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Crooked functions

Pascale Charpin∗
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Abstract

Crooked permutations were defined twenty years ago. It was firstly
shown that they can be used to construct interesting objects in graph
theory. The field of applications was extended later, since crooked
functions, bijective or not, correspond to APN functions and to some
optimal codes. We adopt an unified presentation, of crooked functions,
explaining the connexion with partially-bent functions. We then com-
plete some known results and propose new properties. For instance,
crooked functions allow to construct sets of bent functions, or simply
define some permutations.

Keywords: Vectorial function, Boolean function, derivative, differential set,
plateaued function, partially-bent functions, bent functions, APN function,
AB function, permutation.

1 Introduction

The crooked functions have been introduced by Bending and Fon-Der-Flaass
in 1998, as combinatorial objects of great interest [1]. Such a function has
been defined from V to W , two n-dimensional vector spaces over F2, by the
following property: the image set of any of its derivatives is the complement
of a hyperplane. This characterization implies that a crooked function is
bijective, and allows, in particular, to construct distance regular graphs.
Later, several authors have developed this work, and have generalised the

∗INRIA, 2 rue Simone Iff, Paris 75012

1



previous definition. They notably related the crooked functions with several
optimal objects, which have applications both to cryptography and coding
theory [12, 13].

In this paper, we want to recall what is known about crooked functions
today. In that sense, this paper is a survey, including several known results.
However, we propose another appproach, starting from the so-called partially-
bent functions, and present some new results.

After preliminaries, we propose a brief survey on the (few) papers con-
cerning crooked functions. As we can know, the list of references includes
all this papers. Section 4 is devoted to the structure of crooked functions.
We begin by proving the link between partially-bent functions and crooked
functions. We later differentiate the two cases: odd and even number of
variables. The odd case was mainly treated in the first papers, since in this
case, crooked functions could be permutations. In Sections 5 and 6, we show
how to construct, respectively, a set of bent functions and a set of permuta-
tions, since the nice structure of any crooked function. We conclude by the
main conjecture about the existence of crooked functions.

2 Definitions, basic properties

Thoughout this paper, |E| denotes the cardinality of the set E, and E∗ =
E \ {0}. Let F be a mapping, from the finite field F2n to itself. Such a
function is called a vectorial function, while a function f , from F2n to F2 is,
as usually, a Boolean function. We denote by Im(ξ) the image set of any
function ξ.

A vectorial function F , from F2n to itself, is said to be an almost perfect
nonlinear (APN) function if and only if all the equations,

F (x) + F (x+ a) = c, a, c ∈ F2n , a ̸= 0 , (1)

have zero or two solutions in F2n , say x and x + a. Throughout this paper,
we call derivative of F , with respect to a, the function from F2n to V :

x 7→ DaF (x) = F (x) + F (x+ a), a ∈ F∗
2n .

where V will be a subfield of F2n , usually F2n or F2. We call differential set,
in point a, the image set of DaF :

Im(DaF ) = { F (x) + F (x+ a) | x ∈ F2n}. (2)
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Clearly, when F is APN, we have for any a ∈ F∗
2n :

DaF (x) = DaF (x+ a) = c, for some c and for only one x.

This means that DaF is a 2-to-1 function. Thus, one can formulate the APN
property as follows.

Proposition 1 Any vectorial function F , over F2n, is APN if and only if
all their differential sets have cardinality 2n−1.

The 2n, so-called, components of F are the Boolean functions

fλ : x 7−→ Tr(λF (x)) , λ ∈ F2n ,

where f0 is the null function, by convention. They are linearly defined by
means of the absolute trace on F2n :

x 7→ Tr(x) = x+ x2 + . . . , x2n−1

.

The dual V ⊥, of any subspace V of F2n , is the subspace of those y such that
Tr(yx) = 0, for all x ∈ V . TheWalsh transform of a Boolean function f , is
defined as

a ∈ F2n 7→ Wf (a) =
∑
x∈F2n

(−1)f(x)+Tr(ax).

Recall the Parseval’s relation:∑
a∈F2n

(Wf (a))
2 = 22n.

We will need the following result:

Lemma 1 [6, Lemma V.2] Let f be a Boolean function over F2n, and let V
be a subspace of F2n of dimension k. Then∑

v∈V

(Wf (v))
2 = 2k

∑
u∈V ⊥

∑
x∈F2n

(−1)f(x)+f(x+u).

We now define particular APN functions, which exist for odd n only.

Definition 1 The function F is said to be an almost bent (AB) function if
the numbers

µF (a, λ) =
∑
x∈F2n

(−1)Tr(λF (x)+ax) , (3)

are equal to 0 or ±2
n+1
2 only, when a ∈ F2n and λ ∈ F∗

2n.
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Wf (u) number of u ∈ F2n

0 2n − 2n−s

2(n+s)/2 2n−s−1 + (−1)f(0)2(n−s)/2−1

−2(n+s)/2 2n−s−1 − (−1)f(0)2(n−s)/2−1

Table 1: Walsh spectrum of the Boolean s-plateaued function f

Note that µF (a, λ) = Wfλ(a) for any fixed λ.

A Boolean function f , over F2n , is said to be bent when Wf takes two
values {±2n/2} only, so that n must be even. It is said to be s-plateaued when
either it is bent or Wf takes three values,

{0,±2(n+s)/2}, with 1 ≤ s ≤ n− 2 and n+ s even.

By convention, a bent function is 0-plateaud. The value 2(n+s)/2 is the am-
plitude of f . A plateaued vectorial function is a vectorial function whose
components are plateaued Boolean functions. It is said that F is plateaued
with single amplitude, when all components of F have the same amplitude.

The sum-of-square indicator of f is defined by

ν(f)=
∑
a∈F2n

W2
Daf (0)=2−n

∑
b∈F2n

W4
f (b). (4)

If f is s-plateaued then ν(f)= 22n+s. Moreover, the vectorial function F is
APN if and only if ∑

λ∈F∗
2n

ν(f)= 22n+1(2n − 1) (5)

(see [2, Corollary 1]). A Boolean function f is said to be balanced if it takes
the values 0 and 1 the same number of times. Recall a well-known result:

Theorem 1 A vectorial function F is a permutation if and only if all its
components fλ, λ ∈ F∗

2n, are balanced.

3 Brief record

We use our terminology, of the previous section, rather than of the initial
works on crooked functions. The next definition was proposed by Bending
and Fon-Der-Flaass in [1], twenty years ago.
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Definition 2 Let F be a function from F2n to itself. This function is called
crooked if it satisfies the following three properties:

(i) F (0) = 0;

(ii) F (x) + F (y) + F (z) + F (x+ y + z) ̸= 0, for any three distinct x, y, z;

(iii) DaF (x) +DaF (y) +DaF (z) ̸= 0, for arbitrary x, y, z and any a ̸= 0.

This definition implies that such a function F is a bijection over F2n , where
n must be odd. Note that the condition (ii) means that F is APN (see (1)).
Also, F is crooked if and only if any of its differential sets is a complement
of a hyperplane. Further, other properties are studied, in [1], such as some
relations of crooked permutations with bent functions of dimension n − 1,
and with the so-called Kerdock sets.

Crooked permutations allow to construct some distance regular graphs.
This was shown in [1], generalizing previous constructions. Later, van Dam
and Fon-Der-Flaass proposed another construction, and then another ge-
neralisation (see, in particular, Thorem 3 of [12]). Conversely, Godsil and
Roy have shown that crooked permutations can be fully characterized by
Preparata codes of minimum distance 5. Similarly, some distance-regular
graphs provide crooked permutations [15, Theorems 3,5].

Since the high interest for APN functions in cryptography and coding
theory [10], the existence of crooked functions was later the core of the re-
search on crooked functions. Kyureghyan proposed another definition of
crooked functions, identifying all APN functions which are such that their
differential sets are affine hyperplanes. She established the basic properties
of such functions. She notably proved that the monomial crooked functions
are quadratic [16, 17].

The APN quadratic functions are crooked. We do not know if crooked
functions of higher degree do exist. This is a recurring question, about which
only negative results have been obtained. An important result was obtained
by Bierbrauer and Kyureghyan: binomial crooked functions are quadratic [4].

4 Structure of crooked functions

A hyperplane of F2n can be seen as a subspace of F2n , as follows defined:

Hλ = { y | Tr(λy) = 0 }, λ ∈ F∗
2n . (6)
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We will denote by Hλ the complement of Hλ. The dual of Hλ is obviously
H⊥

λ = {0, λ}.
The next definition of crooked functions is due to Kyureghan [17]. The

corpus of such functions includes the crooked permutations, but also a large
variety of non bijective crooked functions, especially in even dimension.

Definition 3 A function F , from F2n to itself, is called crooked when it is
such that, for every a, its differential set

Sa = { F (x) + F (x+ a) | x ∈ F2n},

is an affine hyperplane.

We directly deduce from Proposition 1:

Claim 1 Any crooked function is an APN function.

Assuming that Sa = Hλ, for some λ, we get

Tr (λ(DaF (x))) = c, for all x, where c ∈ F2.

This means that the derivative of the component fλ of F , in point a, is a
constant function. In this case, a is said to be a linear structure of fλ. The
linear space of fλ is the subspace, including a = 0, of their linear structures.
We will see that crooked functions have always components with nonzero
linear structures.

4.1 Crooked and partially-bent functions

Let f be any Boolean function over F2n . Denote by Nd, the number of
balanced derivatives of f , and by Nf , the size of the set {a|Wf (a) = 0}.
Partially-bent functions were introduced in [9], as functions satisfying

(2n −Nd)(2
n −Nf ) = 2n. (7)

There is another characterization of partially-bent functions, which allows to
determine their Walsh spectrum.

Theorem 2 [9, Theorem] A Boolean function f is partially-bent if and only
if its derivatives are either constant or balanced.

6



This leads to the precise description of the Walsh spectrum of any partially-
bent function. Note that bent functions are particular partially-bent func-
tions, with Nd = 2n − 1 and Nf = 0. Moreover, a partially-bent function
is, in a certain sense, obtained by concatenating the same bent function,
several times. The next result is partly given by [9, Proposition 2]. See
also [17, Theorem 1], which concerns crooked functions but, actually, holds
for any partially-bent function. For the Walsh spectrum, see a proof in [7,
Proposition 4].

Corollary 1 Let f be a partially-bent Boolean function. Assume that f has
a linear space V , of dimension s > 0.

Then f is a s-plateaued function, such that n + s is even, and Wf takes
three values, {0} and {±2(n+s)/2}. The Walsh spectrum of f is given by the
Table 1 above.

The definition of vectorial partially-bent functions F is simply derived.

Definition 4 Let F : F2n → F2n. The function F is said to be a partially-
bent vectorial function if every component of F is partially-bent. When n is
even, some components can be bent.

Theorem 3 Let F be a vectorial function over F2n with components fλ. Set,
for a ∈ F∗

2n,
Λa = { λ ∈ F∗

2n | Dafλ is constant } ∪ {0},
and denote by ℓ(a) the dimension of Λa. Then we have:

• Assume that F is partially-bent. Then the differential sets of F are
affine subspaces. For any a ∈ F∗

2n, this subspace is of codimension ℓ(a),
with ℓ(a) ≥ 1 and DaF is a 2ℓ(a)-to-1 function.

• If F is a crooked function then F is partially-bent.

Proof. Recall that Dafλ(x) = Tr(λDaF (x)), for all x. Obviously, Λa is a
subspace of F2n . Now, fixing a and x, we compute

B(a, x) =
∑
λ∈F2n

∑
y∈F2n

(−1)Dafλ(x)+Dafλ(y)

=
∑
y∈F2n

∑
λ∈F2n

(−1)Tr(λ(DaF (x)+DaF (y)))

= 2n × |{ y | DaF (x) = DaF (y)}|.
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On the other hand, we set for any λ ∈ F∗
2n :

B(λ) =
∑
y∈F2n

(−1)Dafλ(x)+Dafλ(y) = (−1)Dafλ(x)
∑
y∈F2n

(−1)Dafλ(y).

We first assume that F is partially bent. Note that ℓ(a) ≥ 1, since otherwise
we would have that the Boolean function Dafλ is balanced, for any λ ∈ F∗

2n ,
from Theorem 2. This is impossible since DaF cannot be a permutation (see
Theorem 1).

Clearly, B(λ) = 0 if and only if the function Dafλ is balanced. If it is not
balanced, then λ ∈ Λa, and this function is constantly equal to either 0 or 1.
In both cases, we get B(λ) = 2n. Hence, we get

B(a, x) =
∑
λ∈Λa

B(λ) = 2n2ℓ(a), for all x,

implying that the number of y such that DaF (x) = DaF (y) equals 2ℓ(a),
i.e., DaF is 2ℓ(a)-to-1. Since Im(DaF ) is contained in an affine subspace of
codimension ℓ(a), according to the definition of Λa, Im(DaF ) is equal to this
affine subspace.

Now, we suppose that F is a crooked function. Consider any component
fλ of F . Let a ∈ F∗

2n such that Dafλ is not constant. Set V = Im(DaF ).
Then we have that any x satisfies:

Tr(λDaF (x)) = 0 if and only if x ∈ V ∩Hλ.

There are 2n−1 such x, since DaF is 2-to-1 and V is an affine hyperplane,
which is neither Hλ nor its complement. Hence Dafλ is balanced. We have
proved that fλ is partially-bent, completing the proof. ⋄

Let F be any quadratic function:

F (x) =
∑

0≤i<j<n

ui,jx
2i+2j , ui,j ∈ F2n .

The derivatives of F are affine functions, say La for any a ∈ F∗
2n . Thus, F is

partially-bent; it is crooked if and only if every La is an affine function with
kernel of dimension 1.

Corollary 2 Any quadratic vectorial function is partially-bent. It is crooked
if and only if it is APN.
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4.2 Crooked of odd dimension

In this section, we study crooked functions of odd dimension, bijective or not.
Theorem 4 (below) is the main result, describing the exceptional properties of
such functions. These results are quite known, but were partially presented
in several papers [13, 16, 17]. First, it is easy to describe the set of crooked
permutations.

Lemma 2 Let F be a crooked function such that F (0) = 0, with differential
sets Sa. Let a and λ be such that Sa equals either Hλ or Hλ, where Hλ is
defined by (6). Then we have:

Sa = Hλ ⇐⇒ Tr(λF (a)) = 1.

Besides, F is a permutation if and only if Sa = Hλ, for any such pair (λ, a).
In this case, n is odd.

Proof. By hypothesis, we have Tr(λDaF (x)) = c for all x, where c ∈ {0, 1}.
In particular, Tr(λF (a)) = c; further, c = 0 means that Im(DaF ) = Hλ.

The function F is not bijective if and only if F (x) = F (x + a), for some
pair (x, a). Equivalently, there is (λ, a) such that Im(DaF ) = Hλ, since 0
belongs to Im(DaF ).

When n is even, F cannot be a permutation, since it is an APN function,
which is plateaued (see [2, Theorem 3]). ⋄

When n is odd, a crooked function may not always be bijective, as we show
by the next example.

Example 1 Assume that n is odd. It is well-known that

F : x 7→ x2t+1, with gcd(t, n) = 1,

is an AB permutation. So, it is a crooked permutation. Consider now the
function x 7→ G(x) = x2t+1 + x, which is AB too, and then crooked. Since
G(0) = G(1) = 0, G is not a permutation.

Definition 5 A Boolean function is said to be near-bent if it is 1-plateaued,
i.e., its Walsh transform takes the values 0 and ±2(n+1)/2 only.
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Theorem 4 Let F be a crooked function over F2n, n odd, such that F (0) = 0.
Every differential set Sa, a ∈ F∗

2n, is an affine hyperplane:

Sa = β +Hλ, β ∈ F2n , for some λ ∈ F∗
2n .

Then the following properties hold:

(i) The differential sets Sa are two by two distinct, corresponding to two by
two distinct hyperplanes Hλ. More precisely, to every a ∈ F∗

2n cor-
responds one and only one λ ∈ F∗

2n.

(ii) Any component fλ of F is a near-bent Boolean function with linear space
of dimension 1, say {0, a}. When fλ is balanced, its derivative in point
a is equal to 1. This holds for any fλ, when F is a permutation,

(iii) F is an AB function.

Proof. Since F is crooked, it is partially-bent. Let fλ, λ ∈ F∗
2n , be the

components of F . Thus, for any λ and for any a, the derivative of fλ, in
point a, is either constant or balanced. Hence∑

x∈F2n

(−1)fλ(x)+fλ(x+a) ∈ {0,±2n}.

For any fixed λ, there is at least one a, say a(λ), such that Dafλ is constant,
since otherwise the function fλ would be bent, which is impossible when n is
odd. Thus, we get the set of the a(λ), whose size is at most 2n−1. However,
a(λ) = a(µ) = b, for some µ ̸= λ, would mean the following: the Boolean
functions

x 7→ Tr(λDbF (x)) and x 7→ Tr(µDbF (x))

are both constant. This would imply that Sb is of codimension at least 2,
a contradiction. To each λ corresponds one and only one a, completing the
proof of (i).

We deduce that any component fλ has only one nonzero linear structure,
say a, i.e., its linear space has dimension 1. Obviously, if fλ is balanced, its
derivative in point a is constantly equal to 1. When F is a permutation, all
fλ are balanced, completing the proof of (ii).

From Corollary 1, every fλ is near-bent, providing

Wfλ(a) ∈ { 0, ± 2(n+1)/2 }, for all a ∈ F2n .
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According to Definiton 1, F is an AB function, completing the proof. ⋄

From Table 1, we know that the support of the Walsh spectrum of any near-
bent Boolean function on F2n has size 2n−1. It could be an affine subspace
of codimension 1, as it holds for components of some crooked functions.

Proposition 2 Let F be a vectorial function over F2n, n odd, such that
F (0) = 0. Assuming that F is crooked, the set

Wλ = { a ∈ F2n | Wfλ(a) = 0}

is an affine subspace of codimension 1, for all λ ∈ F∗
2n.

Conversely, assume that the sets Wλ are affine hyperplanes. In this case,
if F is APN then F is crooked.

Proof. Assume that F is crooked and let λ ∈ F∗
2n . Since F is an AB function,

fλ is partially bent, with linear space {0, b}, for some nonzero b. Obviously,
the function ga : x 7→ fλ(x) + Tr(ax) is partially bent too, with linear space
{0, b}, for any a ∈ F2n . We know that any partially-bent function is balanced
if and only if it is not constant on its linear space (see [9, Proposition 2]).
Thus, ga is balanced if and only if

Dbga(x) = 1, i.e., Dbfλ(x) + Tr(ab) = 1, for all x.

Hence, we get Tr(ab) = 1 + c, c ∈ F2, since Dbfλ is a constant function. We
can suppose that c = 0. Thus, ga is balanced if and only if Tr(ab) = 1, that
is a ∈ Hb. Thus

Wλ = { a ∈ F2n | Tr(ab) = 1} = Hb.

Similarly, with c = 1 we obtain Wλ = Hb.
Conversely, suppose that Wλ is an affine subspace of codimension 1, say

u+Hb, u ∈ F2n , for some b. So, H⊥
b = {0, b} and we have from Lemma 1:

∑
a∈Hb

Wfλ(a)
2 = 2n−1

(∑
x∈F2n

(−1)Tr(λD0F (x)) +
∑
x∈F2n

(−1)Tr(λDbF (x))

)

Since Perceval’s relation, the sum above on the left is equal either to 0 or to
22n. We deduce that Dbfλ is a constant function. So, if DbF is 2-to1, then
Im(DbF ) is equal to either Hλ or Hλ. ⋄
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4.3 Crooked of even dimension

When n is even, crooked functions are partially-bent functions which have
bent components. We recall this property below, by Theorem 5.

Theorem 5 Let F be a plateaued function over F2n, with n even and n > 4.
Let 2(tλ+n)/2 be the amplitude of any component of F , namely of any fλ,
λ ∈ F∗

2n. Denote by B the number of bent components of F . Then F is APN
if and only if

B =
∑

λ∈F∗
2n ,tλ>0

(2tλ − 2). (8)

This property holds, in particular, for crooked functions.
Consequently, B satisfies

2(2n − 1)

3
≤ B < 2n − 2n/2, (9)

where the lower bound is reached if and only if tλ = 2 for all non zero tλ.

Proof. The equality (8) has been proved by [11, Proposition 6], but may
be computed by using (5). Indeed, since each fλ is plateaued, we have
ν(fλ) = 2tλ+2n, for any λ, and then:

A =
∑
λ∈F∗

2n

ν(fλ) = 22n
∑
λ∈F∗

2n

2tλ .

According to (5), F is APN if and only if A = 22n+1(2n − 1), providing

B +
∑

λ∈F∗
2n ,tλ>0

2tλ = 2(2n − 1) = 2(B +N), (10)

since 2n − 1 = B +N with N = |{λ | tλ > 0}|. Hence, the equality above is
equivalent to (8). Note that tλ > 0 implies tλ ≥ 2, since n+ tλ must be even.

The lower bound of B, in (9), is known (see [2, Corollary 3]). The upper
bound has been proved by [19, Theorem 3]. It cannot be reached here, since
we must have B ≡ 2 (mod 4), from (10). ⋄

By the study of bent components, one understand precisely the difference
between odd and even cases. Let F be a crooked function on F2n , with
components fλ. We have seen that, when n is odd, there is a one to one
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correspondence λ 7→ a(λ), where a(λ) is the unique linear structure of fλ.
When n is even, the linear space of fλ has dimension s, where s is even. So,
either fλ is bent (s = 0) or s ≥ 2. The number of hyperplanes involved in
the structure of F is at most (2n − 1)/3. For any a, there is one and only
one λ such that Im(DaF ) is equal to Hλ or to Hλ. But, the function Dafλ
is constant for any a belonging to the linear space of fλ. There are at least
three such nonzero a, when fλ is not bent.

Proposition 3 Let F be a crooked function on F2n, n even, with components
fλ. For any a ∈ F∗

2n, there is a unique λ such that the derivative of fλ, in
point a, is a constant function.

Conversely, any function fλ is either bent or with linear space V of di-
mension k ≥ 2.

Proof. By hypothesis, Im(DaF ) is an hyperplane Hλ, or the complement
of Hλ, for any a ∈ F∗

2n . Hence Tr(λDaF (x)) = c, for all x, where c ∈ F2.
Such a λ is unique, because otherwise Im(DaF ) would be an affine subspace
of codimension 2.

Since F is a plateaued APN function, at least 2(2n − 1)/3 components
of F are bent. Let fλ be a non bent component. Its linear set has an even
dimension, so this dimension must be greater than or equal to 2. ⋄

5 Bent from crooked functions

In this section, we consider crooked functions over F2n , where n is odd. The
components of such a function are near-bent Boolean functions. Moreover,
every component has (only) one derivative which is a constant function. (see
Theorem 4). We will show that a set of 2n − 1 bent functions of n + 1
variables can be derived, using this strong property. Our main reference
is the construction of Leander and McGuire [18], on the near-bent Boolean
functions, that we apply to vectorial functions which are crooked. We first
recall some facts which are more or less known, maybe not in this form.

Lemma 3 Let f be a near-bent Boolean function over F2n, where n is odd.
Assume that f(0) = 0. Then (i) and (ii) are equivalent:

(i) f has a constant derivative in point a ∈ F∗
2n.
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(ii) There exists a such that

{ u ∈ F2n | Wf (u) = 0 } = { u ∈ F2n | Tr(ua) = 1 + f(a) }.

Proof. Note that, f cannot have more than one linear structure, since it is
near-bent. Assume that there is (a unique) a such that Daf(x) = c, for all
x, where c ∈ F2. Thus, c = f(0) + f(a) = f(a). Now, we compute Wf (u):

Wf (u) =
∑
x∈F2n

(−1)f(x)+Tr(ux) =
∑
x∈F2n

(−1)f(x+a)+Tr(u(x+a))

=
∑
x∈F2n

(−1)f(x)+f(a)+Tr(u(x+a))

= (−1)f(a)+Tr(ua) Wf (u),

since f(x) + f(x + a) = f(a). Clearly, if u is such that Tr(ua) + f(a) = 1
then Wf (u) = 0. But, there are 2n−1 such u, proving that (ii) holds.

Now suppose that (ii) holds, for some a. Recall that

Ha = { u ∈ F2n | Tr(ua) = 0 } so that H⊥
a = {0, a}.

Thus, the set of those u such thatWf (u) = 0 is either equal to the hyperplane
Ha, or equal to its complement, according to either f(a) = 1 or f(a) = 0.
So, we can apply Lemma 1:

∑
v∈Ha

Wf (v)
2 = 2n−1

(∑
x∈F2n

(−1)0 +
∑
x∈F2n

(−1)f(x)+f(x+a)

)
.

By hypothesis, this sum equals 0 if f(a) = 1 and 22n if f(a) = 0, since the
Parseval’s relation. This is possible only if Daf is a constant derivative of f .
It is the only one such derivative, since f is near-bent. ⋄

Lemma 4 Let f be a near-bent Boolean function on F2n (n odd) such that
f(0) = 0. Assume that f has a linear structure a. Let g be the function from
G = F2n × F2 to F2:

g(x, y) = (y + 1)f(x) + y
(
f(x) + Tr(a−1x)

)
(11)

Then g is a bent function of n+ 1 variables.
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Proof. For any u, we denote by fu the Boolean function x 7→ f(x)+Tr(ux).
Let b = a−1. The restriction of g to F2n (y = 0) and to its complement
in G (y = 1) are respectively f and fb which are both near-bent Boolean
functions. Moreover

Daf(x) = f(a) and Dafb(x) = f(a) + Tr(ba) = f(a) + 1 = fb(a),

since Tr(ba) = Tr(1) = 1. Let u ∈ F∗
2n . Applying Lemma 3, fu is balanced

if and only if Tr(ua) = 1 + f(a) and fb+u is balanced if and only if

Tr(a(u+ b)) = 1 + f(a), providing Tr(ua) = 1 + 1 + f(a) = f(a).

Thus fu is balanced if and only if fb+u is not balanced. This is equivalent to
say that g is bent (see [6, Theorem V.3] or [18, Theorem 2]). ⋄

Now, we consider a crooked function F , from F2n to itself. According
to Theorem 4, we know that all components fλ of F are near-bent with a
(unique) constant derivative. This allows to derive a specific set of bent
functions from any crooked function, in odd dimension.

Theorem 6 Let F be a crooked function over F2n where n is odd, such that
F (0) = 0. Denote by aλ the linear structure of the component fλ of F . Then
we get a set B(F ) of 2n− 1 bent functions gλ, each from G = F2n ×F2 to F2:

B(F ) = { gλ(x, y) = (y + 1)fλ(x) + y
(
fλ(x) + Tr(a−1

λ x)
)
| λ ∈ F∗

2n }.

Proof. Since F is a crooked function, there is a bijective correspondence
between the λ ∈ F∗

2n , and then the functions fλ, and the linear structures aλ
of every fλ. Thus, Lemma 4 applies for every λ, using a−1

λ , providing 2n − 1
distinct bent functions. ⋄

Remark 1 The construction, given by Theorem 6, could be of interest re-
garding the problem of the existence of crooked functions. It would be useful
to exhibit some properties of B(F ), or to construct other sets of bent func-
tions. For instance, gλ could have an higher degree, by replacing fλ by another
Boolean function, affinely equivalent to fλ. The question is to know if such
a set of bent functions does exist, for some degree greater than 2.

Note that a set like B(F ) is not a subspace, but could generate a linear
code with few weights.

To derive effectively bent functions from a given crooked function, it is
necessary to have an expression of the linear structures aλ. This is generally
an open problem, even when F is a quadratic APN function.
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Example 2 Let F (x) = x2k+1, F : F2n → F2n, n odd. It is well-known that
F is crooked if and only if gcd(k, n) = 1. For any λ ∈ F∗

2n, the unique linear
structure of fλ is aλ = λ−1/(2k+1). Thus, for any λ ∈ F∗

2n,

gλ(x, y) = (y + 1)Tr
(
λx2k+1

)
+ y

(
Tr(λx2k+1) + Tr(λ1/(2k+1)x)

)
,

is a bent function, (x, y) 7→ gλ(x, y), from F2n × F2 to F2.

6 Permutations from crooked functions

Any crooked function allows to construct a set of permutations, via their
derivatives.

Theorem 7 Let F : F2n → F2n, such that F (0) = 0. Assume that F is a
crooked function. Define, for any a ∈ F∗

2n:

x 7→ Ga(x) = F (x) + F (x+ a) + F (a).

Let us define:

• λ ∈ F∗
2n, defining the hyperplane Hλ, which is the image set of Ga;

• β be such that Tr(λβ) = 1, i.e. β ̸∈ Hλ;

• Hµ be any hyperplane such that Tr(µa) = 1, i.e., a ̸∈ Hµ.

Then, the function

x 7→ Ra(x) = Ga(x) + βTr(µx)

is a permutation, such that Ra(Hµ) = Hλ.

Proof. Let x ̸= y such that Ra(x) = Ra(y). We get

Ga(x) +Ga(y) = β (Tr(µ(x+ y))) .

If Tr(µ(x+ y)) = 0 then Ga(x) +Ga(y) = 0, which implies y = x+ a, since
Ga is 2-to-1 and Ga(x) = Ga(x + a). In this case, we get Tr(µ(x + y)) =
Tr(µa) = 0, a contradiction.
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Now suppose that Tr(µ(x+ y)) = 1. Hence Ga(x) = Ga(y) + β. But this
is impossible, since Ga(x) and Ga(y) belong to Hλ while β ̸∈ Hλ. Thus, we
get again a contradiction and can conclude that Ra is a permutation.

By construction, Ra(Hµ) = Hλ, since Tr(µx) = 0 for all x ∈ Hµ and
Ga(Hµ) = Hλ. Indeed, Ga is 2-to-1 and its image set is Hλ. For any pair
(x, x+a), we have x ∈ Hµ if and only if x+a ∈ Hµ (with Ga(x) = Ga(x+a)).
⋄

7 Comments to conclude

As a prelude of this conclusion, we want to recall the main conjecture con-
cerning crooked functions:

Conjecture: Let F : F2n → F2n be a crooked function, as defined by
Definition 3. Then F is quadratic or, in other terms, has algebraic degree 2.

By the two previous sections, we want to exhibit specific constructions
derived from crooked functions (only). Our purpose is to open new ways
to study the existence of crooked functions. We are convinced that other
properties have to be found, increasing the knowledge on crooked functions,
especially on the existence of such functions.

On the other hand, the quadratic functions form a corpus of great interest
about which many problems remain open. In particular, we are still far
from understanding the different structures of quadratic APN functions of
even dimension. The determination of the number of bent components of
such a function would be of great interest. Negative answers, concerning
the APN property of quadratic vectorial functions, have been obtained, for
instance in [2][5]. In [3], a description of the corpus of binomial crooked
functions is presented. As a conclusion, Bierbrauer has conjectured that, up
to equivalence, no other binomial crooked functions exist.

Crooked functions of codimension k, 1 ≤ k ≤ n− 1, appeared during the
cryptanalysis of a hash function, called MARACA [8]. Here, the differential
sets are affine subspaces of same codimension. The authors of this cryptana-
lysis, Canteaut and Naya-Placienta, introduced the crooked property. They
have shown that this property could make a cryptographic primitive very
weak. We will explore, in a more general context, the functions having the
crooked property, in a forthcoming work.
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