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Abstract
The All-Pairs Min-Cut problem (aka All-Pairs Max-Flow) asks to compute a minimum s-t cut
(or just its value) for all pairs of vertices s, t. We study this problem in directed graphs with unit
edge/vertex capacities (corresponding to edge/vertex connectivity). Our focus is on the k-bounded
case, where the algorithm has to find all pairs with min-cut value less than k, and report only those.
The most basic case k = 1 is the Transitive Closure (TC) problem, which can be solved in graphs
with n vertices and m edges in time O(mn) combinatorially, and in time O(nω) where ω < 2.38 is
the matrix-multiplication exponent. These time bounds are conjectured to be optimal.

We present new algorithms and conditional lower bounds that advance the frontier for larger k,
as follows:

A randomized algorithm for vertex capacities that runs in time O((nk)ω). This is only a factor
kω away from the TC bound, and nearly matches it for all k = no(1).
Two deterministic algorithms for edge capacities (which is more general) that work in DAGs
and further reports a minimum cut for each pair. The first algorithm is combinatorial (does
not involve matrix multiplication) and runs in time O(2O(k2) ·mn). The second algorithm can
be faster on dense DAGs and runs in time O((k log n)4k+o(k)

· nω). Previously, Georgiadis et al.
[ICALP 2017], could match the TC bound (up to no(1) factors) only when k = 2, and now our
two algorithms match it for all k = o(

√
log n) and k = o(log log n).

The first super-cubic lower bound of nω−1−o(1)k2 time under the 4-Clique conjecture, which
holds even in the simplest case of DAGs with unit vertex capacities. It improves on the previous
(SETH-based) lower bounds even in the unbounded setting k = n. For combinatorial algorithms,
our reduction implies an n2−o(1)k2 conditional lower bound. Thus, we identify new settings
where the complexity of the problem is (conditionally) higher than that of TC.
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7:2 Faster Algorithms for All-Pairs Bounded Min-Cuts

Our three sets of results are obtained via different techniques. The first one adapts the network
coding method of Cheung, Lau, and Leung [SICOMP 2013] to vertex-capacitated digraphs. The
second set exploits new insights on the structure of latest cuts together with suitable algebraic
tools. The lower bounds arise from a novel reduction of a different structure than the SETH-
based constructions.
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1 Introduction

Connectivity-related problems are some of the most well-studied problems in graph theory
and algorithms, and have been thoroughly investigated in the literature. Given a directed
graph G = (V,E) with n = |V | vertices and m = |E| edges,1 perhaps the most fundamental
such problem is to compute a minimum s-t cut, i.e., a set of edges E′ of minimum-cardinality
such that t is not reachable from s in G \ E′. This minimum s-t cut problem is well-known
to be equivalent to maximum s-t flow, as they have the exact same value [17]. Currently, the
fastest algorithms for this problem run in time Õ(m

√
n logO(1) U) [24] and Õ(m10/7U1/7)

(faster for sparse graphs) [26], where U is the maximum edge capacity (aka weight).2
The central problem of study in this paper is All-Pairs Min-Cut (also known as All-Pairs

Max-Flow), where the input is a digraph G = (V,E) and the goal is to compute the minimum
s-t cut value for all s, t ∈ V . All our graphs will have unit edge/vertex capacities, in which
case the value of the minimum s-t cut is just the maximum number of disjoint paths from s

to t (aka edge/vertex connectivity), by [28]. We will consider a few variants: vertex capacities
vs. edge capacities,3 reporting only the value vs. the cut itself (a witness), or a general
digraph vs. a directed acyclic graph (DAG). For all these variants, we will be interested in the
k-bounded version (aka bounded min-cuts, hence the title of the paper) where the algorithm
needs to find which minimum s-t cuts have value less than a given parameter k, and report

1 We sometimes use arcs when referring to directed edges, or use nodes instead of vertices.
2 The notation Õ(·) hides polylogarithmic factors.
3 The folklore reduction where each vertex v is replaced by two vertices connected by an edge vin → vout

shows that in all our problems, vertex capacities are no harder (and perhaps easier) than edge capacities.
Notice that this is only true for directed graphs.
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only those. Put differently, the goal is to compute, for every s, t ∈ V , the minimum between
k and the actual minimum s-t cut value. Nonetheless, some of our results (the lower bounds)
are of interest even without this restriction.

The time complexity of these problems should be compared against the fundamental
special case that lies at their core – the Transitive Closure problem (aka All-Pairs Reach-
ability), which is known to be time-equivalent to Boolean Matrix Multiplication, and in
some sense, to Triangle Detection [34]. This is the case k = 1, and it can be solved in time
O(min{mn/ logn, nω}), where ω < 2.38 is the matrix-multiplication exponent [14, 23, 33, 11];
the latter term is asymptotically better for dense graphs, but it is not combinatorial.4 This
time bound is conjectured to be optimal for Transitive Closure, which can be viewed as
a conditional lower bound for All-Pairs Min-Cut; but can we achieve this time bound
algorithmically, or is All-Pairs Min-Cut a harder problem?

The naive strategy for solving All-Pairs Min-Cut is to execute a minimum s-t cut algorithm
O(n2) times, with total running time Õ(n2m10/7) [26] or Õ(n2.5m) [24]. For not-too-dense
graphs, there is a faster randomized algorithm of Cheung, Lau, and Leung [13] that runs in
time O(mω). For smaller k, some better bounds are known. First, observe that a minimum s-t
cut can be found via k iterations of the Ford-Fulkerson algorithm [17] in time O(km), which
gives a total bound of O(n2mk). Another randomized algorithm of [13] runs in better time
O(mnkω−1) but it works only in DAGs. Notice that the latter bound matches the running
time of Transitive Closure if the graphs are sparse enough. For the case k = 2, Georgiadis et
al. [18] achieved the same running time as Transitive Closure up to sub-polynomial factor
no(1) in all settings, by devising two deterministic algorithms, whose running times are Õ(mn)
and Õ(nω).

Other than the lower bound from Transitive Closure, the main previously known result is
from [21], which showed that under the Strong Exponential Time Hypothesis (SETH),5 All-
Pairs Min-Cut requires, up to sub-polynomial factors, time Ω(mn) in unit edge capacitated
digraphs of any edge density, and even in the simpler case of (unit) vertex capacities and of
DAGs. As a function of k their lower bound becomes Ω(n2−o(1)k) [21]. Combining the two,
we have a conditional lower bound of (n2k + nω)1−o(1).

Related Work. There are many other results related to the edge capacitated All-Pairs
Min-Cut problem, let us mention a few. Other than DAGs, the problem has also been
considered in the special cases of planar digraphs [6, 22], sparse digraphs and digraphs with
bounded treewidth [6].

In undirected graphs, the problem was studied extensively following the seminal work of
Gomory and Hu [19] in 1961, which introduced a representation of All-Pairs Min-Cuts via a
weighted tree, commonly called a Gomory-Hu tree, and further showed how to compute it
using n− 1 executions of maximum s-t flow. Bhalgat et al. [8] designed an algorithm that
computes a Gomory-Hu tree in unit edge capacitated undirected graphs in Õ(mn) time, and
this upper bound was recently improved [4]. The case of bounded min-cuts (small k) in
undirected graphs was studied by Hariharan et al. [20], motivated in part by applications in
practical scenarios. The fastest running time for this problem is Õ(mk) [31], achieved by
combining results from [20] and [8]. On the negative side, there is an n3−o(1) lower bound
for All-Pairs Min-Cut in sparse capacitated digraphs [21], and very recently, a similar lower
bound was shown for undirected graphs with vertex capacities [4].

4 Combinatorial is an informal term to describe algorithms that do not rely on fast matrix-multiplication
algorithms, which are infamous for being impractical. See [1, 3] for further discussions.

5 These lower bounds hold even under the weaker assumption that the 3-Orthogonal Vectors problem
requires n3−o(1) time.
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1.1 Our Contribution
The goal of this work is to reduce the gaps in our understanding of the All-Pairs Min-Cut
problem (see Table 1 for a list of known and new results). In particular, we are motivated by
three high-level questions. First, how large can k be while keeping the time complexity the
same as Transitive Closure? Second, could the problem be solved in cubic time (or faster)
in all settings? Currently no Ω(n3+ε) lower bound is known even in the hardest settings of
the problem (capacitated, dense, general graphs). And third, can the actual cuts (witnesses)
be reported in the same amount of time it takes to only report their values? Some of the
previous techniques, such as those of [13], cannot do that.

New Algorithms. Our first result is a randomized algorithm that solves the k-bounded
version of All-Pairs Min-Cut in a digraph with unit vertex capacities in time O((nk)ω). This
upper bound is only a factor kω away from that of Transitive Closure, and thus matches
it up to polynomial factors for any k = no(1). Moreover, any poly(n)-factor improvement
over our upper bound would imply a breakthrough for Transitive Closure (and many other
problems). Our algorithm builds on the network-coding method of [13], and in effect adapts
this method to the easier setting of vertex capacities, to achieve a better running time than
what is known for unit edge capacities. This algorithm is actually more general: Given
a digraph G = (V,E) with unit vertex capacities, two subsets S, T ⊆ V and k > 0, it
computes for all s ∈ S, t ∈ T the minimum s-t cut value if this value is less than k, all in
time O((n+ (|S|+ |T |)k)ω + |S||T |kω). Due to space constraints, we overview these results
in Section 3.1, with full details in the full version.

Three weaknesses of this algorithm and the ones by Cheung et al. [13] are that they
do not return the actual cuts, they are randomized, and they are not combinatorial. Our
next set of algorithmic results deals with these issues. More specifically, we present two
deterministic algorithms for DAGs with unit edge (or vertex) capacities that compute, for
every s, t ∈ V , an actual minimum s-t cut if its value is less than k. The first algorithm is
combinatorial (i.e., it does not involve matrix multiplication) and runs in time O(2O(k2) ·mn).
The second algorithm can be faster on dense DAGs and runs in time O((k logn)4k+o(k) · nω).
These algorithms extend the results of Georgiadis et al. [18], which matched the running
time of Transitive Closure up to no(1) factors, from just k = 2 to any k = o(

√
logn) (in the

first case) and k = o(log logn) (in the second case). We give an overview of these algorithms
in Section 3.2, and the formal results are in the full version.

New Lower Bounds. Finally, we present conditional lower bounds for our problem, the
k-bounded version of All-Pairs Min-Cut. As a result, we identify new settings where the
problem is harder than Transitive Closure, and provide the first evidence that the problem
cannot be solved in cubic time. Technically, the main novelty here is a reduction from the
4-Clique problem. It implies lower bounds that apply to the basic setting of DAGs with unit
vertex capacities, and therefore immediately apply also to more general settings, such as edge
capacities, capacitated inputs, and general digraphs, and they in fact improve over previous
lower bounds [5, 21] in all these settings.6 We prove the following theorem in Section 4.

I Theorem 1.1. If for some fixed ε > 0 and any k ∈ [n1/2, n], the k-bounded version of
All-Pairs Min-Cut can be solved on DAGs with unit vertex capacities in time O((nω−1k2)1−ε),
then 4-Clique can be solved in time O(nω+1−δ) for some δ = δ(ε) > 0.

6 It is unclear if our new reduction can be combined with the ideas in [4] to improve the lower bounds in
the seemingly easier case of undirected graphs with vertex capacities.
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Moreover, if for some fixed ε > 0 and any k ∈ [n1/2, n] that version of All-Pairs
Min-Cut can be solved combinatorially in time O((n2k2)1−ε), then 4-Clique can be solved
combinatorially in time O(n4−δ) for some δ = δ(ε) > 0.

To appreciate the new bounds, consider first the case k = n, which is equivalent to
not restricting k. The previous lower bound, under SETH, is n3−o(1) and ours is larger
by a factor of nω−2. For combinatorial algorithms, our lower bound is n4−o(1), which is
essentially the largest possible lower bound one can prove without a major breakthrough in
fine-grained complexity. This is because the naive algorithm for All-Pairs Min-Cuts is to
invoke an algorithm for Max-Flow O(n2) times, hence a lower bound larger than Ω(n4) for
our problem would imply the first non-trivial lower bound for minimum s-t cut. The latter
is perhaps the biggest open question in fine-grained complexity, and in fact many experts
believe that near-linear time algorithms for minimum s-t cut do exist, and can even be
considered “combinatorial” in the sense that they do not involve the infamous inefficiencies
of fast matrix multiplication. If such algorithms for minimum s-t cut do exist, then our lower
bound is tight.

Our lower bound shows that as k exceeds n1/2−o(1), the time complexity of k-bounded
of All-Pairs Min-Cut exceeds that of Transitive Closure by polynomial factors. The lower
bound is super-cubic whenever k ≥ n2−ω/2+ε.

Table 1 Summary of new and known results. Unless mentioned otherwise, all upper and lower
bounds hold both for unit edge capacities and for unit vertex capacitities.

Time Input Output Reference
O(mn), Õ(nω) deterministic digraphs cuts, only k = 2 [18]
O(n2mk) deterministic digraphs cuts [17]
O(mω) randomized digraphs cut values [13]
O(mnkω−1) randomized DAGs cut values [13]
O((nk)ω) randomized, vertex capacities digraphs cut values full version
2O(k2)mn deterministic DAGs cuts full version
(k log n)4k+o(k) · nω deterministic DAGs cuts full version
(mn + nω)1−o(1) based on Transitive Closure DAGs cut values
n2−o(1)k based on SETH DAGs cut values [21]
nω−1−o(1)k2 based on 4-Clique DAGs cut values Theorem 1.1

2 Preliminaries

We start with some terminology and well-known results on graphs and cuts. Next we will
briefly introduce the main algebraic tools that will be used throughout the paper. We note
that although we are interested in solving the k-bounded All-Pairs Min-Cut problem, where
we wish to find the all-pairs min-cuts of size at most k − 1, for the sake of using simpler
notation we compute the min-cuts of size at most k (instead of less than k) solving this way
the (k + 1)-bounded All-Pairs Min-Cut problem.

Directed graphs. The input of our problem consists of an integer k ≥ 1 and a directed
graph, digraph for short, G = (V,A) with n := |V | vertices and m := |A| arcs. Every arc
a = (u, v) ∈ A consists of a tail u ∈ V and a head v ∈ V . By G[S], we denote the subgraph
of G induced by the set of vertices S, formally G[S] = (S,A∩ (S×S)). By N+(v), we denote

ICALP 2019



7:6 Faster Algorithms for All-Pairs Bounded Min-Cuts

the out-neighborhood of v consisting of all the heads of the arcs leaving v. We denote by
outdeg(v) the number of outgoing arcs from v. All our results extend to multi-digraphs,
where each pair of vertices can be connected with multiple (parallel) arcs. For parallel arcs,
we always refer to each arc individually, as if each arc had a unique identifier. So whenever
we refer to a set of arcs, we refer to the set of their unique identifiers, i.e., without collapsing
parallel arcs, like in a multi-set.

Flows and cuts. We follow the notation used by Ford and Fulkerson [17]. Let G = (V,A) be
a digraph, where each arc a has a nonnegative capacity c(a). For a pair of vertices s and t, an
s-t flow of G is a function f on A such that 0 ≤ f(a) ≤ c(a), and for every vertex v 6= s, t the
incoming flow is equal to outgoing flow, i.e.,

∑
(u,v)∈A f(u, v) =

∑
(v,u)∈A f(v, u). If G has

vertex capacities as well, then f must also satisfy
∑

(u,v)∈A f(u, v) ≤ c(v) for every v 6= s, t,
where c(v) is the capacity of v. The value of the flow is defined as |f | =

∑
(s,v)∈A f(s, v). We

denote the existence of a path from s to t by s t and by s6 t the lack of such a path. Any
set M ⊆ A is an s-t-cut if s6 t in G \M . M is a minimal s-t-cut if no proper subset of M
is s-t-cut. For an s-t-cut M , we say that its source side is SM = {x | s x in G \M} and
its target side is TM = {x | x t in G \M}. We also refer to the source side and the target
side as s-reachable and t-reaching, respectively. An s-t k-cut is a minimal cut of size k. A
setM of s-t cuts of size at most k is called a set of s-t ≤ k-cuts. We can define vertex cuts
analogously.

Order of cuts. An s-t cut M is later (respectively earlier) than an s-t cut M ′ if and only if
TM ⊆ TM ′ (resp. SM ⊆ SM ′), and we denote it M ≥M ′ (resp. M ≤M ′). Note that those
relations are not necessarily complementary if the cuts are not minimal (see Figure 1 for an
example).

s t

M1

SM1 SM1
s t

M2

SM2 SM2

s t

M3

SM3 SM3

s
t

M3

TM3
TM3s t

M3

M2M1

Figure 1 A digraph with three s-t-cuts M1, M2, M3. While M1 and M2 are minimal, M3 is not.
Hence, the source side and target side differ only for M3. This illustrates that the earlier and later
orders might not be symmetric for non-minimal cuts. We have M3 < M2 yet M2 ≯ M3 (and also
M3 ≤M2 yet M2 � M3). Additionally, M1 ≮ M3 yet M3 > M1 (yet both M1 ≤M3 and M3 ≥M1).

We make these inequalities strict (i.e., ‘>’ or ‘<’) whenever the inclusions are proper. We
compare a cut M and an arc a by defining a > M whenever both endpoints of a are in TM .
Additionally, a ≥M includes the case where a ∈M . Definitions of the relations ‘≤’ and ‘<’
follow by symmetry. We refer to Figure 2 for illustrations.

s t
M1 M4

M3

M2

Figure 2 A digraph with several s-t cuts. Bold arcs represent parallel arcs which are too expensive
to cut. M1 is the earliest s-t min-cut and M3 is the latest s-t min-cut. M2 is later than M1, but M2

is not s-t-latest, as M4 is later and not larger than M2.
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This partial order of cuts also allows us to define cuts that are extremal with respect to
all other s-t cuts in the following sense:

I Definition 2.1 (s-t-latest cuts [27]). An s-t cut is s-t-latest (resp. s-t-earliest) if and only
if there is no later (resp. earlier) s-t cut of smaller or equal size.

Informally speaking, a cut is s-t-latest if we would have to cut through more arcs whenever
we would like to cut off fewer vertices. This naturally extends the definition of an s-t-latest
min-cut as used by Ford and Fulkerson [17, Section 5]. The notion of latest cuts has first been
introduced by Marx [27] (under the name of important cuts) in the context of fixed-parameter
tractable algorithms for multi(way) cut problems, but has been independently studied (or its
equivalent formulations), [7, 29]. Since we need both earliest and latest cuts, we do not refer
to latest cuts as important cuts. Additionally, we use the term s-t-extremal cuts to refer to
the union of s-t-earliest and s-t-latest cuts.

3 Overview of Our Algorithmic Approach

3.1 Randomized Algorithms on General Graphs
We will now briefly recap the framework of Cheung et al. [13] as we will modify them later
for our purposes. In this framework, edges are encoded as vectors, so that the vector of
each edge e = (u, v) is a randomized linear combination of the vectors correspond to edges
incoming to u, the source of e. One can compute all these vectors for the whole graph,
simultaneously, using some matrix manipulations. The bottleneck is that one has to invert a
certain m×m matrix with an entry for each pair of edges. Just reading the matrix that is
output by the inversion requires Ω(m2) time, since most entries in the inverted matrix are
expected to be nonzero even if the graph is sparse.

To overcome this barrier, while using the same framework, we define the encoding vectors
on the nodes rather than the edges. We show that this is sufficient for the vertex-capacitated
setting. Then, instead of inverting a large matrix, we need to compute the rank of certain
submatrices which becomes the new bottleneck. When k is small enough, this turns out to
lead to a significant speed up compared to the running time in [13].

3.2 Deterministic Algorithms with Witnesses on DAGs
Here we deal with the problem of computing certificates for the k-bounded All-Pairs Min-Cut
problem. Our contribution here is twofold. We first prove some properties of the structure of
the s-t-latest k-cuts and of the s-t-latest ≤k-cuts, which might be of independent interest.
This gives us some crucial insights on the structure of the cuts, and allows us to develop
an algorithmic framework which is used to solve the k-bounded All-Pairs Min-Cut problem.
As a second contribution, we exploit our new algorithmic framework in two different ways,
leading to two new algorithms which run in O(mn1+o(1)) time for k = o(

√
logn) and in

O(nω+o(1)) time for k = o(log logn).
Let G = (V,A) be a DAG. Consider some arbitrary pair of vertices s and t, and any

s-t-cut M . For every intermediate vertex v, M must be either a s-v-cut, or a v-t-cut. The
knowledge of all s-v and all v-t min-cuts does not allow us to convey enough information for
computing an s-t min-cut of size at most k quickly, as illustrated in Figure 3.

However, we are able to compute an s-t min-cut by processing all the s-v-earliest cuts and
all the v-t-latest cuts, of size at most k. We build our approach around this insight. We note
that the characterization that we develop is particularly useful, as it has been shown that
the number of all earliest/latest u-v ≤k-cuts can be upper bounded by 2O(k), independently
of the size of the graph.

ICALP 2019
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s t

a

b

c

d

e

f

g

h

2

2

2

2
3

3
3 3

3

3

2

2

2

2

Figure 3 A digraph where each arc appears in at least one s-v or one v-t min-cut. The numbers
on the arcs denote the number of parallel arcs. Note that neither of the two s-t min-cuts of size 9
(marked in yellow) are contained within the union of any two s-v or v-t min-cuts. Thus, finding all
those min-cuts and trying to combine them in pairs in a divide-and-conquer-style approach is not
sufficient to find an s-t min-cut.

For a more precise formulation on how to recover a min-cut (or extremal ≤k-cuts) from
cuts to and from intermediate vertices, consider the following. Let A1, A2 be an arc split,
that is a partition of the arc set A with the property that any path in G consists of a
(possibly empty) sequence of arcs from A1 followed by a (possibly empty) sequence of arcs
from A2. Assume that for each vertex v we know all the s-v-earliest ≤k-cuts in G1 = (V,A1)
and all the v-t-latest ≤k-cuts in G2 = (V,A2). We show that a set of arcs M that contains
as a subset one s-v-earliest ≤k-cut in G1, or one v-t-latest ≤k-cut in G2 for every v, is a
s-t-cut. Moreover, we show that all the s-t-cuts of arcs with the above property include
all the s-t-latest ≤k-cuts. Hence, in order to identify all s-t-latest ≤k cuts, it is sufficient
to identify all sets M with that property. We next describe how we use these structural
properties to compute all s-t-extremal ≤k-cuts.

We formulate the following combinatorial problem over families of sets, which is indepen-
dent of graphs and cuts, that we can use to compute all s-t-extremal ≤k-cuts. The input
to our problem is c families of sets F1,F2, . . . ,Fc, where each family Fi consists of at most
K sets, and each set F ∈ Fi contains at most k elements from a universe U . The goal is to
compute all minimal subsets F ∗ ⊂ U, |F ∗| ≤ k, for which there exists a set F ∈ Fi such that
F ⊆ F ∗, for all 1 ≤ i ≤ c. We refer to this problem as Witness Superset. To create an
instance (s, t, A1, A2) of the Witness Superset problem, we set c = |V | and Fv to be all
s-v-earliest ≤k-cuts in G1 and all v-t-latest ≤k-cuts in G2. Informally speaking, the solution
to the instance (s, t, A1, A2) of the Witness Superset problem picks all sets of arcs that
cover at least one earliest or one latest cut for every vertex. In a post-processing step, we
filter the solution to the Witness Superset problem on the instance (s, t, A1, A2) in order
to extract all the s-t-latest ≤k-cuts. We follow an analogous process to compute all the
s-t-earliest ≤k-cuts.

Algorithmic framework. We next define a common algorithmic framework for solving the
k-bounded All-Pairs Min-Cut problem, as follows. We pick a partition of the vertices V1, V2,
such that there is no arc in V2 × V1. Such a partition can be trivially computed from a
topological order of the input DAG. Let A1, A2, A1,2 be the sets of arcs in G[V1], in G[V2],
and A ∩ (V1 × V2).

First, we recursively solve the problem in G[V1] and in G[V2]. The recursion returns
without doing any work whenever the graph is a singleton vertex.
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Second, for each pair of vertices (s, t), such that s ∈ V1 has an outgoing arc from A1,2
and t ∈ V2, we solve the instance (s, t, A1,2, A2) of Witness Superset. Notice that the
only non-empty earliest cuts in (V,A1,2) for the pair (x, y) are the arcs (x, y) ∈ A1,2.
Finally, for each pair of vertices (s, t), such that s ∈ V1, t ∈ V2, we solve the instance
(s, t, A1, A1,2 ∪A2) of Witness Superset.

The Witness Superset problem can be solved naively as follows. Let Fv be the set
of all s-v-earliest ≤k-cuts and all v-t-latest ≤k-cuts. Assume we have Fv1 ,Fv2 , . . . ,Fvc

, for
all vertices v1, v2, . . . , vc that are both reachable from s in (V,A1,2) and that reach t in
(V,A2). Each of these sets contains 2O(k) cuts. We can identify all sets M of arcs that
contain at least one cut from each Fi, in time O(k · (2O(k))c). This yields an algorithm with
super-polynomial running time. However, we speed up this naive procedure by applying
some judicious pruning, achieving a better running time of O(c · 2O(k2) · poly(k)), which is
polynomial for k = o(

√
logn). In the following, we sketch the two algorithms that we develop

for solving efficiently the k-bounded All-Pairs Min-Cut problem.

Iterative division. For the first algorithm, we process the vertices in reverse topological
order. When processing a vertex v, we define V1 = {v} and V2 to be the set of vertices that
appear after v in the topological order. Notice that V1 has a trivial structure, and we already
know all s-t-latest ≤k-cuts in G[V2]. In this case, we present an algorithm for solving the
instance (v, t, A1,2, A2) of the Witness Superset problem in time O(2O(k2) · c · poly(k)),
where c = |A1,2| is the number of arcs leaving v. We invoke this algorithm for each v-
w pair such that w ∈ V2. For k = o(

√
logn) this gives an algorithm that runs in time

O(outdeg(v) · n1+o(1)) for processing v, and O(mn1+o(1)) in total.

Recursive division. For the second algorithm, we recursively partition the set of vertices
evenly into sets V1 and V2 at each level of the recursion. We first recursively solve the problem
in G[V1] and in G[V2]. Second, we solve the instances (s, t, A1,2, A2) and (s, t, A1, A1,2 ∪A2)
of Witness Superset for all pairs of vertices from V1 × V2. Notice that the number of
vertices that are both reachable from s in (V,A1) and reach t in (V,A1,2 ∪A2) can be as high
as O(n). This implies that even constructing all Θ(n2) instances of the Witness Superset
problem, for all s, t, takes Ω(n3) time. To overcome this barrier, we take advantage of the
power of fast matrix multiplications by applying it into suitably defined matrices of binary
codes (codewords). At a very high-level, this approach was used by Fischer and Meyer [16]
in their O(nω) time algorithm for transitive closure in DAGs – there the binary codes where
of size 1 indicating whether there exists an arc between two vertices.

Algebraic framework. In order to use coordinate-wise boolean matrix multiplication with
the entries of the matrices being codewords we first encode all s-t-earliest and all s-t-latest
≤k-cuts using binary codes. The bitwise boolean multiplication of such matrices with binary
codes in its entries allows a serial combination of both s-v cuts and v-t cuts based on AND
operations, and thus allows us to construct a solution based on the OR operation of pairwise
AND operations. We show that superimposed codes are suitable in our case, i.e., binary
codes where sets are represented as bitwise-OR of codewords of objects, and small sets are
guaranteed to be encoded uniquely. Superimposed codes provide a unique representation for
sets of k elements from a universe of size poly(n) with codewords of length poly(k logn). In
this setting, the union of sets translates naturally to bitwise-OR of their codewords.
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Tensor product of codes. To achieve our bounds, we compose several identical superim-
posed codes into a new binary code, so that encoding set families with it enables us to solve
the corresponding instances of Witness Superset. Our composition has the cost of an
exponential increase in the length of the code. Let F = F1, . . . , Fc be the set family that we
wish to encode, and let S1, . . . , Sc be their superimposed codes in the form of vectors. We
construct a c-dimensional array M where M [i1, . . . , ic] = 1 iff Sj [ij ] = 1, for each 1 ≤ j ≤ c.
In other words, the resulting code is the tensor product of all superimposed codes. This
construction creates enough redundancy so that enough information on the structure of the
set families is preserved. Furthermore, we can extract the encoded information from the
bitwise-OR of several codewords. The resulting code is of length O((k logn)O(K)), where K is
the upperbound on the allowed number of sets in each encoded set family. In our case K ≈ 4k,
which results to only a logarithmic dependency on n at the price of a doubly-exponential
dependency on k, thus making the problem tractable for small values of k.

From slices to Witness Superset. Finally, we show how the Witness Superset can be
solved using tensor product of superimposed codes. Consider the notion of cutting the code
of dimension K with an axis-parallel hyperplane of dimension K − 1. We call this resulting
shorter codeword a slice of the original codeword. A slice of a tensor product is a tensor
product of one dimension less, or an empty set, and a slice of a bitwise-OR of tensor products
is as well a bitwise-OR of tensor products (of one dimension less). Thus, taking a slice of
the bitwise-OR of the encoding of families of sets is equivalent to removing a particular set
from some families and to dropping some other families completely and then encoding these
remaining, reduced families. Thus, we can design a non-deterministic algorithm, which at
each step of the recursion picks k slices, one slice for each element of the solution we want
to output, and then recurses on the bitwise-OR of those slices, reducing the dimension by
one in the process. This is always possible, since each element that belongs to a particular
solution of Witness Superset satisfies one of the following: it either has a witnessing slice
and thus it is preserved in the solution to the recursive call; or it is dense enough in the
input so that it is a member of each solution and we can detect this situation from scanning
the diagonal of the input codeword. This described nondeterministic approach is then made
deterministic by simply considering every possible choice of k slices at each of the K steps of
the recursion. This does not increase substantially the complexity of the decoding procedure,
since O(((K · poly(k logn))k)K) for K ≈ 4k is still only doubly-exponential in k.

4 Reducing 4-Clique to All-Pairs Min-Cut

In this section we prove Theorem 1.1 by showing new reductions from the 4-Clique problem to
k-bounded All-Pairs Min-Cut with unit vertex capacities. These reductions yield conditional
lower bounds that are much higher than previous ones, which are based on SETH, in addition
to always producing DAGs. Throughout this section, we will often use the term nodes for
vertices.

I Definition 4.1 (The 4-Clique Problem). Given a 4-partite graph G, where V (G) = A∪B ∪
C ∪D with |A| = |B| = |C| = |D| = n, decide whether there are four nodes a ∈ A, b ∈ B,
c ∈ C, d ∈ D that form a clique.

This problem is equivalent to the standard formulation of 4-Clique (without the restric-
tion to 4-partite graphs). The currently known running times are O(nω+1) using matrix
multiplication [15], and O(n4/ polylogn) combinatorially [35]. The k-Clique Conjecture
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[3] hypothesizes that current clique algorithms are optimal. Usually when the k-Clique
Conjecture is used, it is enough to assume that the current algorithms are optimal for every k
that is a multiple of 3, where the known running times are O(nωk/3) [30] and O(nk/ polylogn)
combinatorially [32], see e.g. [2, 3, 10, 12, 25]. However, we will need the stronger assumption
that one cannot improve the current algorithms for k = 4 by any polynomial factor. This
stronger form was previously used by Bringmann, Grønlund, and Larsen [9].

4.1 Reduction to the Unbounded Case
We start with a reduction to the unbounded case (equivalent to k = n), that is, we reduce to
All-Pairs Min-Cut with unit node capacities (abbreviated APMVC, for All-Pairs Minimum
Vertex-Cut). Later (in Section 4.1) we will enhance the construction in order to bound k.

I Lemma 4.2. Suppose APMVC on n-node DAGs with unit node capacities can be solved in
time T (n). Then 4-Clique on n-node graphs can be solved in time O(T (n) +MM(n)), where
MM(n) is the time to multiply two matrices from {0, 1}n×n.

To illustrate the usage of this lemma, observe that an O(n3.99)-time combinatorial
algorithm for APMVC would imply a combinatorial algorithm with similar running time
for 4-Clique.

Proof. Given a 4-partite graph G as input for the 4-Clique problem, the graph H is
constructed as follows. The node set of H is the same as G, and we abuse notation
and refer also to V (H) as if it is partitioned into A,B,C, and D. Thinking of A as the set of
sources and D as the set of sinks, the proof will focus on the number of node-disjoint paths
from nodes a ∈ A to nodes d ∈ D. The edges of H are defined in a more special way, see
also Figure 4 for illustration.

A

B

C

D

Figure 4 An illustration of H in the reduction. Solid lines between nodes represent the existence
of an edge in the input graph G, and dashed lines represent the lack thereof.

(A to B) For every a ∈ A, b ∈ B such that {a, b} ∈ E(G), add to E(H) a directed edge
(a, b).
(B to C) For every b ∈ B, c ∈ C such that {b, c} ∈ E(G), add to E(H) a directed edge
(b, c).
(C to D) For every c ∈ C, d ∈ D such that {c, d} ∈ E(G), add to E(H) a directed edge
(c, d).

The definition of the edges of H will continue shortly. So far, edges in H correspond to
edges in G, and there is a (directed) path a→ b→ c→ d if and only if the three (undirected)
edges {a, b}, {b, c}, {c, d} exist in G. In the rest of the construction, our goal is to make this
3-hop path contribute to the final a→ d flow if and only if (a, b, c, d) is a 4-clique in G (i.e.,
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all six edges exist, not only those three). Towards this end, additional edges are introduced,
that make this 3-hop path useless in case {a, c} or {b, d} are not also edges in G. This allows
“checking” for five of the six edges in the clique, rather than just three. The sixth edge is
easy to “check”.

(A to C) For every a ∈ A, c ∈ C such that {a, c} /∈ E(G), add to E(H) a directed edge
(a, c).
(B to D) For every b ∈ B, d ∈ D such that {b, d} /∈ E(G) in G, add to E(H) a directed
edge (b, d).

This completes the construction of H. Note that these additional edges imply that there
is a path a→ b→ d in H iff {a, b} ∈ E(G) and {b, d} /∈ E(G), and similarly, there is a path
a→ c→ d in H iff {a, c} /∈ E(G) and {c, d} ∈ E(G). Let us introduce notations to capture
these paths. For nodes a ∈ A, d ∈ D denote:

B′a,d = {b ∈ B | {a, b} ∈ E(G) and {b, d} /∈ E(G) } ,
C ′a,d = {c ∈ C | {a, c} /∈ E(G) and {c, d} ∈ E(G) } .

We now argue that if an APMVC algorithm is run on H, enough information is received
to be able to solve 4-Clique on G by spending only an additional post-processing stage of
O(n3) time.

B Claim 4.3. Let a ∈ A, d ∈ D be nodes with {a, d} ∈ E(G). If the edge {a, d} does not
participate in a 4-clique in G, then the node connectivity from a to d in H, denoted NC(a, d),
is exactly

NC(a, d) = |B′a,d|+ |C ′a,d|,

and otherwise NC(a, d) is strictly larger.

Proof of Claim 4.3. We start by observing that all paths from a to d in H have either two or
three hops.

Assume now that there is a 4-clique (a, b∗, c∗, d) in G, and let us exhibit a set P of
node-disjoint paths from a to d of size |B′a,d|+ |C ′a,d|+ 1. For all nodes b ∈ B′a,d, add to P
the 2-hop path a→ b→ d. For all nodes c ∈ C ′a,d, add to P the 2-hop path a→ c→ d. So
far, all these paths are clearly node-disjoint. Then, add the 3-hop path a→ b∗ → c∗ → d to
P . This path is node-disjoint from the rest because b∗ /∈ B′a,d (because {b∗, d} ∈ E(G)) and
c∗ /∈ C ′a,d (because {a, c∗} ∈ E(G)).

Next, assume that no nodes b ∈ B, c ∈ C complete a 4-clique with a, d. Then for every
set P of node-disjoint paths from a to d, there is a set P ′ of 2-hop node-disjoint paths from a

to d that has the same size. To see this, let a→ b→ c→ d be some 3-hop path in P . Since
(a, b, c, d) is not a 4-clique in G and {a, d}, {a, b}, {b, c}, {c, d} are edges in G, we conclude
that either {a, c} /∈ E(G) or {b, d} /∈ E(G). If {a, c} /∈ E(G) then a→ c is an edge in H and
the 3-hop path can be replaced with the 2-hop path a→ c→ d (by skipping b) and one is
remained with a set of node-disjoint paths of the same size. Similarly, if {b, d} /∈ E(G) then
b→ d is an edge in H and the 3-hop path can be replaced with the 2-hop path a→ b→ d.
This can be done for all 3-hop paths and result in P ′. Finally, note that the number of 2-hop
paths from a to d is exactly |B′a,d|+ |C ′a,d|, and this completes the proof of Claim 4.3. C
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Computing the estimates. To complete the reduction, observe that the values |B′a,d|+|C ′a,d|
can be computed for all pairs a ∈ A, d ∈ D using two matrix multiplications. To compute
the |B′a,d| values, multiply the two matrices M,M ′ which have entries from {0, 1}, with
Ma,b = 1 iff {a, b} ∈ E(G) ∩ A× B and M ′b,d = 1 iff {b, d} /∈ E(G) ∩ B ×D. Observe that
|B′a,d| is exactly (M ·M ′)a,d. To compute |C ′a,d|, multiply M,M ′ over {0, 1} where Ma,c = 1
iff {a, c} /∈ E(G) ∩A× C and M ′c,d = 1 iff {c, d} ∈ E(G) ∩ C ×D.

After having these estimates and computing APMVC on H, it can be decided whether G
contains a 4-clique in O(n2) time as follows. Go through all edges {a, d} ∈ E(G) ∩ A×D
and decide whether the edge participates in a 4-clique by comparing |B′a,d|+ |C ′a,d| to the
node connectivity NC(a, d) in H. By the above claim, an edge {a, d} with NC(a, d) >
|B′a,d| + |C ′a,d| is found if and only if there is a 4-clique in G. The total running time is
O(T (n) +MM(n)), which completes the proof of Lemma 4.2. J

4.2 Reduction to the k-Bounded Case
Next, we exploit a certain versatility of the reduction and adapt it to ask only about min-cut
values (aka node connectivities) that are smaller than k. In other words, we will reduce to
the k-bounded version of All-Pairs Min-Cut with unit node capacities (abbreviated kAPMVC,
for k-bounded All-Pairs Minimum Vertex-Cut). Our lower bound improves on the Ω(nω)
conjectured lower bound for Transitive Closure as long as k = ω(n1/2).

I Lemma 4.4. Suppose kAPMVC on n-node DAGs with unit node capacities can be solved in
time T (n, k). Then 4-Clique on n-node graphs can be solved in time O(n

2

k2 ·T (n, k)+MM(n)),
where MM(n) is the time to multiply two matrices from {0, 1}n×n.

Due to space constraints, the proof appears in the full version.

Proof of Theorem 1.1. Assume there is an algorithm that solves kAPMVC in time
O((nω−1k2)1−ε). Then by Lemma 4.4 there is an algorithm that solves 4-Clique in time
= O(n

2

k2 ·(nω−1k2)1−ε+MM(n)) ≤ O(nω+1−ε′), for some ε′ > 0. The bound for combinatorial
algorithms is achieved similarly. J
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