
HAL Id: hal-02335028
https://inria.hal.science/hal-02335028

Submitted on 28 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dominating Sets and Connected Dominating Sets in
Dynamic Graphs

Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, David Saulpic

To cite this version:
Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, David Saulpic. Dominating Sets and Connected
Dominating Sets in Dynamic Graphs. STACS 2019 - 36th International Symposium on Theoretical
Aspects of Computer Science, Mar 2019, Berlin, Germany. pp.1-17, �10.4230/LIPIcs.STACS.2019.35�.
�hal-02335028�

https://inria.hal.science/hal-02335028
https://hal.archives-ouvertes.fr

Dominating Sets and Connected Dominating Sets
in Dynamic Graphs
Niklas Hjuler
University of Copenhagen, Denmark
hjuler@di.ku.dk

Giuseppe F. Italiano
LUISS University, Rome, Italy
gitaliano@luiss.it

Nikos Parotsidis
University of Rome Tor Vergata, Italy
nikos.parotsidis@uniroma2.it

David Saulpic
ENS Paris, France
david.saulpic@ens.fr

Abstract
In this paper we study the dynamic versions of two basic graph problems: Minimum Dominating Set
and its variant Minimum Connected Dominating Set. For those two problems, we present algorithms
that maintain a solution under edge insertions and edge deletions in time O(∆ ·polylog n) per update,
where ∆ is the maximum vertex degree in the graph. In both cases, we achieve an approximation
ratio of O(log n), which is optimal up to a constant factor (under the assumption that P 6= NP).
Although those two problems have been widely studied in the static and in the distributed settings,
to the best of our knowledge we are the first to present efficient algorithms in the dynamic setting.

As a further application of our approach, we also present an algorithm that maintains a Minimal
Dominating Set in O(min(∆,

√
m)) per update.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dominating Set, Connected Dominating Set, Dynamic Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.35

Funding This work was done while Niklas Hjuler and David Saulpic were visiting University of
Rome Tor Vergata.

1 Introduction

The study of dynamic graph algorithms is a classical area in algorithmic research and has
been thoroughly investigated in the past decades. Maintaining a solution of a graph problem
in the case where the underlying graph changes dynamically over time is a big challenge in
the design of efficient and practical algorithms. Indeed, in several applications, due to the
dynamic nature of today’s data, it is not sufficient to compute a solution to a graph problem
only once and for all: often, it is necessary to maintain a solution efficiently while the input
graph is undergoing a sequence of dynamic updates. More precisely, a dynamic graph is a
sequence of graphs G0, ..., GM on n nodes and such that Gi+1 is obtained from Gi by adding
or removing a single edge. The natural first barrier, in the study of dynamic algorithms, is
to design algorithms that are able to maintain a solution for the problem at hand after each
update faster than recomputing the solution from scratch. Many dynamic graph problems
such as minimum spanning forests (see e.g. [22, 26]), shortest paths [12], matching [4, 27, 30]
or coloring [7] have been extensively studied in the literature, and very efficient algorithms
are known for those problems. Recently, a lot of attention has been devoted to the Maximal

© Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hjuler@di.ku.dk
mailto:gitaliano@luiss.it
mailto:nikos.parotsidis@uniroma2.it
mailto:david.saulpic@ens.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Independent Set problem (MIS). In this problem, one wishes to find a maximal set of
vertices that do not share any edge (“maximal” meaning that it is not possible to add any
vertex without violating this property). Until very recently, the best known update bound
on the complexity to maintain a MIS was a simple O(∆) algorithm, where ∆ is an upper
bound on the degree of vertices in the graph. This bound was first broken by Assadi et al. [2]
who gave a O(m3/4) algorithm, then by Gupta and Khan [19] improved the update bound
to O(m2/3). Very recently, using randomization, Assadi et al. [3] presented an amortized
fully-dynamic algorithm with an expected Õ(n1/2)-time bound per update.

The MIS problem is closely related to the Dominating Set (DS) problem: given a graph
G = (V,E) the DS problems is to find a subset of vertices D ⊆ V such that every vertex in
G is adjacent to D (or dominated by D). Indeed, a MIS is also a Minimal DS: the fact that
it is not possible to add a vertex without breaking the independence property implies that
every vertex is adjacent to the MIS, so this must be also a DS; at the same time, it is not
possible to remove a vertex since that vertex is no longer dominated. Thus, to find a Minimal
DS one can simply find a MIS: this gives immediately a deterministic O(m2/3) [19] bound
and a randomized Õ(n1/2) [3] one. However, while it is known that is hard to approximate
Maximum Independent Set1 within a factor n1−ε for every ε > 0[21], a simple greedy
approach achieves a O(logn)-approximation for Minimum DS [11].

In recent years, there has been a lot of work on designing dynamic graph algorithms for
maintaining approximate solutions to several problems. A notable example is matching, where
for different approximations there exist different algorithms (see e.g., [4, 5, 27, 20, 8, 30]).
This raises the natural question on whether there exists a dynamic algorithm capable of
maintaining an approximation to Minimum DS, and even better a O(logn) approximation. In
this paper, we answer this question affirmatively by presenting an algorithm that achieves a
O(logn) approximation, with a complexity matching the long standing O(∆) bound for MIS.
Moreover, if one is interested in finding a DS faster, we present a very simple deterministic
O(m1/2) algorithm to compute a Minimal DS, improving the O(m2/3) bound coming from
MIS. We believe these are important steps towards understanding the complexity of the
problem. Those two results are stated below.

I Theorem 1. Starting from a graph with n vertices, a O(logn) approximation of Minimum
Dominating Set can be maintained over any sequence of Ω(n) edge insertions and deletions
in O(∆ logn) amortized time per update, where ∆ is the maximum degree of the graph over
the sequence of updates.

I Theorem 2. Starting from a graph with n (fixed) vertices, a Minimal Dominating Set
can be deterministically maintained over any sequence of edge insertions and deletions in
O(
√
m) amortized time per update, where m is an upper bound on the number of edges in

the graph.

We also study the Minimum Connected Dominating Set problem (MCDS), which
adds the constraint that the graph induced by the DS D must be connected. This problem
was first introduced by Sampathkumar and Walikar [28] and arises in several applications.
The most noteworthy is its use as a backbone in routing protocols: it allows to limit the
number of packet transmissions, by sending packets only along the backbone rather than
throughout the whole network. Du and Wan’s book [13] summarizes the knowledge about

1 It is not possible to find a polynomial-time algorithm that finds a n1−ε-approximation to Maximum
Independent Set under the assumption NP 6= ZPP

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:3

MCDS. A special class of graphs is geometric graphs, where vertices are points in the plane,
and two vertices are adjacent if they fall within a certain range (say, their distance is at
most 1). This can model wifi transmissions, and the dynamic MCDS had been studied in this
setting: a polynomial-time approximation scheme is known [10], and Guibas et al. [17] show
how to maintain a constant-factor approximation with polylogarithmic update time. While
geometric graphs model problems linked to wifi transmissions, the general graph setting
can be also seen as a model for wired networks. However, no work about dynamic MCDS
is known in this setting: the static case is well studied, with a greedy algorithm developed
by Guha and Keller [16] that achieves an approximation factor O(ln ∆). They also show a
lower bound matching their complexity, together with their approximation factor. MCDS
had also been thoroughly studied in the distributed setting (see e.g. a heuristic to find a
Minimal CDS in [9], another one that sends O(∆n) messages and has a time complexity
at each vertex O(∆2) [31] or a 3 logn approximation that runs in O(γ) rounds where γ
is the size of the CDS found, with time complexity O(γ∆2 + n) and message complexity
O(n∆γ +m+ n logn) [6]). Despite all this work, no results are known in the dynamic graph
setting. As another application of our approach, we contribute to filling this gap in the
research line of MCDS. In particular, in this paper we show how our algorithm for Minimum
DS can be adapted in a non-trivial way to maintain a O(logn) approximation of the MCDS
in general dynamic graphs.

I Theorem 3. Starting from a graph with n vertices, a O(logn) approximation of Minimum
Connected Dominating Set can be maintained over any sequence of Ω(n) edge insertions
and deletions in Õ(∆) amortized time per update.

We further show how to maintain independently a Dominating Set D and a set of vertices
C such that the induced subgraphs on the vertices C ∪ D is connected. The set C has the
additional property that |C| ≤ 2|D|, such that |C ∪ D| = O(|D|). If D is a α-approximation
of Minimum DS, this gives a O(α) approximation for MCDS.

Further Related Work

It is well known that finding a Minimum DS is NP-hard [15]. It is therefore natural to look
for approximation algorithms for this problem. Unfortunately, it is also NP-hard to find a
c logn approximation, for any 0 < c < 1 [14]. This bound is tight, since there is a simple
greedy algorithm matching this bound [11]. Minimum DS had been studied extensively in
distributed computing: an algorithm which runs in O(logn log ∆) rounds finds a O(logn)
approximation with high probability [23] and an algorithm with constant number of rounds
achieves a non-trivial approximation[25].

The DS problem is closely related to the Set Cover problem: the two problems are
equivalents under L-reduction [24]. However, Set Cover was studied in the dynamic setting
[18, 1], but with different kinds of updates: instead of edges being inserted or deleted (which
would represent new elements in the sets according to the L-reduction), new elements are
being added to the cover (which would be new vertices in DS).

Outline. The rest of the paper is organized as follows. First, we present an algorithm for
Minimum DS, which will be used later on also for MCDS: we start by a Õ(n) algorithm, and
then show how to overcome its bottleneck in order to achieve a Õ(∆) complexity. Finally,
we present our O(

√
m) algorithm for Minimal DS.

STACS 2019

35:4 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

2 A O(log n) approximation of Minimum Dominating Set in
O(∆ log n) time per update

This section aims at proving Theorem 1. Following a reduction from Set Cover, minimum
DS is NP-hard to approximate within a factor logn [14]. Here we present a matching upper
bound (up to a constant factor), in the dynamic setting. Our algorithm relies heavily on
the clever set cover algorithm by Gupta et al. [18]. While in the static setting Set Cover is
equivalent to minimum DS, in the dynamic setting these two problems are different. More
precisely, in the dynamic Set Cover problem one is asked to cover a set of points S (called
the universe) with a given family of sets F , while the set S is changing dynamically. To draw
the parallel with DS, in the latter the set S is the set of vertices of the graph (which does
not change) and for every vertex the set of its neighbors is in F . The dynamic part concerns
therefore F , and not the universe S.

Gupta et al. present an O(logn)-approximation for dynamic Set Cover problem: in
what follows, we show how to adapt their algorithm to the DS case, with an update time of
O(∆ logn). As in [18], the approach easily adapts to the weighted case. Unfortunately, this
cannot be generalized to MCDS, therefore we do not consider this property of the algorithm.
The following definitions are partly adapted from [18].

2.1 Preliminaries

For a vertex v, let N(v) be the set of its neighbors, including v. The algorithm maintains a
solution St at time t such that an element of St is a pair composed of

a dominant vertex v

a set Dom(v) ⊆ N(v), which are the vertices that are dominated by v. We call |Dom(v)|
the cardinality of the pair.

We call a dominating pair an element of St. The algorithm requires that multiple copies of a
vertex can appear as the dominant vertex of a pair. However, each vertex is exactly in one
Dom(v). The solution to the DS problem is composed of all vertices that appear as dominant
vertices of a pair. Since each vertex is in exactly one Dom(v), each vertex is dominated and
therefore the set of dominants is a valid solution to the DS problem.

The dominating pairs are placed into levels according to their cardinality: the level l is
defined by a range Rl := [2l−10, 2l], and each pair (v,Dom(v)) is placed at an appropriate
level l such that |Dom(v)| ∈ Rl. In that case, elements of Dom(v) are said to be dominated at
level l; we denote by Vl the set of all vertices dominated at level l. We say that an assignment
of levels is valid if it respects the constraint |Dom(v)| ∈ Rl. This allows us to define the
notion of Stability:

stable solution: A solution St is stable if there is no vertex v and level l such that
|N(v)∩Vl| > 2l; in other words, it is not possible to introduce a new vertex in the solution
to dominate some vertices at level l such that the resulting dominating pair could be at
level strictly greater that l.

The algorithm will dynamically maintain a stable solution St, with a valid assignment
of levels. Note that the ranges Rl overlap: this gives some slack to the algorithm, which
allows enough flexibility to prevent too many changes while our algorithm maintains a valid
solution.

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:5

2.2 The algorithm

The main part of the algorithm is the function Stabilize, which restores the stability at the
end of every update. The function is the following (see [18]):

Stabilize. As long as a vertex v violates the stability condition at level l, do the
following: Add the pair (v,N(v) ∩ Vl) to the lowest possible level j (i.e., the lowest
level such that |N(v) ∩ Vl| ∈ Rj); Remove the elements of N(v) ∩ Vl from the set
of their former covering pair: if it gets empty, remove the pair from the solution.
Otherwise, if the cardinality of such a pair goes below 2l−10, put it at the highest
possible level.

Edge addition. When a new edge (u, v) is added to the graph, one just need to ensure that
the solution remains stable, and thus the algorithm runs Stabilize.

Edge deletion. When an edge (u, v) is removed from the graph, we proceed as follows. If
neither u nor v dominates the other endpoint, the solution remains valid and stable, and
nothing needs to be done. Otherwise, assume without loss of generality that v dominates u.
Then:

Remove u from Dom(v)
Add the pair (u,Domu = {u}) to the solution with level 1
Run Stabilize

Correctness. All the nodes of the graph are dominated at every time. Indeed, Stabilize
does not make any node undominated and if a vertex is not dominated after an edge removal,
the algorithm simply adds it to the solution. Therefore, the solution St maintained by the
algorithm is a valid one.

2.3 Analysis

Approximation ratio. We use the following lemma by Gupta et al. [18] to bound the cost
of a stable solution.

I Lemma 4 (Lemma 2.1 in [18]). The number of sets at one level in any stable solution is at
most 210 ·OPT.

Since for every dominating pair (v,Dom(v)) we have that 1 ≤ |Dom(v)| ≤ n, there are
only logn levels that can contain a set. The total cost of a stable solution is therefore
O(logn ·OPT).

A token scheme to bound the number of updates. Unfortunately, the analysis of Gupta
et al. cannot be applied directly to the case of DS, due to the different nature of the updates.
However, we can build upon their analysis, as follows. We first bound the number of vertices
that change level, and then explain how to implement a level change so that it costs O(∆).
We prove the following lemma by using a token argument.

I Lemma 5. After k updates of the algorithm, at most O(k logn+ n logn) elements have
changed levels.

STACS 2019

35:6 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Proof. We use the following token scheme, where each vertex pays one token for each level
change. In the beginning, we give 2 logn tokens to every vertex. If a vertex is undominated
after an edge removal, we give 2 logn new tokens to this vertex. Since at most one vertex
gets undominated for each edge deletion, the total number of tokens given after k updates
is O(k logn+ n logn). To prove the lemma, we need to show that at any time each vertex
has always a positive amount of tokens. We adapt the proof of Gupta et al. to show the
following invariant:

I Invariant 1. Every vertex at level l has more than 2(logn− l) tokens.

When a vertex is moved to a higher level, it pays one token for the cost of moving. It
also saves one token, and gives it to an “emergency fund” of its former covering pair. Each
pair has therefore a fund of tokens that can be used when the pair has to be moved to a
lower level.

When the pair (v,Dom(v)) has to be moved from level l to level l − j, it means that
a lot of vertices have left Dom(v) and that the tokens they gave to the pair can be used
to pay for the operation. Formally, we want to pay one token for every vertex in Dom(v)
for its level change, but we also want to restore the invariant. We need therefore 2j + 1
tokens for each vertex of Dom(v). Since the pair can be moved to level l− j, this means that
|Dom(v)| < 2l−j . Since a new pair is moved to the lowest possible level, this pair could not
be at level l− 1, which implies that |Dominit(v)| > 2l−1 where Dominit(v) is the set Dom(v)
at the time where it was created. Moreover, each of the vertices that left gave one token:
the amount of tokens usable is therefore bigger than 2l−1 − 2l−j . Thus we want to prove
that 2l−1 − 2l−j ≥ (2j + 1) · |Dom(v)|. It is enough to have 2l−1 − 2l−j ≥ 3 · (2j + 1)2l−j ,
i.e. to have 2j−1 − 1 ≥ 3(2j + 1). But since the pair was moved to level l − j, it means that
|Dom(v)| > 2l−j−1 and |Dom(v)| < 2l−10: putting these two equations together gives j > 9,
which ensures that 2j−1 − 1 ≥ 3(2j + 1) and concludes the proof. J

As the following corollary shows, we can bound the number of changes to D to O(logn)
amortized. This property will be useful in Section 3.

I Corollary 6. After k updates of the algorithm, at most O(k logn+ n logn) vertices can be
added to or removed from D.

Proof. Whenever a vertex is added to or removed from D, its level is changed. Lemma 5
gives the corresponding bound. J

We now turn to the implementation of the function Stabilize. As shown in the next
lemma, we implemented so that its cost is O(∆) for each element that changes level.

I Lemma 7. A stable solution can be maintained in O(∆ logn) amortized time per update.

Proof. For all vertices v and all levels l, the algorithm maintains the set N(v) ∩ Vl and its
cardinality. Every time a vertex changes its level, it has to inform all its neighbors: this
can be done in O(∆). When an edge (u, v) is added to or removed from the solution, the
algorithm updates the sets N(v) ∩ Vlu and N(u) ∩ Vlv , where lu and lv are the levels of u
and v, respectively.

During a call to Stabilize, the algorithm maintains also a list of vertices that may have
to be added to restore the stability: for a vertex v and level l, every time that N(v) ∩ Vl
changes, if the new cardinality violates the stability, we add v to this list in constant time.
The algorithm processes the list vertex by vertex: it checks that the current vertex still needs
to be added to the solution, and add it if necessary.

Since we pay O(∆) per level change and there are O(logn) amortized changes, the
amortized complexity of each update is O(∆ logn). J

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:7

Since a stable solution gives a O(logn) approximation to minimum DS, Lemmas 4 and 7
yield the proof of Theorem 1: a O(logn) approximation of Minimum Dominating Set can be
maintained in O(∆ logn) amortized time per update.

3 A O(log n) Approximation for Minimum Connected Dominating
Set in Õ(n) per update

A possible way to compute a Connected DS is simply to find a DS and add a set of vertices
to make it connected. Section 2 gives an algorithm to maintain an approximation of the
Minimum DS: we will use it as a black box (and refer to it as the “black box”), and show how
to make its solution connected without losing the approximation guarantee. If the original
graph is not connected, the algorithm finds a CDS in every connected component: we focus
in the following on a single of these components. Let D be the DS maintained, and C be a set
of vertices such that C ∪ D is connected and C is minimal for that property. The minimality
of C will ensure that |C| ≤ 2|D|: since D is a O(logn) approximation of MDS, this leads to a
O(logn) approximation for MCDS. Note that the vertices of C are not used for domination:
C ∪ D is therefore not minimal, but still an approximation of minimum.

Overall, we will apply the following charging scheme to amortize the total running time.
The main observation is that although a lot of vertices can be deleted to restore the minimality
of C, only a few can be added at every step. We thus give enough potential to a vertex
whenever it is added into C and whenever its neighborhood changes, so that at the time of
its removal from C it has accumulated enough potential for scanning its entire neighborhood.
After an edge deletion we might have to restore the connectivity requirement. We do that by
adding at most 2 new vertices in C: this is crucial for our amortization argument.

Outline. The set C may have to be updated for two reasons:
Restore the connectivity: if an edge gets deleted from the graph, or if the black box
removes some vertices from D, it may be necessary to add some vertices to C in order to
restore the connectivity of C ∪ D.
Restore the minimality of C: when an edge is added to the graph, or when a vertex is
added to C ∪ D (either by the black box or in order to restore the connectivity), some
vertices of C may become useless and therefore need to be removed.

We now address those two points. All our bounds are expressed in term of the total number
of changes in C ∪D: let therefore k be this number of changes. We will show later that, after
t updates to the graph, k = O(t logn).

The first phase of the algorithm is to restore the connectivity. We explain in the following
how to decide which vertices should be added to C for that purpose.

Restore the connectivity after an edge deletion

To monitor the connectivity requirement, we use the following idea. The algorithm maintains
a minimum spanning tree (MST) of the graph G where a weight 1 is assigned to the edges
between vertices in C ∪ D (called from now on D̃), and weight m is assigned to all other
edges. These weights ensure that, as long as D̃ is connected, the MST induces a tree on D̃.
When G[D̃] gets disconnected by an update, the MST uses a vertex of V \ D̃ as an internal
vertex: in that case, our algorithm adds this vertex to C, to restore the connectivity. We
give more details in the next section.

STACS 2019

35:8 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

The edge weights are updated as the graph undergoes edge insertions and deletions and
vertices enter or leave D̃. The MST of the weighted version of the graph has the following
properties.

If D̃ is a connected DS, then the MST has weight (|D̃| − 1) + m · |V \ D̃| (Kruskal’s
algorithm on this graph would use |D̃| − 1 edges of weight 1 to construct a spanning tree
on D̃, then |V \ D̃| edges of weight m to span the entire graph).
If D̃ is a DS but G[D̃] is not connected, then the weight of the MST has larger value.

The two properties stem from the fact that a MST can be produced by finding a minimum
spanning forest on D̃ and extend it to a MST on V . Kruskal’s algorithm ensures that this
leads to a MST. In the case where D̃ is connected, the first step yields a tree of weight D̃ − 1,
and since the graph is connected the second step yields a cost m · |V \ D̃|. However, if D̃ is
not connected, the second step adds strictly more that |V \ D̃| edges, therefore yielding a
cost bigger than m · (1 + |V \ D̃|). This is more than (|D̃| − 1) +m · |V \ D̃|, as claimed.

Furthermore, if G[D̃] has two connected components C1, C2, then the shortest of all paths
between vertices u, v, u ∈ C1, v ∈ C2 is the minimum number of vertices whose insertion
into C restores the connectivity requirement. Note that the shortest of all such paths must
have length at most 2 (otherwise, there must be a vertex not adjacent to any vertex in D,
which contradicts the fact that D is a DS).

After an edge deletion, it may happen that D̃ becomes disconnected and that the MST
includes some internal vertices (at most 2, by the previous discussion) not in D̃: in that case,
we add them to C. This turns out to be enough to ensure the connectivity.

To maintain the MST of the weighted version of the input graph we use the O(log4 n)
update time fully-dynamic MST algorithm from [22]. Since the weights of the edges incident
to the vertices that enter or leave D̃ are also updated, the algorithm runs in time Õ(∆) for
each change in D̃, i.e. in time k · Õ(∆)

Restore the connectivity when a vertex is deleted by the black box. When a vertex v is
deleted from D by the black box DS algorithm, we need to be more careful: updating the
edge weights and finding the new MST may add a lot of vertices to C (as many as ∆, one
per edge of the MST incident to v). However, if the removal of v disconnects G[D̃], it is
enough to add v to C to restore the connectivity. If its removal does not disconnect G[D̃],
nothing needs to be done. It is possible to know if the graph G[D̃] gets disconnected using
the properties of the MST, by only looking at the weight of the MST. The complexity of this
step is therefore Õ(∆), the time needed to update the weights of the MST.

Restore the minimality. The second phase of the algorithm is to restore the minimality of
C. We explain next how to find the vertices of C that need to be removed to accomplish
this task. This minimality condition is equivalent to the condition that all vertices in C are
articulation points in the graph induced by C ∪D. (An articulation point is a vertex such
that its removal increases the number of connected components.) This turns out to be useful
in order to identify which vertices need to be removed to restore the minimality of C.

To restore the connectivity requirement, new vertices were added into C, and the black
box added some vertices to D: this might result in some vertices in C not being articulation
points of G[D̃] anymore. As observed before, these are the vertices that need to be removed.
We need to identify a maximal set of such vertices that can be removed from C without
violating the connectivity requirement. To do this, the algorithm queries in an arbitrary
order one-by-one all the vertices v ∈ C to determine whether G[D̃ \ v] is connected. This can
be done using a data structure from Holm et al. [22] that requires Õ(1) per query. Whenever

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:9

the algorithm identifies a vertex such that G[D̃ \ v] is connected, it can safely remove it from
C. The complexity of this step is therefore Õ(n) to find all articulation points, and an extra
Õ(∆) for each of the vertices we remove from C.

The following three lemmas conclude the proof: the first shows that the algorithm is
correct, the second the Õ(n) time bound and the third the O(logn) approximation ratio.

I Lemma 8. The algorithm that first restores the connectivity of C∪D and then the minimality
of C is correct: it gives a minimal set C such that C ∪ D is connected.

Proof. After restoring the connectivity requirement the algorithm maintains a spanning tree
of D̃, so G[D̃] is indeed connected. In the following steps, before the algorithm removes a
vertex v from C, it first verifies that G[D̃ \ v] remains connected, which guarantees that G[D̃]
is connected at the end of the update procedure. Since the black box ensures that D is a
DS, D̃ is a DS too: hence at the end, D̃ satisfies both the domination and the connectivity
requirements. It remains to show that C is minimal, i.e., that all vertices in C are articulation
points in G[D̃]. Since during the second step the algorithm only removes vertices from C, a
vertex that was not an articulation point cannot become one, and therefore the loop to find
the articulation points is correct. The set C is therefore a minimal set such that C ∪ D is
connected. J

I Lemma 9. The amortized complexity of the algorithm is Õ(n) per update.

Proof. The amortized cost of the black box to compute D is Õ(∆). We analyze now the
additional cost of maintaining D̃. As shown in this section, the cost to add or delete a vertex
from D̃ is Õ(∆). To prove the lemma, we bound the number of changes in D̃. For that, we
count the number of vertices added to D̃: in an amortized sense this bounds the number of
changes too. Formally, we pay a budget deg(v) when v is added to D̃. Following insertions
and deletions of edges adjacent to v, we update this budget (with a constant cost), so that
when v gets deleted from D̃ a budget equal to its degree is available to spend.

From Corollary 6, the black box makes at most Õ(1) changes to D per update (in an
amortized sense). If it removes a vertex from D, we showed previously that no new vertex
is added to D̃. The number of additions to D̃ is therefore Õ(1). Moreover, in the case of
an edge deletion, at most two vertices are added to D̃ to maintain the connectivity. Since
restoring the minimality requires only to delete vertices, the total number of additions into
D̃ is Õ(1). As the cost for any of these additions is Õ(∆), the total cost of this algorithm is
upper bounded by the loop to find the articulation points, which is Õ(n). J

I Lemma 10. The algorithm maintains a O(logn) approximation for MCDS, i.e. |C ∪ D| =
O(logn) ·OPT

Proof. We first prove that |C| ≤ 2|D|, using the minimality of C. Each vertex of C is there
to connect some components of D. Consider the graph (W,F) where vertices W are either
connected components of D or vertices of C, and the set F of edges is constructed as follows.
Start with a graph containing one vertex for each connected component of D, and add
vertices of C one by one. When the vertex v is added, identify a node u in D adjacent to v
such that adding the edge (u, v) to F does not create a cycle: add to F an edge between v
and the node corresponding to the connected component containing u. It is always possible
to find such a vertex u, otherwise v would not be necessary for the connectivity, which would
contradict the minimality of C. This process gives a forest such that every node of C is
adjacent to a connected component of D. Since C ∪D is connected, it is possible to complete
F to make it a tree, adding some other edges. This tree has the two following properties.

STACS 2019

35:10 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

1. The leaves are vertices that correspond to connected component of D: indeed, if a vertex
of C was a leaf in this tree, it could be removed without losing the connecting of C ∪ D,
which would contradict the minimality of C.

2. Any vertex of C is adjacent to a connected component of D, by construction of the forest.

These properties ensure that for every subtree rooted at a vertex of C, there is a D vertex
at distance at most 2 from the root: otherwise, the vertices at distance 1 from it would
be from C and adjacent only to C vertices. Moreover, since a C vertex is not a leaf, it has
necessarily some descendant and the reasoning applies. Therefore, by rooting the tree at an
arbitrary vertex of C, we can charge every C vertex to a D descendant at distance at most 2.
As a D vertex can be charged only by an ancestor at most two levels above it, it is charged
at most twice. This ensures that |C| ≤ 2|D|.

Moreover, since D is a O(logn) approximation of MDS, |D| = O(logn) ·OPT. Putting
things together, we have |C ∪ D| = |C|+ |D| = O(logn) ·OPT. J

Combining Lemmas 8, 9 and 10 proves our claim: there is a Õ(n) algorithm to maintain a
O(logn) approximation of the Minimum Connected Dominating Set. The main bottleneck of
this approach is the time spent by the algorithm in the second phase to query all vertices in
C in order to identify the vertices that are no longer articulation points. In the next section
we present an algorithm that overcomes this limitation and is able to identify the necessary
vertices more efficiently.

4 A more intricate Õ(∆) algorithm to restore the minimality of C

In this section we present a more sophisticated algorithm for implementing the phase that
guarantees the minimality of the maintained connected dominating set. This gives a proof
of Theorem 3. We focus on a single edge update: indeed, when a vertex is added to (or
removed from) D̃, one can simply add (or remove) all its edges one by one. As in the analysis
of the complexity in Lemma 9, the amortized number of changes in D̃ is Õ(1). We aim now
at proving that the time required for handling a single change is Õ(∆): for that, we treat
edge insertions and deletions to D̃ one by one, and prove that any edge update can be done
in Õ(1), which would prove the claimed bound. Our algorithm maintains another spanning
forest F of G[D̃] (unweighted) using the algorithm from [22].

I Lemma 11. The vertices of C that are not articulation points after the insertion of the
edge (v, w) all lie on the tree path v...w of F . Moreover, the removal of any of these vertices
results in the other vertices being articulation points again.

Proof. Let Gb be the graph before the insertion of (v, w), and Ga be the one after. Let u be
a vertex that is an articulation point in Gb[D̃] but not in Ga[D̃]. Suppose by contradiction
that u is not on the tree path v...w: that means that v and w are connected in Gb[D̃] \ {u}.
Since u is an articulation point in Gb[D̃], v is not connected to some vertex x in Gb[D̃] \ {u}.
But as v and w are connected in Gb[D̃] \ {u}, adding the edge (v, w) does not connect v and
x and therefore u is still an articulation point after the insertion of the edge. Therefore,
all the articulation points that can be removed are in the cycle v...w, v. Since they are not
articulation points in Ga[D̃], they separate Gb[D̃] in only two components: one with v, the
other with w. Therefore, v...w, v is the only cycle containing v and w, and removing any
vertex from it make the articulation points of Gb[D̃] be articulations point in Ga[D̃], because
they disconnect v and w again. J

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:11

Lemma 11 allows us to focus on the following problem: find a vertex in C that is no
longer an articulation point in G[D̃] after the insertion of the edge (v, w). To achieve this,
the algorithm maintains for each vertex v ∈ C the number nc(v) of connected component of
G[D \ v]. For v /∈ C we set for convenience nc(v) to be the number of connected component
in G[D \ v] plus n. This information can be used as follows: when an edge (v, w) is added, if
for one vertex u ∈ C it holds nc(u) = 1 then u is removed from C (because it is no longer an
articulation point). To identify such a vertex, the algorithm queries for the minimal value
along the path v...w in T : if the minimum value is 1, the corresponding vertex is removed
from C. This removal makes all the other vertices of the set C articulation points again: by
Lemma 11, the cycle created by the insertion of (v, w) is broken by the deletion of u from
G[D̃] .

Notice that we are only interested in the nc(v) values of the vertices in C, as nc(v) > n

for v /∈ C. Since we compute a minimum and the values relevant are smaller than n, this is
equivalent to ignoring v. The advantage of this offset is that when v becomes part of C, it is
sufficient to decrease its value by n to make it consistent. We now show how to keep this
value up to date after adding or removing an edge.

Maintaining the nc(v) values in a top-tree. For this purpose, we use the biconnectivity
data structure from [22] (called top-tree) on the subgraph G[D̃]. To avoid cumbersome
notation, we pretend that we execute the algorithm on G, although the underlying graph on
which we execute the algorithm is G[D̃]. We also assume that the number of vertices remains
n throughout the execution, which is simply implemented by removing from G all incident
edges from the vertices with no incident edges in G[D̃].

We now briefly describe the approach of [22]. The algorithm maintains a spanning forest
F of G and assigns a level `(e) to each edge e of the graph. Let Gi be the graph composed of
F and all edges of level at least i. The levels are attributed such that the following invariant
is maintained:

I Invariant 2. The maximal number of vertices in a biconnected component of Gi is dn/2ie.

Therefore the algorithm needs only to consider dlog2 ne levels. Whenever an edge (v, w) is
deleted, one needs to find which vertices in the path v...w in F are still biconnected. We use
the following notion to describe the algorithm.

I Definition 12. A vertex u is covered by a nontree edge (x, y) if it is contained in a tree
cycle induced by (x, y). We say that a path v...w is covered at level i if every of its node is in
a tree cycle induced by an edge at level greater than i.

Mark that all the vertices that are covered by a given edge are in the same biconnected
component.

When a non-tree edge (v, w) is removed, it may affect the 2-edge connected components
along the tree-path v...w in T . To find which vertices are affected, the following algorithm is
used in [22]. It first marks the vertices in v...w as no longer covered at level `(v, w). Then,
it iterates over edges (x, y) that could cover v...w, i.e., the ones such that the intersection
between x...y and v...w is not empty, and marks the vertices in this intersection as covered.
This step is explained in the following function, which is called for all level i from `(v, w)
down to 0. meet(v, w, x) is the intersection of the tree paths v...w, v...x and x...w.
Recover(v, w, i). Set u := v, and iterate over the vertices of v...w towards w. For each

value of u, consider each nontree edge (q, r) with meet(q, v, w) = u and such that u...q is
covered at level i. If it is possible without breaking Invariant 2, increase the level of (q, r)

STACS 2019

35:12 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

to i+ 1 and mark the edges of q...r covered at level i+ 1. Otherwise, mark them covered
at level i and stop. If the phase stopped, start a second symmetric phase with u = w and
iterating on w...v towards v.

As shown in [22], this is correct and runs in O(log4) amortized time.

Figure 1 The edge (q, r) covers some node u on the path v...w.

In our case, we are interested in the vertices u whose value nc(u) changes. They are
exactly those that are still marked as not covered at the end of the process. Indeed, if an
edge (q, r) covers a vertex u (see Figure 1), then v and w are still connected in G[D \ u],
hence the connected component of G[D \ u] do not change. However, if u is not covered by
any edge, then v and w gets disconnected in G[D \ u], thus nc(u) must be updated.

We maintain the nc(·) values in a top-tree, as follows. We call a segment a subpath of
v...w. The idea is to maintain the non-covered segments and decrease the nc values along
these at the end of the process. The top-trees allow us to alter the value of a segment of a
path in O(polylogn) time.

Figure 2 The black segments are covered by edges (qi, ri). The red segments are uncovered.

Computing the list of uncovered segments. To find the uncovered segments (in red on
Figure 2), we sort the covered ones and take the complementary. Let (q1, r1), ..., (qk, rk)
be the nontree edges considered in the execution of Recover, and let xi = LCA(v, qi) and
yi = LCA(v, ri) (where LCA(u, v) is the lowest common ancestor of u and v in the tree).
The covered segments are exactly the (xi, yi). Using lowest common ancestor queries, it is

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:13

possible to sort those segments according to the position of xi along the path v...w. Given
the segments in order, it is then possible to determine the uncovered segments in linear
time: they correspond to the complementary of those segments. Answering a lowest common
ancestor query on a dynamic tree can be done in O(logn) (see [29]), hence it is possible to
sort the covered segments in time O(k log2 n) and to find the uncovered segments with the
same complexity.

Since k is the number of edges that move to a higher level during a call to Recover, and
the maximum level is logn, the total complexity of computing the uncovered segments is at
most log3 n per edges. Hence the overall complexity is O(log4 n), which is the cost of the
function Recover.

Adding an edge. To add an edge, two things are required: first decrease some nc value,
and then query if a vertex has a nc value 1. We have to decrease the nc value of a vertex y
if and only if its predecessor and its successor along the tree path v...w were not connected
in D \ {y} before the insertion of (v, w). This turns out to be equivalent to saying that y is
not covered: thus, the algorithm needs to compute the list of segments along v...w that were
uncovered before the insertion of (v, w). It then must decrease the nc values along these
segments, because they become connected. This is analogous to the case of an edge deletion:
the latter can be used the following way. First add the edge (v, w) (and make updates to
the data structure according to [22]), then delete it using the algorithm from the previous
section, with the only difference that, instead of increasing the nc values along the uncovered
segments, the algorithm decrease them.

It is then easy to find the minimum nc value along the path v...w, using the top-tree. If
this value is 1, we can remove the corresponding vertex from C. To remove it, we remove its
incident edges one by one, each time updating the nc values of the remaining vertices.

The results of this section are summarized in the following lemma.

I Lemma 13. After these updates, C is minimal. Moreover, the algorithm runs in amortized
time Õ(1) for a single edge update.

A direct corollary of this lemma and Lemma 9 is Theorem 3.

I Corollary 14 (Theorem 3). The whole algorithm to maintain the Connected DS is correct
and runs in time Õ(∆)

Proof. The correctness follows from Lemma 13 and from the correctness of the Õ(n) algorithm.
As for the running time, the only difference from Lemma 9 is the search for articulation
points: this takes Õ(1) for each edge added or removed from D̃, and consequently Õ(∆) for
each node added to or removed from D̃. This yields that the algorithm takes Õ(∆) amortized
time per update. J

5 A O(min(∆,
√

m)) amortized algorithm for Minimal Dominating
Set

This section presents a faster algorithm if one is only interested in finding a Minimal DS.
This is a DS in which it is not possible to remove a vertex, but it can be arbitrarily big. For
instance, in a star, the Minimum DS is only one vertex (the center), but its complementary
is another minimal DS and has size n− 1. This result highlights the difference between MIS
and Minimal DS: the best known deterministic complexity for MIS is O(m2/3), whereas we
present here a O(

√
m) algorithm for Minimal DS.

STACS 2019

35:14 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Key idea. When one needs to add a new vertex to the dominating set in order to dominate
a vertex v, he can choose a vertex with degree O(

√
m), either v or one of its neighbors

(a similar idea appears in Neiman et al. [27]). We present an algorithm with complexity
proportional to the degree of the vertex added to the DS: this will give a O(min(∆,

√
m))

algorithm. To analyze the complexity, we follow an argument similar to the one for CDS.
At most one vertex is added to the DS at every step, even though several can be removed.
Therefore we can pay for the (future) deletion of a vertex at the time it enters the DS.

For a vertex v, N(v) is the set of its neighbors, including v. Let D be the dominating set
maintained by the algorithm. If v ∈ D and u ∈ N(v), we say that v dominates u.

For each vertex v, the algorithm keeps this sets up-to-date:
let ND(v) be the set of neighbors of v that are in the dominating set D, i.e., ND(v) =
D ∩N(v)
if v ∈ D, let OnlyBy(v) be the set of neighbors of v that are dominated only by v, i.e.,
OnlyBy(v) = {u ∈ N(v) | |ND(u)| = 1}

Note that ND(v) and OnlyBy(v) are useful to check, throughout any sequence of updates,
whether a vertex v must be added to or removed from the current dominating set. In
particular, if ND(v) = ∅ then v is not dominated by any other vertex, and thus it must be
included in the dominating set. On the other hand, if OnlyBy(v) = ∅, all the neighbors of v
(v included) are already dominated by some other vertex, and thus v could be removed from
the dominating set.

5.1 The algorithm
We now show how to maintain a minimal dominating set D and the setsND(v) and OnlyBy(v),
for each vertex v, under arbitrary sequences of edge insertions and deletions. We first describe
two basic primitives, which will be used by our insertion and deletion algorithms: adding a
vertex to and deleting a vertex from a dominating set D.

Adding a vertex v to D. Following some edge insertion or deletion, it may be necessary
to add a vertex v to the current dominating set D. In this case, we scan all its neighbors u
and add v to the sets ND(u). If before the update ND(u) consisted of a single vertex, say w,
we also have to remove u from the set OnlyBy(w), since now u is dominated by both v and
w. If OnlyBy(w) becomes empty after this update, we remove w from D since it is no longer
necessary in the dominating set.

Removing a vertex v from D. When a vertex v is removed from the dominating set, we
have to remove v from all the sets ND(u) such that u ∈ N(v). If after this update ND(u)
consists of a single vertex, say w, we add u to OnlyBy(w).

Edge insertion. Let (u, v) be an edge to be inserted in the graph. We distinguish three
cases depending on whether u and v are in the dominating set D before the insertion. If
neither of them is in the dominating set (i.e., u /∈ D and v /∈ D), then nothing needs to be
done. If both are in the dominating set (i.e., u ∈ D and v ∈ D), then we start by adding v to
the set ND(u). If u was only necessary to dominate itself, we remove u from D. Otherwise,
we add u to ND(v) and perform the same check on v.

If only one of them is in the dominating set (say, u /∈ D and v ∈ D), we have to add v to
the set ND(u). As in the case of adding a vertex to D, this may cause the removal of another
vertex from the dominating set. This can happen only if before the insertion, ND(u) = {w}

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:15

for some vertex w and OnlyBy(w) = {u}: in other terms, u was dominated only by w, and
w was in the dominating set only to dominate u. Since after the addition of the edge (u, v)
u is also dominated by v, w can be removed from the dominating set.

Edge deletion. Let (u, v) be the edge being deleted from the graph. We distinguish again
the same three cases as before. If u /∈ D and v /∈ D, nothing needs to be done. If both u ∈ D
and v ∈ D, we just have to remove u (resp. v) from the sets ND(u) and OnlyBy(u) (resp.
ND(v) and OnlyBy(v)).

If only one of them is in the dominating set, say u /∈ D and v ∈ D, then we have to
remove v from ND(u). Now, there are two different subcases:

If ND(u) 6= {v} before the deletion, then nothing needs to be done.
Otherwise, we have to remove u from OnlyBy(v): if OnlyBy(v) = ∅ after this operation,
then we can safely remove v from D. The algorithm must find a new vertex to dominate
u: we simply add u to the dominating set.

5.2 Running time
Adding or removing a vertex v from the dominating set can be done in time O(deg(v)), where
deg(v) is the degree of v in the current graph. While several vertices can be removed from D
at every step, only one can be added (following an edge deletion): the amortized complexity
of the algorithm is therefore O(∆), where ∆ is an upper bound on the degree of the nodes.

Nevertheless, it is possible to chose the vertex to be added to the dominating set more
carefully. When the algorithm must find a new vertex to dominate vertex u, it does the
following:

If deg(u) ≤ 2
√
m+ 1, the algorithm simply adds u to D.

Otherwise, deg(u) > 2
√
m+ 1. The algorithms finds a vertex w ∈ N(u) with deg(w) ≤√

m and adds w to D. Note that such a vertex w can be found by simply scanning only
2
√
m + 1 neighbors of u, since (by averaging) at least one of them must have degree

smaller than
√
m.

In both cases, the insertion takes time O(min(∆,
√
m)).

When a vertex v is deleted from the dominating set, its degree can be potentially larger
than 2

√
m. However, when v was added to the dominating set its degree must have been

O(
√
m): this implies that many edges were added to v, and we can amortize the work over

those edges. More precisely, when a vertex v enters the dominating set, we put a budget
deg(v) on it. Every time an edge incident to v is added to the graph, we increase by one this
budget, so that when v has to be removed from D, v has a budget larger than deg(v) that
can be used for the operation.

References
1 Raghavendra Addanki and Barna Saha. Fully Dynamic Set Cover–Improved and Simple.

arXiv preprint, 2018. arXiv:1804.03197.
2 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal

independent set with sublinear update time. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
2018.

3 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully Dynamic Maximal
Independent Set with Sublinear in n Update Time, pages 1919–1936. SIAM, 2019. doi:
10.1137/1.9781611975482.116.

STACS 2019

http://arxiv.org/abs/1804.03197
http://dx.doi.org/10.1137/1.9781611975482.116
http://dx.doi.org/10.1137/1.9781611975482.116

35:16 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

4 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A Deamortization Approach
for Dynamic Spanner and Dynamic Maximal Matching. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1899–1918. SIAM, 2019. doi:
10.1137/1.9781611975482.115.

5 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 692–711. Society for Industrial and Applied Mathematics, 2016.

6 Sivakumar R Bevan Das and V Bharghavan. Routing in ad-hoc networks using a virtual
backbone. In Proceedings of the 6th International Conference on Computer Communications
and Networks (IC3N’97), pages 1–20, 1997.

7 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1–20. Society for Industrial and Applied
Mathematics, 2018.

8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM Journal on Computing, 47(3):859–887,
2018.

9 Sergiy Butenko, Xiuzhen Cheng, Carlos A Oliveira, and Panos M Pardalos. A new heuristic
for the minimum connected dominating set problem on ad hoc wireless networks. In Recent
developments in cooperative control and optimization, pages 61–73. Springer, 2004.

10 Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A polynomial-time
approximation scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks: An International Journal, 42(4):202–208, 2003.

11 V. Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979. URL: http://www.jstor.org/stable/3689577.

12 Camil Demetrescu and Giuseppe F. Italiano. A New Approach to Dynamic All Pairs Shortest
Paths. J. ACM, 51(6):968–992, 2004.

13 Ding-Zhu Du and Peng-JunWan. Connected dominating set: theory and applications, volume 77.
Springer Science & Business Media, 2012.

14 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

16 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998.

17 Leonidas Guibas, Nikola Milosavljević, and Arik Motskin. Connected dominating sets on
dynamic geometric graphs. Computational Geometry, 46(2):160–172, 2013.

18 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 537–550. ACM, 2017.

19 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for Maximal Independent Set
and other problems. arXiv preprint, 2018. arXiv:1804.01823.

20 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In Foundations
of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 548–557. IEEE,
2013.

21 Johan Håstad. Clique is hard to approximate withinn 1- ε. Acta Mathematica, 182(1):105–142,
1999.

22 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic Deterministic Fully-
dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-edge, and Biconnectivity. J.
ACM, 48(4):723–760, 2001.

23 Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm for
constructing small dominating sets. Distributed Computing, 15(4):193–205, 2002.

http://dx.doi.org/10.1137/1.9781611975482.115
http://dx.doi.org/10.1137/1.9781611975482.115
http://www.jstor.org/stable/3689577
http://arxiv.org/abs/1804.01823

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:17

24 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

25 Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approximation.
Distributed Computing, 17(4):303–310, 2005.

26 D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic Minimum Spanning Forest
with Subpolynomial Worst-Case Update Time. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 950–961, October 2017.

27 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.

28 E Sampathkumar and HB Walikar. The connected domination number of a graph. J. Math.
Phys, 1979.

29 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
computer and system sciences, 26(3):362–391, 1983.

30 S. Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 325–334, October
2016. doi:10.1109/FOCS.2016.43.

31 Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in ad hoc
wireless networks. In Proceedings of the 3rd international workshop on Discrete algorithms
and methods for mobile computing and communications, pages 7–14. ACM, 1999.

STACS 2019

http://dx.doi.org/10.1109/FOCS.2016.43

	Introduction
	A O(log n) approximation of Minimum Dominating Set in O(Delta log n) time per update
	Preliminaries
	The algorithm
	Analysis

	A O(log n) Approximation for Minimum Connected Dominating Set in Õ(n) per update
	A more intricate Õ(Delta) algorithm to restore the minimality of C
	A O(min(Delta, sqrt m) amortized algorithm for Minimal Dominating Set
	The algorithm
	Running time

