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Approximating the Smallest 2-Vertex Connected Spanning

Subgraph of a Directed Graph∗

Loukas Georgiadis1 Giuseppe F. Italiano2 Aikaterini Karanasiou2

Abstract

We consider the problem of approximating the smallest 2-vertex connected spanning subgraph (2VCSS)
of a 2-vertex connected directed graph, and provide new efficient algorithms. We provide two linear-time
algorithms, the first based on a linear-time test for 2-vertex connectivity and divergent spanning trees, and
the second based on low-high orders, that correspondingly give 3- and 2-approximations. Then we show
that these linear-time algorithms can be combined with an algorithm of Cheriyan and Thurimella that
achieves a 3/2-approximation. The combined algorithms preserve the 3/2 approximation guarantee of the
Cheriyan-Thurimella algorithm and improve its running time from O(m2) to O(m

√
n+ n2), for a digraph

with n vertices and m edges. Finally, we present an experimental evaluation of the above algorithms for a
variety of input data. The experimental results show that our linear-time algorithms perform very well in
practice. Furthermore, the experiments show that the combined algorithms not only improve the running
time of the Cheriyan-Thurimella algorithm, but it may also compute a better solution.

1 Introduction

The problem of approximating subgraphs that satisfy certain connectivity requirements has received a lot of
attention (see, e.g., [12], and the survey [27]). In general, computing efficiently small spanning subgraphs that
retain some desirable properties of an input graph is of particular importance when dealing with large-scale
networks (e.g., networks with hundreds of million to billion edges), which arise often in today’s applications.
In this framework, designing practically efficient algorithms is also of the utmost importance. In particular,
one of the biggest challenge is to design fast linear-time algorithms, since algorithms with higher running
times might be practically infeasible on large-scale networks.

Before defining formally our problem, we need some preliminary definitions. Let G = (V,E) be a
strongly connected directed graph (digraph) with m edges and n vertices. A vertex x of G is a strong
articulation point if G \ x is not strongly connected, i.e., the removal of x destroys the strong connectivity
of G. A strongly connected digraph G is 2-vertex-connected if it has at least three vertices and no strong
articulation points. More generally, a strongly connected digraph is k-vertex connected if it has at least
k + 1 vertices and the removal of any set of at most k − 1 vertices leaves the graph strongly connected).
The computation of a smallest (i.e., with minimum number of edges) k-vertex connected spanning subgraph
(kVCSS) of a given k-vertex connected graph is a fundamental problem in network design with many practical
applications [15]. This problem is NP-complete for k ≥ 2 for undirected graphs, and for k ≥ 1 for directed
graphs [14]. Recently, the more general problem of approximating minimum-cost subgraphs that satisfy
certain connectivity requirements has also received a lot of attention. See, e.g., [12], and the survey [27].

Here we consider the problem of approximating the smallest 2VCSS. The current best approximation ratio
for this problem is 3/2, achieved by the algorithm by Cheriyan and Thurimella [7], which runs in O(m2) time.
Our first contribution is to provide two linear-time algorithms that attain 3- and 2-approximate solutions,
based on linear-time tests for 2-vertex-connectivity in digraphs [16, 25]. The 3-approximation algorithm
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Smallest 2-Vertex-Connected Spanning Subgraph via Low-High Orders,” Proc. 16th International Symposium on Experimental
Algorithms, pp. 9:1-9:16, 2017.
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also uses the concept of divergent spanning trees. The 2-approximation algorithm refines this approach by
utilizing low-high orders [20]. We review these definitions in Section 2. Then we show how to combine
these algorithms with the algorithm of Cheriyan and Thurimella in order to obtain a 3/2-approximation in
O(m

√
n+ n2) time.

To assess the practical value, we conducted a thorough experimental evaluation of all the above algorithms
on a variety of input graphs. Our experimental results show that our new algorithms perform very well in
practice. In particular, in our experiments the new 3/2-approximation algorithms kept essentially the same
approximation ratio as the algorithm of Cheriyan and Thurimella, but it was significantly faster.

We observe that recent work [17, 19] considered also slightly more general problems than the one
considered in this paper, such as approximating the smallest strongly connected spanning subgraph that
maintains 2-connectivity relations of a strongly connected digraph G (where G is not necessarily 2-vertex-
connected). Some of the results in this paper extend directly to this setting as well. For instance, our
new linear-time 2-approximation algorithm for 2VCSS immediately implies a linear-time 2-approximation
algorithm for computing the smallest strongly connected spanning subgraph of G that maintains the maximal
2-vertex-connected subgraphs of G.

2 Preliminaries

In this section, we review some basic notions and results that we use in our algorithms. A flow graph
G = (V,E, s) is a directed graph (digraph) with a distinguished start vertex s ∈ V such that all vertices are
reachable from s. The dominator relation in G is defined as follows. A vertex v is a dominator of a vertex w
(v dominates w) if every path from s to w contains v; v is a proper dominator of w if v dominates w and
v 6= w. The dominator relation in G can be represented by a tree rooted at s, the dominator tree D, such
that v dominates w if and only if v is an ancestor of w in D. The dominator tree is a central tool in program
optimization and code generation [8], and it has applications in other diverse areas [22]. The dominator tree
of a flow graph can be computed in linear time [2, 5].

We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively. If G is a digraph,
then we denote by Er(G) the edges of G with their orientation reversed. We also let Gr be the digraph with
V (Gr) = V (G) and E(Gr) = Er(G).

Given a rooted tree T , we denote by T (v) the subtree of T rooted at v (we also view T (v) as the set of
descendants of v). Let T be a tree rooted at s with vertex set V , and let t(v) denote the parent of a vertex
v ∈ V in T . If v is an ancestor of w, T [v, w] is the path in T from v to w. In particular, D[s, v] consists of the
vertices that dominate v. If v is a proper ancestor of w, T (v, w] is the path to w from the child of v that is
an ancestor of w. Tree T is flat if its root is the parent of every other vertex. A preorder of T is a total order
of the vertices of T such that, for every vertex v, the descendants of v are ordered consecutively, with v first.

Testing 2-vertex-connectivity. Consider the flow graph G = (V,E, s) of a strongly connected graph,
where s is an arbitrarily selected start vertex. From [25] we have that a vertex x 6= s is a strong articulation
point of G if and only if x is not a leaf in the dominator tree of G or in the dominator tree of Gr. Hence, if
G is 2-vertex-connected, both these dominator trees are flat. Moreover, G \ s must be strongly connected.

Property 2.1. Let G be a strongly connected digraph, and let s be any vertex of G. G is 2-vertex-connected
if and only if the flow graphs G and Gr with start vertex s have flat dominator tree, and G \ s is strongly
connected.

Low-high orders. A low-high order δ of G [20] is a preorder of the dominator tree D such for all vertices
v 6= s, (d(v), v) ∈ E or there are two edges (u, v) ∈ E, (w, v) ∈ E such that u is less than v (u <δ v), v is less
than w (v <δ w), and w is not a descendant of v in D. See Figure 1. Every flow graph G has a low-high
order, computable in linear-time [20]. Low-high orders provide a correctness certificate for dominator trees
that is straightforward to verify [34], and also have applications in path-determination problems [20, 33] and
in fault-tolerant network design [3, 4, 21].

Fix a low-high order δ of G and let E′ ⊆ E be a subset of edges. We say that E′ satisfies δ if for any
vertex v 6= s we have (d(v), v) ∈ E′ or there are two edges (u, v) ∈ E′, (w, v) ∈ E′ such that u <δ v and
v <δ w, and w is not a descendant of v in D(s).
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Figure 1: A flow graph G, its dominator tree D, and two divergent spanning trees B and R. The numbers
correspond to a preorder numbering of D that is a low-high order of G.

Property 2.2. Let δ be a low-high order of flow graph G = (V,E) with start vertex s and let E′ ⊆ E be a
subset of edges that satisfies δ. Then, the flow graph G′ = (V,E′) has the same dominator tree as G.

Divergent spanning trees. A notion closely related to low-high orders is that of divergent spanning
trees [20]. A spanning tree T of a flow graph G is a tree with root s that contains a path from s to v for all
vertices v. Two spanning trees B and R of G, rooted at s, are divergent if for all v, the paths from s to v in
B and R share only the dominators of v. Every flow graph has a pair of strongly divergent spanning trees.
Given a low-high order of G, it is straightforward to compute two strongly divergent spanning trees of G in
O(m) time [20].

Matchings. For an undirected graph G and a subset of edges M ⊆ E(G), we let degM (v) denote the degree
of vertex v in M , i.e., the number of edges in M adjacent to v. The subset M is a matching if for all vertices
v, degM (v) ≤ 1. A vertex v is free (with respect to M) if degM (v) = 0. If for all vertices v, degM (v) ≥ k,
then we call M a (≥ k)-matching. Given a function b : V 7→ Z the b-matching problem is to compute a
maximum-size subgraph G′ = (V,E(G′)) of G such that degE(G′)(v) ≤ b(v) for all v. This problem is also
referred to as the degree-constrained subgraph problem [13]. For a directed graph G and a subset of edges
M ⊆ E(G), we let deg−M (v) denote the in-degree of vertex v in M , i.e., the number of edges in M entering v,
and let deg+

M (v) denote the out-degree of vertex v in M , i.e., the number of edges in M leaving v. If for all
vertices v, deg+

M (v) ≥ k and deg−M (v) ≥ k, then we call M a (≥ k)-matching.

3



3 The Cheriyan-Thurimella Algorithm

In this section we review the algorithm of Cheriyan and Thurimella [7] that gives a 3/2-approximation of the
smallest 2VCSS. This algorithm is actually more general, as it computes a (1 + 1/k)-approximation of the
smallest kVCSS. First, we mention a straightforward algorithm to compute a minimal kVCSS, based on edge
filtering.

Let H be a kVCSS of a k-vertex-connected digraph G. We say that H is minimal if H \ e is not k-vertex-
connected for any edge e. Results of Edmonds [11] and Mader [30] imply that every minimal kVCSS has
at most 2kn edges [7]. This fact implies that the following simple heuristic, that we refer to as MINIMAL,
guarantees a 2-approximation of the smallest kVCSS. The algorithm processes the edges of G in an arbitrary
order, and while doing so maintains a current subgraph H = (V,EH) of G. Initially EH ← E. When an edge
(x, y) it is processed, MINIMAL tests if H contains at least k + 1 vertex-disjoint paths from x to y (including
the edge (x, y)). If this is the case then the algorithm sets EH ← EH \ (x, y). At the end of this procedure
H is a minimal kVCSS of G. Testing if a digraph G has k + 1 vertex-disjoint paths from x to y can be
carried out efficiently, for constant k, by computing k + 1 edge-disjoint paths in an auxiliary graph Ĝ using a
flow-augmenting algorithm [1]. The vertex set V (Ĝ) contains a pair of vertices v− and v+ for each vertex

v ∈ V (G). The edge set E(Ĝ) contains the edge (v−, v+) corresponding to all v ∈ V (G). Also, for each edge

(v, w) in E(G), E(Ĝ) contains the edge (v+, w−). A single flow-augmentation step in Ĝ takes O(m) time,
therefore the k + 1 edge-disjoint paths from x to y paths are constructed in O(km), and the overall running
time of the algorithm is O(km2).

Cheriyan and Thurimella [7] proposed an elegant algorithm that achieves an (1 + 1/k)-approximation of
the smallest kVCSS. The algorithm consists of the following two phases:

Phase 1 (matching). Given the input digraph G = (V,E), this phase computes a minimum (≥ k − 1)-
matching M of G. This is transformed to a b-matching problem on a bipartite graph B associated with G.
The bipartite graph is constructed as follows. For each vertex v ∈ V there is a pair of vertices v− and v+

in V (B). For each edge (v, w) in E(G) there is an edge {v+, w−} in E(B). The problem of computing M
in G is equivalent to computing a minimum (≥ k − 1)-matching MB in B. This, in turn, is equivalent to
computing a maximum b-matching M ′B in B, where b(v) = degE(B)(v)− (k − 1), since MB = E(B) \M ′B . A

b-matching problem on a graph with n vertices and m edges can be solved in O(
√
mα(m,m) logm m logm)

time [13].

Phase 2 (filtering). The second phase runs the MINIMAL algorithm but only for the arcs in E \M . More
specifically, the algorithm maintains a current graph H(V,EH). Initially we set EH ← E, and at the end of
this phase EH = M ∪ F , where F ⊆ E \M is a minimal subset of edges such that H is k-vertex connected.
Hence, phase 2 takes O(k|E|2) time, which is also the asymptotic running time of the whole algorithm.

3.1 Simplification for k = 2.

Although the Cheriyan-Thurimella algorithm is conceptually simple (but its analysis is intricate), it is
challenging to provide an efficient implementation, especially for phase 1. Fortunately, in the case k = 2 we
can implement phase 1 as follows. First we compute a maximum matching M in B. Then we augment this
matching to a set M2 by adding an edge incident to each free vertex. Next we show that M2 is indeed a
minimum (≥ 1)-matching in B. (This fact is mentioned in [7], but for completeness we give a proof.)

Lemma 3.1. M2 is a minimum (≥ 1)-matching in B.

Proof. Clearly, M2 is a (≥ 1)-matching in B, so it remains to show that it is minimum. Let M ′ be a minimum
(≥ 1)-matching in B. Let X = {x ∈ V (B) | degM ′(x) > 1}. If X = ∅ then degM ′(x) = 1 for all x ∈ V (B).
In this case M ′ is a perfect matching, hence |M ′| = |M2|.

Consider now X 6= ∅. Let x be any vertex in X. Then, for any edge {x, y} in M ′, degM ′(y) = 1.
Otherwise, M ′ − {x, y} is a (≥ 1)-matching in B which contradicts the fact that M ′ is minimum. Therefore,
there is no edge {x, y} ∈ M ′ such that both x and y are in X. Let N be a subset of M ′ that is left after
removing degM ′(x)− 1 edges for each x ∈ X. Suppose that ` edges are removed from M ′ to form N . Then
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Algorithm 1: DST(G)

Input: 2-vertex-connected digraph G = (V,E)
Output: 3-approximation of a smallest 2-vertex-connected spanning subgraph H = (V,EH) of G

1 Set EH ← ∅.
2 Choose an arbitrary vertex s of G.
3 Compute two divergent spanning trees B and R of flow graph G with start vertex s.
4 Compute two divergent spanning trees B′ and R′ of flow graph Gr with start vertex s.
5 Compute a strongly connected spanning subgraph H = (V \ s, EH) of G \ s.
6 Set EH ← EH ∪ E(B) ∪ E(R) ∪ Er(B′) ∪ Er(R′).
7 return H = (V,EH)

|N | = |M ′| − ` and B has ` free vertices with respect to N . We show that N is a maximum matching in B.
Suppose, for contradiction, that it is not. Let M be a maximum matching. Then, for some `′ ≥ 1 we have
|M | = |N |+ `′ = |M ′|+ (`′ − `). Next note that there are `− 2`′ free vertices with respect to M . Therefore
|M2| ≤ |M | + (` − 2`′) = |M ′| + `′ − ` + ` − 2`′ = |M ′| − `′ < |M ′|, a contradiction. So |M | = |N | which
implies |M2| = |M ′|.

We refer to the above version of the Cheriyan-Thurimella algorithm, for k = 2, as CT.

Implementation details. For the first phase of CT we used an implementation of the push-relabel
maximum-flow algorithm of Goldberg and Tarjan [23] from [9]. This implementation does not use a dynamic
tree data structure [31], which means that the worst-case bound for the first phase of these algorithms is
O(n3). However, as we confirmed experimentally, the push-relabel algorithm runs very fast in practice.

4 Linear Approximation Algorithms

In this section we present our linear-time algorithms that compute an approximate smallest 2VCSS of a
2-vertex-connected digraph G.

4.1 Linear-time 3-approximation

Our first algorithm, referred to as DST, applies Property 2.1 and a linear-time construction of divergent
spanning trees [20]. (See Algorithm 1.)

Theorem 4.1. Algorithm DST computes a 3-approximation of the smallest 2VCSS in linear time.

Proof. Let H be the subgraph computed by DST. By construction, H and Hr have flat dominator trees,
and H \ s is strongly connected. Thus, H is 2-vertex-connected by Property 2.1. Now we establish that
DST runs in linear time. For the computation of the divergent spanning trees in lines 3 and 4 we can use
a linear-time algorithm from [20]. In line 5 we can compute an approximate smallest strongly connected
spanning subgraph of G \ s [26]. For this, we can use the linear-time algorithm of Zhao et al. [35], which
selects at most 2(n− 1) edges.

Finally, we show that the algorithm selects at most 6n edges in total. Then, the approximation ratio of 3
follows from the fact that any 2VCSS of G must contain at least 2n edges. Since H is formed by 4 spanning
trees on n vertices and at most 2(n− 1) additional edges (to guarantee that G \ s is strongly connected), we
have |E(H)| ≤ 4(n− 1) + 2(n− 2) < 6n.

Practical implementation. In line 3 (and similarly in line 4), we do not actually need to compute two
divergent spanning trees of G, as it suffices to find the edges that are contained in two such spanning trees.
This turns out to be a simpler task that we can accomplish with the help of semi-dominators, introduced by
Lengauer and Tarjan [28] in their fast algorithm for computing dominators in flow graphs. Let T be a depth-
first search tree of G, rooted at s. We denote by t(v) the parent of any vertex v 6= s in T . We assign to each
vertex a preorder number with respect to T and identify the vertices by their preorder numbers. Then, u < v
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Algorithm 2: LH(G)

Input: 2-vertex-connected digraph G = (V,E)
Output: 2-approximation of a smallest 2-vertex-connected spanning subgraph H = (V,EH) of G

1 Choose an arbitrary vertex s of G as start vertex.
2 Compute a strongly connected spanning subgraph H = (V \ s, EH) of G \ s.
3 Set H ← (V,EH).
4 Compute a low-high order δ of flow graph G with start vertex s.
5 foreach vertex v 6= s do
6 if there are two edges (u, v) and (w, v) in EH such that u <δ v and v <δ w then
7 do nothing
8 end
9 else if there is no edge (u, v) ∈ EH such that u <δ v then

10 find an edge e = (u, v) ∈ E with u <δ v
11 set EH ← EH ∪ {e}
12 end
13 else if there is no edge (w, v) ∈ EH such that v <δ w then
14 find an edge e = (w, v) ∈ E with v <δ w or w = s
15 set EH ← EH ∪ {e}
16 end

17 end
18 Execute the analogous steps of lines 4–17 for the reverse flow graph Gr with start vertex s.
19 return H = (V,EH)

means that u was visited before v during the depth-first search. A path P = (u = v0, v1, . . . , vk−1, vk = v) is
a semi-dominator path if v < vi for 1 ≤ i ≤ k − 1. The semi-dominator of vertex v, denoted by sdom(v), is
defined as the minimum vertex u such that there is a semi-dominator path from u to v. From the properties
of depth-first search it follows that, for every v 6= s, sdom(v) is a proper ancestor of v in T [28]. For any
vertex v 6= s, we define p(v) to be the last vertex before v in a semi-dominator path from sdom(v) to v. Such
vertices can be found easily during the computation of semi-dominators. Therefore, by [5], we can compute
p(v) for all v 6= s in linear time. If follows that the spanning subgraph of G consisting of the edges (t(v), v)
and (p(v), v), for all v 6= s, has the same dominator tree as G and thus contains two divergent spanning trees
of G.

In our implementation we also incorporate the following optimization, in order to reduce the number of
edges of the computed 2VCSS. Let G′ be the subgraph of G that is induced by the edges in E(B) ∪E(R) ∪
Er(Br) ∪ Er(Rr). Before we execute line 5, we use Property 2.1 to test if G′ is already 2-vertex-connected.
If this is the case, then we omit line 5 and return H = G′. Also, note that if G′ is 2-vertex-connected, then
we compute a 2-approximation of the smallest 2VCSS.

4.2 Linear-time 2-approximation

Here we present a more sophisticated algorithm that refines our previous approach. Our new algorithm,
which we call LH, exploits the properties of low-high orders as follows. (See Algorithm 2.) We first choose
arbitrarily a vertex s in G and start with an approximate smallest strongly connected spanning subgraph
H of G \ s, which can be computed with the algorithm of Zhao et al. [35] (lines 1–3). We then compute a
low-high order of the flow graph G with start vertex s (line 4); next, we add edges to H so as to ensure
that the edge set of H satisfies δ, that is, δ is also a low-high order for all vertices v 6= s in H (lines 5–17).
This step is repeated also for the reverse flow graph Gr, with the same start vertex s (line 18). We start by
proving that the spanning subgraph computed by LH is 2-vertex-connected.

Lemma 4.2. Algorithm LH computes a 2VCSS of G.

Proof. We need to show that the computed subgraph H satisfies Property 2.1. By line 2 we have that H \ s
is strongly connected, so it remains to show that H has flat dominator tree. The same argument applies
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for Hr, thus completing the proof. Let δ be the low-high order δ of G, computed in line 3. We argue that
after the execution of the for loop in lines 5–17, δ is also a low-high order for all vertices in H. Consider
an arbitrary vertex v 6= s. Let (x, v) be an edge entering v in the strongly connected spanning subgraph
of G computed in line 2. If x >δ v, then, by the definition of δ, there is at least one edge (y, v) ∈ E such
that y <δ v. Hence, after the execution of the for loop for v, the edge set EH will contain at least two edges
(u, v) and (w, v) such that u <δ v <δ w. On the other hand, if x <δ v, then the definition of δ implies that
there an edge (y, v) ∈ E such that y >δ v or y = s. Notice that in either case y 6= x. So, again, after the
execution of the for loop for v, the edge set EH will contain at least two edges (u, v) and (w, v) such that
either u <δ v <δ w, or u <δ v and w = s. It follows that δ is a low-high order for all vertices v 6= s in H. By
[20], this means that H contains two divergent spanning trees B and R of G. Since G has flat dominator tree,
we have that B[s, v]∩R[s, v] = {s, v} for all v ∈ V \ s. Hence, since H contains B and R, the dominator tree
of H is flat.

We remark that the construction of H in algorithm LH guarantees that s will have in-degree and out-degree
at least 2 in H. (This fact is implicit in the proof of Lemma 4.2.) Indeed, H will contain the edges from s to
the vertices in V \ s with minimum and maximum order with respect to a low-high order of G, and the edges
entering s from the vertices in V \ s with minimum and maximum order with respect to a low-high order of
Gr.

Theorem 4.3. Algorithm LH computes a 2-approximation of the smallest 2VCSS in linear time.

Proof. We establish the approximation ratio of LH by showing that |EH | ≤ 4n. The approximation ratio of 2
follows from the fact that any vertex in a 2-vertex-connected digraph must have in-degree at least two. As in
algorithm DST, in line 2 we can compute an approximate smallest strongly connected spanning subgraph
of G \ s by using the linear-time algorithm of Zhao et al. [35], which selects at most 2(n− 1) edges. Now
consider the edges selected in the for loop of lines 5–17. Since after line 2 graph H \ s is strongly connected,
each vertex v ∈ V \ s has at least one entering edge (x, v). If x <δ v then lines 10–11 will not be executed;
otherwise, v <δ x and lines 14–15 will not be executed. Thus, the for loop of lines 5–17 adds at most one edge
entering each vertex v 6= s. The same argument implies that the analogous steps executed for Gr add at most
one edge leaving each vertex v 6= s. Hence, EH contains at most 4(n− 1) at the end of the execution.

5 Hybrid Approximation Algorithms

In this section we consider how to combine our two linear algorithms of Section 4 with the algorithm of
Cheriyan and Thurimella, so that we both maintain the 3/2 approximation guarantee of the latter and
decrease its running time.

First, we observe that we can immediately combine DST (or LH) with MINIMAL, as follows. We begin
by computing a sparse 2VCSS of G, with O(n) edges, by setting H ← DST(G). Then we return the 2VCSS
computed by MINIMAL(H). Since we still compute a minimal 2VCSS, we get a 2-approximation algorithm,
with its running time improved from O(m2) to O(n2). Note that the above idea does not work for CT, since
DST (or LH) may filter out the wrong edges, i.e., the edges of a minimum (≥ 1)-matching, and therefore, the
final 2VCSS may not give a 3/2-approximation. To fix this problem we propose the following combination of
DST and CT, referred to as DST-CT, which runs DST between the two phases of CT.

5.1 Algorithm DST-CT

Following the computation of a minimum (≥ 1)-matching M , we run DST with the initial digraph G as input.
This returns a 2VCSS G′ of G. The input to the second phase of CT is the subgraph of G induced by the set
of edges E(G′) ∪M . See Algorithm 3.

Theorem 5.1. Algorithm DST-CT computes a 3/2-approximation of the smallest 2VCSS in O(m
√
n+ n2)

time.

Proof. We prove the 3/2 approximation ratio of DST-CT by showing that a specific execution of CT produces
the same output subgraph. Let H = (V,EH) be the current subgraph of DST-CT computed in line 3, just
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Algorithm 3: DST-CT(G)

Input: 2-vertex-connected digraph G = (V,E)
Output: 3/2-approximation of a smallest 2-vertex-connected spanning subgraph H = (V,EH) of G

1 Compute a minimum (≥ 1)-matching M of G.
2 Compute H ← DST(G).
3 Set EH ← EH ∪M .
4 foreach edge (x, y) of EH \M do
5 if there are two vertex-disjoint paths from x to y in H \ (x, y) then
6 Set EH ← EH \ (x, y).
7 end

8 end
9 return H = (V,EH)

before the execution of the filtering phase. After computing a minimum (≥ 1)-matching M of the input
digraph G, the Cheriyan-Thurimella algorithm can process the edges in E(G) \M in an arbitrary order. That
is, the approximation guarantee of CT does not depend on the order that edges are processed during the
filtering phase. Hence, we can assume that CT processes the edges in E′ = E(G) \ E(H) first. Notice that
for each edge (x, y) ∈ E′, H contains two vertex-disjoint paths from x to y. Thus, all the edges in E′ will
be removed from the current 2VCSS that is maintained during the second phase, so these edges will not be
included in the subgraph computed by CT. So, if we fix the order in which the edges in E(G) are processed,
the filtering phase in both CT and DST-CT will remove exactly the same redundant edges. Therefore, the
approximation guarantee of the Cheriyan-Thurimella algorithm is preserved.

Regarding the running time of DST-CT, by Lemma 3.1 we have that a minimum (≥ 1)-matching in line 1
can be computed in O(m

√
n) time using the Hopcroft-Karp maximum bipartite matching algorithm [24].

Also, by Section 4, the computation of H in line 2 takes linear time. Then, we are left with a 2VCSS with
O(n) edges, so the filtering phase of the algorithm runs in O(n2) time.

We can apply the same idea in order to combine LH with CT. Here, however, we can also take advantage
of the fact that the edges in the (≥ 1)-matching of G can be used when we add edges to our subgraph H
until it satisfies a given low-high order of G.

5.2 Algorithm LH-CT

Let G = (V,E) be the input 2-vertex-connected digraph. Algorithm LH-CT (whose pseudocode is given in
Algorithm 4) works as follows. First, it computes a minimum (≥ 1)-matching M as in CT. Let s be an
arbitrary start vertex, and let G′ be the subgraph of G \ s that contains only the edges in M . We compute
the strongly connected components C1, . . . , Ck in G′, and form a contracted version Ğ of G \ s as follows.
For each strongly connected component Ci of G′, we contract all vertices in Ci into a representative vertex
ui ∈ Ci. Then, we execute the linear-time algorithm of Zhao et al. [35] to compute a strongly connected
spanning subgraph of Ğ, and store the original edges of G that correspond to the selected edges by the Zhao
et al. algorithm. Let Z be this set of edges. Next, we compute a low-high order of G with root s, and use it
in order to compute a 2VCSS H of G using as many edges from Z and M as possible, as in LH. Finally, we
run the filtering phase of CT for the edges in H.

Theorem 5.2. Algorithm LH-CT computes a 3/2-approximation of the smallest 2VCSS in O(m
√
n + n2)

time.

Proof. First, we note that the spanning subgraph computed by algorithm LH-CT is 2-vertex-connected since
it satisfies Property 2.2. Indeed, let H ′ be the graph computed in lines 1–22. Then H ′ is 2-vertex-connected,
since it contains a strongly connected spanning subgraph of G \ s, and a set of edges that satisfies a low-high
order of G and Gr. Also, the filtering phase preserves the 2-vertex-connectivity of H.

Next, we establish the 3/2 approximation ratio of LH-CT by showing that a specific execution of CT
produces the same output subgraph. We apply the analogous arguments as in the proof of Theorem 5.1. Let
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Algorithm 4: LH-CT(G)

Input: 2-vertex-connected digraph G = (V,E)
Output: 3/2-approximation of a smallest 2-vertex-connected spanning subgraph H = (V,EH) of G

1 Compute a minimum (≥ 1)-matching M of G.
2 Choose an arbitrary vertex s of G as start vertex.
3 Let H be the subgraph of G \ s, for arbitrary start vertex s, that contains only the edges in M .
4 Compute the strongly connected components C1, . . . , Ck in H.
5 Form a contracted version G′ of G as follows. For each strongly connected component Ci of H, we

contract all vertices in Ci into a representative vertex ui ∈ Ci.
6 Compute a strongly connected spanning subgraph H ′ of G′. Let Z be the original edges of G that

correspond to the edges of G′ selected in H ′.
7 Set H ← (V,EH = M ∪ Z).
8 Compute a low-high order δ of flow graph G with start vertex s.
9 foreach vertex v 6= s do

10 if there are two edges (u, v) and (w, v) in EH such that u <δ v and v <δ w then
11 do nothing
12 end
13 else if there is no edge (u, v) ∈ EH such that u <δ v then
14 find an edge e = (u, v) ∈ E with u <δ v
15 set EH ← EH ∪ {e}
16 end
17 else if there is no edge (w, v) ∈ EH such that v <δ w then
18 find an edge e = (w, v) ∈ E with v <δ w or w = s
19 set EH ← EH ∪ {e}
20 end

21 end
22 Execute the analogous steps of lines 4–17 for the reverse flow graph Gr with start vertex s.
23 foreach edge (x, y) of EH \M do
24 if there are two vertex-disjoint paths from x to y in H \ (x, y) then
25 Set EH ← EH \ (x, y).
26 end

27 end
28 return H = (V,EH)

S be the set of edges of H ′ (i.e., the edges of H just after the execution of lines 1–22). We can assume that
CT processes the edges of E′ = E \S first. Since H ′ is a 2VCSS of G, for each (x, y) ∈ E \S, H ′ contains two
vertex-disjoint paths from x to y. Hence, every edge in E′ will not be included in the subgraph computed by
CT. So, if we fix the order in which the edges in S are processed, the filtering phase in both CT and LH-CT
will remove exactly the same redundant edges.

Finally, we consider the running time of LH-CT. Line 1 takes O(m
√
n ) time [24], and lines 2–5 take

O(m) time [32]. In line 6, we can compute a SCSS of Ğ in O(m) time [35], and in line 8 we can compute a
low-high order of G in O(m) time [20]. Finally, the loops in lines 9–2 and 23–27 take O(m) and O(n2) time,
respectively.

9



Dataset #nodes (n) #edges (m) File size Type
Rome99 3353 8859 100KB road network
P2p-Gnutella25 5153 17695 203KB peer2peer
P2p-Gnutella31 14149 50916 621KB peer2peer
Web-NotreDame 53968 296228 3,9MB web graph
Soc-Epinions1 32223 443506 5,3MB social network
USA-road-BAY 321270 800172 12MB road network
Amazon301 241761 1131217 16MB prod. co-purchase
WikiTalk 111881 1477893 18MB social network
Web-Stanford 150532 1576314 22MB web graph
Amazon601 395234 3301092 49MB prod. co-purchase
Web-Google 434818 3419124 50MB web graph

Table 1: Real-world graphs used in the experiments. From each original graph, we extracted its Largest
Strongly Connected Component. The number of vertices n and of edges m refer to each such graph. The
graphs are sorted by file size of their Largest SCC.

6 Empirical Analysis

Here we report the results of the experiments that we conducted. We implemented all our algorithms in
C++ without the use of any external graph library. We compiled our codes with g++ v.4.8.4 with full
optimization (flag -O3). The experiments were conducted on a 64-bit GNU/Linux machine running Ubuntu
14.04LTS, with an 3696MHz Intel i74790 octa-core processor, 20GB of RAM, 16MB of L3 cache, and each core
has a 2MB private L2 cache. All experiments were executed on a single core without using any parallelization.
We report CPU times measured with the getrusage function, averaged over ten different runs.

For our experimental study, we used a collection of real-world graphs, shown in Table 6, from [29] and [10],
from which we constructed 2-vertex-connected graphs as follows. We extracted the largest strongly connected
component (SCC) from each real-world graph, and computed its largest maximal 2-vertex-connected subgraph
(Max2VCS) with the algorithm of Chechik et al. [6], using the implementation of [18]. We also constructed
a second type of instances, where we make the largest SCC of each real-world graph 2-vertex-connected
by adding a bidirectional Hamiltonian cycle as follows. We take a random permutation of the vertices of
the input digraph, say v0, v1, . . . , vn1, and adding the edges (vi, vi+1) and (vi+1, vi), where the addition is
computed mod n. Note that a bidirectional Hamiltonian cycle is by itself a minimum 2VCSS with exactly
2n edges, so in this case it is easy to assess how close to optimal are the computed 2VCSS.

The characteristics of the graphs that have been created are summarized in Table 2 and we refer to them
with the -suffix : the first type of instances are indicated as Max2VCS, while the second type are indicated as
Hamilton. We measure the quality of the produced solution H = (V,EH) of each algorithm by calculating the

relative distance from the naive theoretical lower bound 2|V |, i.e., |EH |−2|V |
2|V | × 100%. We refer to this relative

distance as the quality ratio . In our experimental study, we evaluate the performance of six algorithms,
outlined in Table 3. Next, we report the experimental results for each type of instances.
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Graph
Largest SCC

Suffix

Max2VCS Hamilton

n m n m n m

Rome99 - suffix 3353 8859 2249.0 6467 3353 15559

P2p-Gnutella25 - suffix 5153 17695 - - 5153 27992

P2p-Gnutella31 - suffix 14149 50916 - - 14149 79205

Web-NotreDame - suffix 53968 296228 1462 7279 53968 404154

Soc-Epinions - suffix 32223 443506 17117 395183 32223 507924

USA-road-BAY - suffix 321270 800172 211590 568546 321270 1437366

Amazon301 - suffix 241761 1131217 55414 241663 241761 1614733

WikiTalk - suffix 111881 1477893 49430 1254898 111881 170163

Web-Stanford - suffix 150532 1576314 10893 162295 150532 1877356

Amazon601 - suffix 395234 3301092 276049 2461072 395234 4091547

Web-Google - suffix 434818 3419124 77480 840829 434818 4288743

Table 2: Real-world graphs used in the experiments. From each original graph, we extracted its largest
strongly connected component and the maximal 2-vertex-connected subgraph in that component. The number
of vertices n and of edges m refer to each such subgraph.

Algorithm Complexity Approximation Technique Reference

DST O(n) 3 Divergent Spanning Trees This paper

LH O(n) 2 Low-High Orders This paper

MINIMAL O(n2) 2 2 Vertex-Disjoint Paths [7]

CT O(m
√
n + m2) 3/2

Matchings,

2 Vertex-Disjoint Paths
[7]

DST-CT O(m
√
n + n2) 3/2

Divergent Spanning Trees,

Matchings,

2 Vertex-Disjoint Paths

This paper

LH-CT O(m
√
n + n2) 3/2

Low High Orders,

Matchings,

2 Vertex-Disjoint Paths

This paper

Table 3: An overview of the algorithms considered in our experimental study. The bounds refer to a digraph
with n vertices and m edges.
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Graph
Quality Ratio %

DST LH CT MINIMAL DST-CT LH-CT

Rome99-Max2VCS 26.99 19.63 6.51 6.76 7.69 7.83

Web-NotreDame-Max2VCS 44.22 36.08 5.68 12.14 6.81 17.75

Web-Stanford-Max2VCS 73.31 49.38 36.06 47.06 28.60 31.10

Amazon301-Max2VCS 39.05 25.32 11.19 14.68 10.06 10.83

Soc-Epinions-Max2VCS 75.66 49.78 20.00 26.85 20.03 22.35

USA-BAY-Max2VCS 21.12 15.77 7.99 6.94 8.44 8.68

Web-Google-Max2VCS 67.76 45.18 31.16 44.48 24.02 26.54

WikiTalk-Max2VCS 79.27 58.19 37.34 45.36 37.88 40.84

Amazon601-Max2VCS 55.84 32.83 15.22 29.80 9.13 11.27

Table 4: Solution qualities for the Max2VCS instances.

Graph
Running Time

DST LH CT MINIMAL DST-CT LH-CT

Rome99-Max2VCS 0.004 0.004 0.064 0.072 0.068 0.048

Web-NotreDame-Max2VCS 0.004 0.004 0.064 0.144 0.052 0.028

Web-Stanford-Max2VCS 0.008 0.012 6.728 8.056 3.760 2.604

Amazon301-Max2VCS 0.036 0.048 99.516 156.232 81.360 59.400

Soc-Epinions-Max2VCS 0.028 0.036 50.968 59.484 20.080 11.544

USA-BAY-Max2VCS 0.120 0.128 614.512 744.040 822.536 661.288

Web-Google-Max2VCS 0.064 0.084 267.212 373.800 154.148 98.952

WikiTalk-Max2VCS 0.104 0.124 555.708 745.788 169.124 88.448

Amazon601-Max2VCS 0.496 0.576 6347.912 20214.252 4498.232 3862.028

Table 5: Running times in seconds for the Max2VCS instances.

Max2VCS instances. In this category we compute for every graph of Table 6 its largest 2-vertex-connected
subgraph. ( Characteristics of the input graphs are summarized in Table 2.)

The running times and quality measures for LH and DST are plotted in Figure 2. Figure 3 shows the
corresponding plots for CT, MINIMAL DST-CT and LH-CT. (See also Tables 4 and 5.) It is easy to observe that
the algorithms belong to two distinct classes, with DST and LH being faster than the rest by approximately
four to five orders of magnitude. One the other hand, on average they produce a 2VCSS with about 10-50%
more edges.

Since for large scale graphs it is important to be able to compute a good solution very fast, it is interesting
to compare the performance of the linear-time algorithms DST and LH (Figure 2). We observe that in all test
instances LH was able to compute a 2VCSS with 6-25% fewer edges, which was expected due to its improved
theoretical guarantee, at the price of a small overhead in the running time.

In our next experiment (Figure 3), we compare algorithms DST-CT and LH-CT which produce the best
solutions overall. Observe that LH-CT is always faster, mainly due to the fact that it has to process fewer
edges during the filtering phase. DST-CT on the other hand, produced better solutions in all of the test
graphs, but the difference is marginal (at most 3.9% fewer edges)

Finally, we consider the performance of CT and MINIMAL. Notice that although MINIMAL, rather
surprisingly, computes a better solution in one instance, its performance is rather unstable. Compared to
MINIMAL, CT is much more robust and computed solutions of higher quality in all but one instance. Overall,
DST-CT and CT achieved the highest solution quality, but the former is significantly faster than the latter.
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Graph
Solution Quality %

DST LH CT MINIMAL DST-CT LH-CT

Rome99-Hamilton 38.47 25.16 6.35 25.16 7.23 7.90

P2p-Gnutella25-Hamilton 42.23 27.08 9.83 27.08 8.61 9.68

P2p-Gnutella31-Hamilton 42.02 27.15 8.23 27.15 8.86 9.35

WikiTalk-Hamilton 41.76 32.37 6.44 32.37 8.50 12.44

Web-NotreDame-Hamilton 45.86 31.57 7.11 31.57 11.50 11.99

Soc-Epinions-Hamilton 48.26 31.85 9.06 31.85 9.70 11.30

USA-BAY-flat-Hamilton 38.22 25.48 6.15 25.48 7.40 8.14

Amazon301-Hamilton 44.58 27.67 8.03 27.67 8.80 9.50

Web-Standford-Hamilton 50.53 32.73 21.55 32.73 12.95 12.96

Amazon601-Hamilton 49.46 29.44 9.65 29.44 9.46 10.42

Web-Google-Hamilton 48.88 31.41 20.97 31.41 11.39 11.46

Table 6: Solution qualities for the Hamilton instances.

Graph
Running Time

DST LH CT MINIMAL DST-CT LH-CT

Rome99-Hamilton 0.008 0.004 0.796 0.852 0.284 0.476

P2p-Gnutella25-Hamilton 0.004 0.020 2.316 2.616 0.704 1.188

P2p-Gnutella31-Hamilton 0.016 0.016 20.688 24.208 7.176 11.072

WikiTalk-Hamiltonian 0.228 0.328 2671.052 4366.740 466.640 882.376

Web-NotreDame-Hamilton 0.064 0.084 334.120 420.344 114.476 187.388

Soc-Epinions-Hamilton 0.044 0.068 165.820 227.320 41.980 68.792

USA-BAY-flat-Hamilton 0.780 0.976 31624.608 53595.184 12376.752 18840.544

Amazon302-Hamilton 0.660 0.900 19015.068 31608.632 5862.820 10186.228

Web-Standford-Hamilton 0.368 0.504 6085.084 8613.912 1378.880 2709.608

Amazon601-Hamilton 1.724 2.668 66588.004 141155.596 19175.004 32394.968

Web-Google-Hamilton 2.04 2.724 72394.252 91918.144 26947.428 40047.832

Table 7: Running times in seconds for the Hamilton instances.

Hamilton instances In Figure 4 we compare the performance of the linear-time algorithms DST and LH.
(See also Tables 6 and 7.) As in the previous experiment, LH is able to provide a better solution with a very
small overheard in the running time.

Figure 5 plots the running times and the solution of qualities for CT, MINIMAL,DST-CT and LH-CT. One
important observation is that the solution quality of these algorithms is much better than in the Max2VCS
instances. We also observe that LH-CT is always faster than any other superlinear algorithm, but produces
slightly worse solutions (at most 3.8% more edges) than DST-CT. CT on the one hand produces the best
solutions in 7 out of 11 instances. In two instances (Web-Standford-Hamilton, Web-Google-Hamilton),
however, it computed solutions that were significantly worse compared to DST-CT and LH-CT. Notice also
that CT is significantly slower than DST-CT and LH-CT. Finally, unlike the Max2VCS instances, here
MINIMAL has a more stable performance but computes a significantly worse solution than any other nonlinear
algorithm.
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Figure 2: Performance of linear-time algorithms for the Max2VCS instances. Solution qualities (top) and
running times in seconds (bottom). Running times and graph sizes (number of edges) are shown in log scale.
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Figure 3: Performance of algorithms CT, MINIMAL, DST-CT and LH-CT for the Max2VCS instances. Solution
qualities (top) and running times (bottom). (Better viewed in color.) Running times and graph sizes (number
of edges) are shown in log scale. 15
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Figure 4: Performance of linear-time algorithms for the Hamilton instances. Solution qualities (top) and
running time in seconds (bottom). Running times and graph sizes (number of edges) are shown in log scale.
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Figure 5: Performance of algorithms CT, MINIMAL, DST-CT and LH-CT for the Hamilton instances. Solution
qualities (top) and running times (bottom). (Better viewed in color.) Running times and graph sizes (number
of edges) are shown in log scale.
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