Y. Abidi, M. Bellassoued, M. Mahjoub, and N. Zemzemi, On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling, Inverse Problems, vol.34, issue.3, p.35005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01567714

Y. Abidi, M. Bellassoued, M. Mahjoub, and N. Zemzemi, Ionic parameters identification of an inverse problem of strongly coupled pdes system in cardiac electrophysiology using carleman estimates, Mathematical Modelling of Natural Phenomena, vol.14, issue.2, p.202, 2019.

R. A. Adams and J. J. Fournier, Sobolev spaces, vol.140, 2003.

B. Ainseba, M. Bendahmane, and R. Ruiz-baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology, Journal of Mathematical Analysis and Applications, vol.388, issue.1, pp.231-247, 2012.

B. E. Ainseba, M. Bendahmane, and H. Yuan, Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology, vol.10, pp.369-385, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01256802

F. Diegoálvarez, J. Alonso-atienza, A. Luis-rojo-Álvarez, M. García-alberola, and . Moscoso, Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: A model study, Mathematical and Computer Modelling, vol.55, issue.5-6, pp.1770-1781, 2012.

B. Andreianov, M. Bendahmane, A. Quarteroni, and R. Ruiz-baier, Solvability analysis and numerical approximation of linearized cardiac electromechanics, Math. Models Methods Appl. Sci, vol.25, issue.5, pp.959-993, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00865585

G. W. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, pp.177-210, 1977.

M. Bendahmane, N. Chamakuri, E. Comte, and B. Ainseba, A 3d boundary optimal control for the bidomain-bath system modeling the thoracic shock therapy for cardiac defibrillation, Journal of Mathematical Analysis and Applications, vol.437, issue.2, pp.972-998, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01261547

E. Beretta, C. Cavaterra, M. C. Cerutti, A. Manzoni, and L. Ratti, An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology, Inverse Problems, vol.33, issue.10, 2017.

M. Boulakia and E. Schenone, Stability estimates for some parameters of a reaction-diffusion equation coupled with an ode, Applicable Analysis, vol.96, issue.7, pp.1138-1145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01227427

J. Bouyssier and N. Zemzemi, Parameters estimation approach for the mea/hipsc-cm asaays, Computing in Cardiology (CinC), pp.1-4, 2017.

A. J. Brandao, E. Fernandez-cara, P. Magalhaes, and M. A. Rojas-medar, Theoretical analysis and control results for the fitzhugh-nagumo equation, Electronic Journal of Differential Equations, issue.164, 2008.

E. Casas, C. Ryll, and F. Tröltzsch, Sparse optimal control of the schlögl and fitzhugh-nagumo systems, Computational Methods in Applied Mathematics, vol.13, issue.4, pp.415-442, 2013.

N. Chamakuri and K. Kunisch, Primal-dual active set strategy for large scale optimization of cardiac defibrillation, Applied Mathematics and Computation, vol.292, pp.178-193, 2017.

N. Chamakuri, K. Kunisch, and G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Computational Optimization and Applications, vol.49, issue.1, pp.149-178, 2011.

N. Chamakuri, K. Kunisch, and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology, Journal of Mathematical Biology, vol.67, issue.2, pp.359-388, 2013.

N. Chamakuri, K. Kunisch, and G. Plank, Application of optimal control to the cardiac defibrillation problem using a physiological model of cellular dynamics, Applied Numerical Mathematics, vol.95, pp.130-139, 2015.

N. Chamakuri, K. Kunisch, and G. Plank, Pde constrained optimization of electrical defibrillation in a 3d ventricular slice geometry, International Journal for Numerical Methods in Biomedical Engineering, vol.32, issue.4, p.2742, 2016.

C. E. Chávez, N. Zemzemi, Y. Coudière, F. Alonso-atienza, and D. Alvarez, Inverse problem of electrocardiography: Estimating the location of cardiac ischemia in a 3d realistic geometry, International Conference on Functional Imaging and Modeling of the Heart, pp.393-401, 2015.

L. Clerc, Directional differences of impulse spread in trabecular muscle from mammalian heart, The Journal of physiology, vol.255, issue.2, pp.335-346, 1976.

L. P. Endresen, K. Hall, J. S. Hoye, and J. Myrheim, A theory for the membrane potential of living cells, European Biophysics Journal, vol.29, issue.2, pp.90-103, 2000.

L. C. Evans, Graduate Studies in Mathematics, 2010.

M. A. Fernández and N. Zemzemi, Decoupled time-marching schemes in computational cardiac electrophysiology and ecg numerical simulation, Mathematical biosciences, vol.226, issue.1, pp.58-75, 2010.

D. D. Francesco and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol.307, pp.353-398, 1133.

E. Grandi, F. S. Pasqualini, and D. M. Bers, A novel computational model of the human ventricular action potential and Ca transient, Journal of molecular and cellular cardiology, vol.48, issue.1, pp.112-121, 2010.

C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Critical reviews in biomedical engineering, vol.21, issue.1, pp.1-77, 1993.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.

T. J. Hund and Y. Rudy, Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model, Circulation, vol.110, issue.20, pp.3168-3174, 2004.

J. P. Keener and J. Sneyd, Mathematical Physiology, I: Cellular Physiology, Graduate Studies in Mathematics, 2009.

K. Kunisch and M. Wagner, Optimal control of the bidomain system (iii): Existence of minimizers and first-order optimality conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.4, pp.1077-1106, 2013.

J. Lassoued, M. Mahjoub, and N. Zemzemi, Stability results for the parameter identification inverse problem in cardiac electrophysiology, Inverse Problems, vol.32, issue.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399373

J. L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires. Dunod, 1969.

C. H. Luo and Y. Rudy, A model of the ventricular cardiac action potential: Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, pp.1501-1526, 1991.

C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes, Circulation Research, vol.74, issue.6, pp.1071-1096, 1994.

D. Ngoma, P. Vianney, Y. Bourgault, and H. Nkounkou, Parameter identification for a non-differentiable ionic model used in cardiac electrophysiology, Applied Mathematical Sciences, vol.9, issue.150, pp.7483-7507, 2015.

B. F. Nielsen, M. Lysaker, and A. Tveito, On the use of the resting potential and level set methods for identifying ischemic heart disease: An inverse problem, Journal of computational physics, vol.220, issue.2, pp.772-790, 2007.

D. Noble, Cardiac action and pacemaker potentials based on the hodgkin-huxley equations, vol.188, pp.495-497, 1960.

P. C. Franzone, L. F. Pavarino, and S. Scacchi, Mathematical Cardiac Electrophysiology, 2014.

D. E. Roberts, L. T. Hersh, and A. M. Scher, Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog, Circulation research, vol.44, issue.5, pp.701-712, 1979.

D. E. Roberts and A. M. Scher, Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ, Circulation Research, vol.50, issue.3, pp.342-351, 1982.

K. H. Tusscher and A. V. Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol, vol.51, p.6141, 2006.

L. Tung, A bidomain model for describing ischemic myocardial d-c potentials, 1978.

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Analysis: Real World Applications, vol.10, pp.849-868, 2009.

B. Wu, L. Yan, Y. Gao, and Q. Chen, Carleman estimate for a linearized bidomain model in electrocardiology and its applications, Nonlinear Differential Equations and Applications NoDEA, vol.25, p.4, 2018.

H. Yang and A. Veneziani, Estimation of cardiac conductivities in ventricular tissue by a variational approach, Inverse Problems, vol.31, issue.11, p.115001, 2015.

T. El-manar, . University, . Enit-lamsin, L. E. Bp-37, . Belvédère et al.,