ek|] <∞. If for any k ≥ 1:

Vk ≤ Vk−1 −Xk + Ek (84)

then:

(i) for all k ≥ 0, E[Vk] <∞ and the sequence (Vk)k≥0 converges a.s. to a finite limit
V∞.

(ii) the sequence (E[Vk])k≥0 converges and lim
k→∞

E[Vk] = E[V∞].

(iii) the series
∑∞

k=0Xk converges almost surely and
∑∞

k=0 E[Xk] <∞.

Remark 2. Note that the result still holds if (Vk)k≥0 is a sequence of random variables
which is bounded from below by a deterministic quantity M ∈ R.

Proof. We first show that for all k ≥ 0, E[Vk] <∞. Note indeed that:

0 ≤ Vk ≤ V0 −
k∑
j=1

Xj +
k∑
j=1

Ej ≤ V0 +
k∑
j=1

Ej , (85)

showing that E[Vk] ≤ E[V0] + E
[∑k

j=1Ej

]
<∞.

Since 0 ≤ Xk ≤ Vk−1 − Vk + Ek we also obtain for all k ≥ 0, E[Xk] <∞. Moreover,

since E
[∑∞

j=1 |Ej |
]
<∞, the series

∑∞
j=1Ej converges a.s. We may therefore define:

Wk = Vk +
∞∑

j=k+1

Ej . (86)

Note that E[|Wk|] ≤ E[Vk] + E
[∑∞

j=k+1 |Ej |
]
<∞. For all k ≥ 1, we get:

Wk ≤ Vk−1 −Xk +
∞∑
j=k

Ej ≤Wk−1 −Xk ≤Wk−1 , (87)

E[Wk] ≤ E[Wk−1]− E[Xk] . (88)

Hence the sequences (Wk)k≥0 and (E[Wk])k≥0 are non increasing. Since for all k ≥ 0,
Wk ≥ −

∑∞
j=1 |Ej | > −∞ and E[Wk] ≥ −

∑∞
j=1 E[|Ej |] > −∞, the (random) sequence
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(Wk)k≥0 converges a.s. to a limit W∞ and the (deterministic) sequence (E[Wk])k≥0

converges to a limit w∞. Since |Wk| ≤ V0 +
∑∞

j=1 |Ej |, the Fatou lemma implies that:

E[lim inf
k→∞

|Wk|] = E[|W∞|] ≤ lim inf
k→∞

E[|Wk|] ≤ E[V0] +
∞∑
j=1

E[|Ej |] <∞ , (89)

showing that the random variable W∞ is integrable.
In the sequel, set Uk , W0 −Wk. By construction we have for all k ≥ 0, Uk ≥ 0,

Uk ≤ Uk+1 and E[Uk] ≤ E[|W0|]+E[|Wk|] <∞ and by the monotone convergence theorem,
we get:

lim
k→∞

E[Uk] = E[ lim
k→∞

Uk] . (90)

Finally, we have:

lim
k→∞

E[Uk] = E[W0]− w∞ and E[ lim
k→∞

Uk] = E[W0]− E[W∞] , (91)

showing that E[W∞] = w∞ and concluding the proof of (ii). Moreover, using (87) we
have that Wk ≤Wk−1 −Xk which yields:

∞∑
j=1

Xj ≤W0 −W∞ <∞ , (92)

∞∑
j=1

E[Xj ] ≤ E[W0]− w∞ <∞ , (93)

which concludes the proof of the lemma.

5.2.1 Proof of (i)

To study the convergence of the MBMCEM algorithm, we consider for all k ≥ 1, the
function ϑ→ B̂i,θk−1(ϑ) defined for all i ∈ Ik and ϑ ∈ Θ by:

B̂i,θk−1(ϑ) , Q̂ki (ϑ, θ
k−1) +Hi(θ

k−1) (94)

= − 1

Mk

Mk−1∑
m=0

log pi(z
k,m
i , ϑ) + li(ϑ) +Hi(θ

k−1) , (95)

where Hi(θ
k−1) is defined by (19). This function is a Monte Carlo approximation of the

surrogate function Bi,θk−1 defined for all ϑ ∈ Θ and i ∈ Ik as:

Bi,θk−1(ϑ) , −
∫
Zi

log pi(zi, ϑ)pi(zi, θ
k−1)µi(dzi) + li(ϑ) +Hi(θ

k−1) (96)

= KL
(
Pi,θk−1

∥∥ Pi,ϑ
)

+ li(ϑ) . (97)
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Under assumption M 2, ϑ→ B̂i,θk−1(ϑ) is continuously differentiable on T (Θ). Let

us define, for θ ∈ Θ, Âk(θ) ,
∑N

i=1 Â
k
i (θ) where Âki (ϑ) are defined recursively as follows:

Âki (ϑ) =

{
B̂i,θk−1(ϑ) if i ∈ Ik
Âk−1
i (ϑ) otherwise

(98)

(94) implies that for k ≥ 1, θk ∈ arg min
ϑ∈Θ

∑N
i=1 Â

k
i (ϑ). Set for all θ ∈ Θ, i ∈ J1, NK and

k ≥ 1:

Aki (θ) , Bi,θτi,k (θ) and Āk(θ) =

N∑
i=1

Aki (θ) , (99)

where τi,k is defined by (10). For any k ≥ 1 and θ ∈ Θ the following decomposition plays
a key role:

Âk(θ) = Âk−1(θ) +
∑
i∈Ik

{B̂i,θk−1(θ)− Âk−1
i (θ)} . (100)

Set the following notations:

Vk , Āk(θk) ,

Xk ,−
∑
i∈Ik

{Bi,θk−1(θk−1)−Ak−1
i (θk−1)} ,

Ek ,
∑
i∈Ik

{B̂i,θk−1(θk−1)−Bi,θk−1(θk−1)}

+
∑
i∈Ik

{Ak−1
i (θk−1)− Âk−1

i (θk−1)}

+ Āk(θk)− Âk(θk) + Âk−1(θk−1)− Āk−1(θk−1) .

Combining (100) with Āk(θk) = Āk(θk)− Âk(θk) + Âk(θk) and Âk(θk) ≤ Âk(θk−1), we
obtain:

Vk ≤ Vk−1 −Xk + Ek , (101)

where Ak−1
i and Āk are defined in (99). We now check the assumptions of Lemma 1.

Note first that the sequence (Vk)k≥0 is bounded from below under assumption M 3. We
now check that Xk ≥ 0 thanks to the following relation:

Xk = −0−
∑
i∈Ik

`i(θ
k−1) +

∑
i∈Ik

KL
(
Pi,θτi,k−1

∥∥ Pi,θk−1

)
+
∑
i∈Ik

`i(θ
k−1) (102)

=
∑
i∈Ik

KL
(
Pi,θτi,k−1

∥∥ Pi,θk−1

)
≥ 0 . (103)
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We finally have to prove the convergence of the series
∑∞

k=0 E[|Ek|]. For this purpose, we
will show that for all i ∈ J1, NK:

∞∑
k=0

E
[
|Âki (θk)−Aki (θk)|

]
<∞ . (104)

We have, using the Tower property of the conditional expectation and the Jensen
inequality:

E
[
|Âki (θk)−Aki (θk)|

]
≤ E

[
Ei,θτi,k

[
sup
ϑ∈Θ
|Âki (ϑ)−Aki (ϑ)|

]]
. (105)

Under assumption M 4 applied with the function ϑ→ Âki (ϑ), for all i ∈ J1, NK we have:

Ei,θτi,k

[
sup
ϑ∈Θ
|Âki (ϑ)−Aki (ϑ)|

]
≤ CiM−1/2

τi,k
, (106)

where Ci is a finite constant defined by (44) and τi,k is defined by (10). Thus, we have
that:

E
[
|Âki (θk)−Aki (θk)|

]
≤ CiE[M−1/2

τi,k
] . (107)

Since, any index i is included in a mini-batch with a probability equal to p
N conditionally

independently from the past, we obtain that:

E[M−1/2
τi,k

] =

k∑
j=1

(
1− p

N

)j−1 p

N
M
−1/2
k−j . (108)

Taking the infinite sum of this term yields:

∞∑
k=1

E[M−1/2
τi,k

] =

∞∑
k=1

k∑
j=1

(
1− p

N

)j−1 p

N
M
−1/2
k−j (109)

=

∞∑
k=1

∞∑
l=0

(
1− p

N

)k−(l+1) p

N
1{l≤k−1}M

−1/2
l (110)

=
p

N

∞∑
l=0

(
1− p

N

)−(l+1)
M
−1/2
l

∞∑
k=l+1

(
1− p

N

)k
(111)

=

∞∑
l=0

M
−1/2
l , (112)

which proves identity (104), using assumption M 5. By summing over the indices
i ∈ J1, NK, (104) implies:

∞∑
k=0

E
[
|Âk(θk)− Āk(θk)|

]
<∞ . (113)
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Hence, we obtain that
∑∞

k=0 |Âk(θk)− Āk(θk)| <∞ almost surely which implies that:

lim
k→∞

Âk(θk)− Āk(θk) = 0 a.s. (114)

Similarly, using assumption M 4 applied for all i ∈ J1, NK, with the function ϑ→ ∇Âki (ϑ)
we obtain:

lim
k→∞

∇Âk(θk)−∇Āk(θk) = 0 a.s. (115)

It follows from (104) and (113) that
∑∞

k=0 E [|Ek|] < ∞ and that the series
∑∞

k=0 εk
converges to an almost surely finite limit. Hence by Lemma 1 and (114) we get:

• the sequence
(
Āk(θk)

)
k≥0

and the series
∑∞

k=0 χk converge a.s.

• the sequence
(
E [Āk(θk)]

)
k≥0

and the series
∑∞

k=0 E [Xk] converge with

lim
k→∞

E [Āk(θk)] = E[ lim
k→∞

Āk(θk)] .

• the sequence
(
Âk(θk)

)
k≥0

converges a.s. and the sequence
(

E [Âk(θk)]
)
k≥0

con-

verges.

Now, we have to prove the almost-sure convergence of the sequence
(
`(θk)

)
k≥0

and the

convergence of
(
E [`(θk)]

)
k≥0

. Using the same argument as in (73) and (75), we have:

E

[ ∞∑
k=1

Xk

]
=

p

N
E

[ ∞∑
k=1

{Āk−1(θk−1)− `(θk−1)}

]
<∞ , (116)

which yields to:

lim
k→∞

E
[
Āk(θk)− `(θk)

]
= 0 , (117)

lim
k→∞

Āk(θk)− `(θk) = 0 a.s. , (118)

showing that the sequence
(
E [`(θk)]

)
k≥0

converges and that
(
`(θk)

)
k≥0

converges a.s.

5.2.2 Proof of (ii)

Consider for any k ≥ 0, the L smooth function h̄k defined by (77). Using (78) and (117)
we get lim

k→∞
‖∇h̄k(θk)‖2 = 0 a.s. Then, the decomposition of 〈∇`(θk), θ − θk〉 for any

θ ∈ Θ yields:

〈∇`(θk), θ − θk〉 = 〈∇Āk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉 (119)

= 〈∇Āk(θk)−∇Âk(θk), θ − θk〉 (120)

+ 〈∇Âk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉 . (121)
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Note that θk is the result of the minimisation of Âk(θ) on the constrained set Θ,
therefore for all θ ∈ Θ, 〈∇Âk(θk), θ−θk〉 ≥ 0. Thus, we obtain, using the Cauchy-Schwarz
inequality:

〈∇`(θk), θ − θk〉 ≥ 〈∇Āk(θk)−∇Âk(θk), θ − θk〉 − 〈∇h̄k(θk), θ − θk〉 (122)

≥ −‖∇Āk(θk)−∇Âk(θk)‖2‖θ − θk‖2 − ‖∇h̄k(θk)‖2‖θ − θk‖2 . (123)

By minimising over Θ and taking the infimum limit, we get, using (115):

lim inf
k→∞

inf
θ∈Θ

〈∇`(θk), θ − θk〉
‖θ − θk‖2

≥ − lim
k→∞

(
‖∇Āk(θk)−∇Âk(θk)‖2 + ‖∇h̄k(θk)‖2

)
= 0 ,

(124)
which is the Asymptotic Stationary Point Condition (ASPC).

6 Conclusion

We have presented in this article, almost-sure convergence guarantees for the mini-batch
variant of the EM algorithm, that were rather assumed than proved prior this work. To
do so, we applied the incremental framework developed in (Mairal, 2015) under some mild
assumptions on the model. We also, extended that framework to stochastic surrogates in
order to prove the convergence of the mini-batch MCEM algorithm.

We believe that this stochastic incremental framework is of independent interest to
analyse a wide class of optimisation algorithms based on the computation of stochastic
surrogate functions. Moreover, non asymptotic rates in the nonconvex and incremental
settings are particularly interesting to highlight the influence of the mini-batch size.
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Csiszár, I. and Tusnády, G. (1984). Information geometry and alternating minimization
procedures. Statist. Decisions, (suppl. 1):205–237. Recent results in estimation theory
and related topics.

Defazio, A., Bach, F. R., and Lacoste-Julien, S. (2014). SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in

27



Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages
1646–1654.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38.

Doukhan, P., Massart, P., and Rio, E. (1995). Invariance principles for absolutely regular
empirical processes. In Annales de l’IHP Probabilités et statistiques, volume 31, pages
393–427. Gauthier-Villars.

Fisher, R. A. (1925). Theory of statistical estimation, volume 22.

Fort, G., Moulines, E., et al. (2003). Convergence of the monte carlo expectation
maximization for curved exponential families. The Annals of Statistics, 31(4):1220–
1259.

Gunawardana, A. and Byrne, W. (2005). Convergence theorems for generalized alternating
minimization procedures. Journal of Machine Learning Research, 6:2049–2073.

Hsiao, T., Khurd, P., Rangarajan, A., and Gindi, G. (2006). An overview of fast
convergent ordered-subsets reconstruction methods for emission tomography based
on the incremental em algorithm. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
569(2):429–433.

Hughes, J. P. (1999). Mixed effects models with censored data with application to hiv
rna levels. Biometrics, 55(2):625–629.

Lavielle, M. (2014). Mixed effects models for the population approach: models, tasks,
methods and tools. CRC press.

Levine, R. A. and Casella, G. (2001). Implementations of the monte carlo em algorithm.
Journal of Computational and Graphical Statistics, 10(3):422–439.

Likas, A. and Galatsanos, N. (2004). A variational approach for Bayesian blind image
deconvolution. IEEE Transactions on signal processing, 52(8):2222–2233.

Louis, T. A. (1982). Finding the observed information matrix when using the em
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages
226–233.

Mairal, J. (2015). Incremental majorization-minimization optimization with application
to large-scale machine learning. SIAM Journal on Optimization, 25(2):829–855.

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed
models. Journal of the American statistical Association, 92(437):162–170.

28



McLachlan, G. J. and Krishnan, T. (2008). The EM algorithm and extensions. Wiley
Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken,
NJ, second edition.

Meyn, S. P. and Tweedie, R. L. (2012). Markov chains and stochastic stability. Springer
Science & Business Media.

Neal, R. and Hinton, G. (1998). A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Jordan, MI, editor, Learning in Graphical Models,
volume 89 of NATO advanced science institutes series, series D, Behavioral and Social
Sciences, pages 355–368, PO BOX 17, 3300 AA Dordrecht, Netherlands. NATO,
Springer. NATO Advanced Study Institute on Learning in Graphical Models, Erice,
Italy, Sep 27-Oct 07, 1996.

Neath, R. C. et al. (2013). On convergence properties of the monte carlo em algorithm.
In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of
Morris L. Eaton, pages 43–62. Institute of Mathematical Statistics.

Nesterov, Y. (2007). Gradient methods for minimizing composite objective function.
CORE Discussion Papers 2007076, Université catholique de Louvain, Center for
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Glossary

directional derivative Consider a function f : Θ → R. For all (θ, θ′) ∈ Θ2, the
following limit is called the directional derivative of f at θ in the direction θ′ − θ:
∇f(θ, θ′ − θ) , lim

t→0
(f(θ + t(θ′ − θ))− f(θ))/t. 1

iterative application Let X be a set and x0 ∈ X a given point. Then an iterative
algorithm A with initial point x0 is a point-to-set mapping A : X → X which
generates a sequence {xn}∞n=1 according to

xn+1 ∈ A(xn) (125)

. 1, 8, 13

smooth A function f : Θ→ R is called L-smooth when it is differentiable and when its
gradient ∇f is L-Lipschitz continuous.. 1, 6, 8
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