Skip to Main content Skip to Navigation
Journal articles

The Hessian polynomial and the Jacobian ideal of a reduced hypersurface in $\mathbb{P}^n$

Abstract : For a reduced hypersurface $V(f) \subseteq \mathbb{P}^n$ of degree $d$, the Castelnuovo-Mumford regularity of the Milnor algebra $M(f)$ is well understood when $V(f)$ is smooth, as well as when $V(f)$ has isolated singularities. We study the regularity of $M(f)$ when $V(f)$ has a positive dimensional singular locus. In certain situations, we prove that the regularity is bounded by $(d-2)(n+1)$, which is the degree of the Hessian polynomial of $f$. However, this is not always the case, and we prove that in $\mathbb{P}^n$ the regularity of the Milnor algebra can grow quadratically in $d$.
Complete list of metadata

https://hal.inria.fr/hal-02337441
Contributor : Laurent Busé Connect in order to contact the contributor
Submitted on : Tuesday, October 29, 2019 - 2:28:33 PM
Last modification on : Thursday, August 4, 2022 - 4:58:12 PM

Links full text

Identifiers

Citation

Laurent Busé, Alexandru Dimca, Hal Schenck, Gabriel Sticlaru. The Hessian polynomial and the Jacobian ideal of a reduced hypersurface in $\mathbb{P}^n$. Advances in Mathematics, Elsevier, 2021, 392, ⟨10.1016/j.aim.2021.108035⟩. ⟨hal-02337441⟩

Share

Metrics

Record views

220