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Abstract The problem of partitioning systems of inde-
pendent constrained-deadline sporadic tasks upon het-
erogeneous multiprocessor platforms is considered. Sev-
eral different integer linear program (ILP) formulations
of this problem, offering different tradeoffs between ef-
fectiveness (as quantified by speedup bound) and run-
ning time efficiency, are presented. One of the formu-
lations is leveraged to improve the best speedup guar-
antee known for a polynomial-time partitioning algo-
rithm, from 12.9 to 7.83. Extensive computational re-
sults on synthetically generated instances are also pro-
vided to establish the effectiveness of the ILP formula-
tions.

Keywords task partitioning · sporadic tasks ·
unrelated machines · speedup bound · ILP rounding

1 Introduction

Heterogeneous multicore CPUs – CPUs in which the
processing elements differ from one another with re-
spect to functionality or processing speed – are cur-
rently widely available and increasingly becoming the
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common case. The presence of such heterogeneity re-
quires choices to be made when mapping software com-
ponents onto processing elements. The need to resolve
such choices adds considerable complexity to resource
allocation, and inhibits the adoption of such platforms
by the embedded computing industry despite signifi-
cant potential benefits in terms of balancing perfor-
mance and energy.

We consider here real-time systems that are mod-
eled as collections of independent sporadic tasks (the
model is described in detail in Section 2). We seek to
devise algorithms for implementing such systems upon
heterogeneous multiprocessor platforms under the par-
titioned paradigm. To our knowledge, this topic has not
been studied much previously:

– On the one hand, most prior real-time scheduling re-
search that considers heterogeneous platforms (see,
e.g., [11,24,23,25,27]; [22] has a nice survey) has re-
stricted attention to implicit-deadline sporadic tasks.

– On the other hand, prior research that does ad-
dress the partitioned scheduling of task systems rep-
resented using models that are more general than
the implicit-deadline model considers identical mul-
tiprocessor platforms only (see, e.g., [7,10]), or re-
stricts the amount of heterogeneity, in the sense that
the models allow only a very small number of types
of processors (see, e.g., [4]).

In this paper, we initiate a methodical study of the
problem of partitioning, upon arbitrarily heterogeneous
multiprocessor platforms, task systems that are rep-
resented using the constrained-deadline sporadic task
model1. We assume that once the partitioning has been
performed and tasks assigned to the processors, run-

1 Although we expect that most of our results will also
extend to the arbitrary-deadline sporadic task model, for ease
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time scheduling is done on each processor using the ear-
liest deadline first (EDF) scheduling algorithm, which
is known to be optimal for this purpose [20,12]. On the
other hand, we remark that the task partitioning prob-
lem subsumes the NP-hard unrelated machines schedul-
ing problem [19,26].

Our approach. We will derive various approaches to
task partitioning. These algorithms share the common-
ality that they are all based upon formulating the task
partitioning problem as an integer linear program (ILP).
For implicit-deadline task systems, this is not particu-
larly difficult to do; indeed most of the research on par-
titioning implicit-deadline sporadic task systems (in-
cluding the works [24,23,25,27] cited above) has been
based upon first formulating such an ILP, and then
seeking polynomial-time algorithms for obtaining ap-
proximate solutions to these ILPs (solving an ILP is
known to be NP-hard [16], and hence unlikely to be
solvable exactly in polynomial time).

Despite this inherent intractability of solving ILPs,
however, the optimization community has recently been
devoting immense effort to devise extremely efficient
implementations of ILP solvers, and highly-optimized
libraries with such efficient implementations are widely
available today. Modern ILP solvers, particularly when
running upon powerful computing clusters, are often
capable of solving ILPs with tens of thousands of vari-
ables and constraints. We therefore believe that it is
reasonable to attempt to solve ILPs exactly rather than
only approximately, and seek to obtain ILP formula-
tions that we will seek to solve exactly to solve the parti-
tioning problem for constrained-deadline sporadic task
systems. Since the running time of ILP solvers tends to
increase with the number of variables and constraints in
the ILP to be solved, we seek to develop ILPs for task
partitioning in which the number of variables and con-
straints are restricted to be low-order polynomials of
the representation of the task system. While the num-
ber of constraints may not always be a good indicator
of the complexity of an ILP formulation, we use it as a
first approximation: indeed, the best known complexity
bounds for solving ILPs do increase with the number of
linear constraints [13, Theorem 5.3]. Possibly more re-
fined metrics, such as the constrained induced-width [14]
or the constraint density [2], have also been suggested
in other settings, but not in the context of the problem
of partitioning tasks onto heterogeneous processors –
not even implicit-deadline tasks [15]; these refinements
fall outside the scope of this work.

of presentation we do not explore this issue any further in this
paper, but leave it for future work.

Our results. In partitioning implicit-deadline sporadic
task systems, an ILP represents an exact solution to the
partitioning problem — solving an ILP exactly there-
fore constitutes an optimal algorithm for performing
such partitioning. For partitioning constrained-deadline
systems, however, we do not know how to obtain such
an exact ILP representation of this problem with only
polynomially many constraints — this difficulty was
previously identified even for partitioning upon identi-
cal multiprocessors in [5]. Instead, our goal here is to ob-
tain polynomial-sized ILP representations of the prob-
lem of partitioning constrained-deadline sporadic task
systems upon heterogeneous multiprocessor platforms
with the property that exact solutions of the ILP con-
stitute approximate solutions to the partitioning prob-
lem. Our metric of effectiveness of such an approximate
solution is the speedup factor – an ILP formulation has
speedup factor f , f ≥ 1, if any constrained-deadline
sporadic task system that can be partitioned upon a
particular heterogeneous platform by a hypothetical op-
timal algorithm can be partitioned using this ILP for-
mulation upon a platform in which each processor is at
least f times as fast.

We have derived several different ILP representa-
tions for the problem of partitioning constrained-deadline
sporadic task systems upon heterogeneous multiproces-
sor platforms, all of which have number of variables
and constraints polynomial in the representation of the
task system. All these ILP formulations have nm in-
teger variables, where n is the number of tasks and m
the number of processors, but specify different numbers
of constraints and offer different speedup guarantees —
they are summarized in Table 1.

Outline of the paper. The rest of the paper is structured
as follows. In Section 2, we formally define our model
and introduce some notation. In Section 3, we present a
first ILP formulation for the partitioning problem, with
a guaranteed speedup bound of 4, and show one possi-
ble generalization. In Section 4, we consider a strength-
ened ILP formulation that trades off the number of con-
straints with the speedup guarantee. Section 5 discusses
a variant of the ILP of Section 3 that is used as the ba-
sis of a polynomial-time partitioning algorithm with a
guaranteed speedup bound of 7.83, which improves the
current bound of 12.9 [21]. In Section 6, we report the
results of a large number of experimental results that
test our ILP formulations on synthetically generated
instances. We give our conclusions in Section 7.
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Model Number of constraints Speedup factor Comments

1. n+m+m log2 dmax 3 In Section 3.2

1’. n+m+m logρ dmax 1 + ρ In Section 3.3. ρ is a constant > 1. A generalization of Model 1
(which is obtained if ρ = 2)

2. n+m+ nmk 1 + 1
k

In Section 4. k is any integer ≥ 1.

3. n+m+m logρ dmax 2 + ρ+ ρ2

ρ−1
In Section 5. A “poorer” version of Model 1’ — same number
of constraints, larger speedup factor. But more amenable to
polynomial-time approximation – see Section 5 for details

Table 1 Summary of ILP models and results

2 System model, background, and notation

We seek to partition a sporadic task system τ compris-
ing the n independent sporadic tasks τ1, τ2, . . . , τn upon
an unrelated multiprocessor platform π comprising the
m processors π1, π2, . . . , πm. The i’th sporadic task τi
is characterized by a period pi and a relative deadline
di, and m worst-case execution time (WCET) param-
eters ci,1, ci,2, . . . ci,m, with ci,j denoting the WCET of
τi if it executes upon processor πj . In this paper, we
restrict attention to task systems in which di ≤ pi for
each task τi ∈ τ — such sporadic task systems are
called constrained-deadline sporadic task systems. Dur-
ing run-time, τi releases a sequence of jobs at time-
instants that are not known beforehand, but with the
constraint that successive jobs are released at least pi
time units apart. Each job of τi has a deadline di time
units after its release time; the amount of execution
needed by this job depends upon the identity of the
processor on which it executes. More specifically, since
we are studying partitioned scheduling in this paper,
given task system τ and multiprocessor platform π, our
objective is to obtain a partitioning of the tasks upon
the processors. Let f(i) ∈ {1, 2, . . . ,m} denote the in-
dex of the processor to which each τi is assigned under
such a partitioning; each job of τi needs to execute for
up to ci,f(i) time units upon processor πf(i).

Since the preemptive Earliest Deadline First schedul-
ing algorithm (EDF) is known to be optimal for schedul-
ing a single preemptive processor, we will use EDF
as the scheduling algorithm upon each individual pro-
cessor during run-time. The demand bound function
(dbf) [6] of a sporadic task is widely used to quantify
the computational demand of such a task, where the
dbf(τi, t) of sporadic task τi with period pi, relative
deadline di, and WCET ci for an interval of duration t

is defined as follows:

dbf(τi, t) :=

⌊
t+ pi − di

pi

⌋
ci.

It is known that a collection of sporadic tasks can be
scheduled to always meet all deadlines upon a preemp-
tive uniprocessor by EDF if and only if for all t ≥ 0,
the sum of the dbf’s of all the tasks in the collection for
an interval of duration t does not exceed t.

Some additional notation:

– Let N := {1, 2, . . . , n} denote the task index set.
– Let M := {1, 2, . . . ,m} denote the processor index

set.
– Let ui,j := ci,j/pi denote the utilization of task τi

on processor πj .
– Let dmax := max1≤i≤n{di} denote the largest rela-

tive deadline parameter of any task in τ .

As above, let f : N → M denote a partitioning of the
task system τ upon multiprocessor platform π. We use
the notation dbff,j(t) to denote the sum of the dbf’s of
all the tasks in τ that have been assigned to processor
πj under the partitioning f , for interval duration t:

dbff,j(t) :=
∑

i∈N :f(i)=j

(⌊ t+ pi − di
pi

⌋
ci,j

)
.

3 A simple ILP model for task partitioning

Marchetti-Spaccamela et al. have previously [21] de-
rived a polynomial-time algorithm for assigning spo-
radic tasks to heterogeneous processors, and shown that
this algorithm has a speedup bound of (8 + 2

√
6) or

≈ 12.9. An intermediate step in [21] is the derivation
of a 0/1 ILP representation of the partitioning problem
with nm variables and (n+m+m log dmax) linear con-
straints, and a proof that this ILP representation has
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a speedup factor of 6. In this section, we present two
results:

1. We derive, in Theorem 1 below, an improved ILP
with the same number of variables and constraints
and show (Corollary 2) that it has a superior (i.e.,
smaller) speedup factor of 3.

2. In Theorem 2, we generalize the derivation of this
improved ILP in the following manner. For any con-
stant ρ > 1, we can derive an ILP with nm vari-
ables and (n + m + m logρ dmax) linear constraints
and speedup bound 2ρ; by choosing ρ to be smaller
than two, a smaller speedup bound than 3 is thus
obtained at the cost of needing to solve an ILP with
a larger number of constraints.

3.1 A review of some results from [21]

First a preliminary definition. Let D denote the set of
values{

0, 1, 2, 4, . . . , 2dlog2 dmaxe
}
.

We call D the deadline checkpoint set for task system
τ .

The starting point of the reasoning in [21] is the
following lemma.

Lemma 1 (from [21]) Let f : N → M denote an
assignment of the tasks in task system τ to the proces-
sors of unrelated multiprocessor platform π such that,
for each j ∈M∑
i:f(i)=j

ui,j ≤ β,

and for each j ∈M and k, 1 ≤ k ≤ dlog2 dmaxe,( ∑
i:(f(i)=j)∧(2k−1<di≤2k)

ci,j

)
≤ β · 2k.

Then for each j ∈M , dbff,j(t) ≤ 6βt for all t ≥ 0.

Let us try and understand what this lemma means.
The first set of inequalities requires that the cumulative
utilization assigned to each processor not exceed β; the
second, that the sum of the WCETs of all tasks assigned
to a processor that have relative deadlines between two
successive powers of two not exceed β times the larger
power of two. (For example, considering k = 6, the sec-
ond constraint mandates that the sum of the WCETs
of all tasks with relative deadline in the range (32, 64]

not exceed 64β.) The lemma asserts that if these con-
ditions are satisfied by an assignment, then this assign-
ment constitutes a valid partitioning upon processors
of speed 6× β.

Now, suppose that τ is feasible upon π under parti-
tioned scheduling, i.e., there is an assignment f : N →
M of τ upon π such that all jobs of all tasks will always
complete by their deadlines if tasks are assigned accord-
ing to this partitioning, and each processor scheduled
during run-time by EDF. For this assignment f , it is
evident that the utilization constraints of Lemma 1 are
satisfied for β = 1. The second set of constraints in
Lemma 1 will also be satisfied for β = 1, by the follow-
ing reasoning:

– Since the partitioning f is feasible, the sum of the
dbf’s of all the tasks assigned to the jth processor
for interval duration 2k is no more than 2k.

– Each task with relative deadline in (2k−1, 2k] must
have dbf(τi, 2

k) ≥ ci,j .
– Hence the sum of the ci,j ’s for all tasks τi that have

relative deadline in (2k−1, 2k] and are assigned to
the jth processor must be ≤ 2k.

Hence if τ is feasible upon π, there exists an f : N →M

for which the conditions of Lemma 1 are satisfied with
β = 1; therefore dbff,j(t) ≤ 6t for all t ≥ 0 for each j.
Thus [21] derives the following speedup result:

Corollary 1 Let f : N →M denote an assignment of
tasks to processors satisfying the conditions of Lemma 1.
Then f constitutes a feasible partitioning of τ upon π

under a speedup factor of 6β. In particular, if the condi-
tions of the lemma are satisfied with β ≤ 1/6, then as-
signment f constitutes a feasible partitioning of τ upon
the given platform π.

In summary, the conditions of Lemma 1 are necessary
when β = 1 and sufficient when β = 1/6, i.e., they
yield a speedup factor of 6 for partitioning constrained-
deadline sporadic tasks upon heterogenous multiproces-
sor platforms.

3.2 An ILP with speedup factor 3

We now prove an improved version of Lemma 1 that
yields a superior speedup bound (of three, rather than
six). The conditions specified in our theorem below dif-
fers from those in Lemma 1 only in that the summation
of ci,j ’s in the second inequality is over all tasks with
relative deadline ≤ 2k (rather than only those with rel-
ative deadline > 2k−1 and ≤ 2k).

Theorem 1 Let f : N → M denote an assignment of
the tasks in task system τ to the processors of unrelated
multiprocessor platform π such that, for each j ∈M∑
i:f(i)=j

ui,j ≤ β (1)
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and for each j ∈M and each k, 1 ≤ k ≤ dlog2 dmaxe,( ∑
i:(f(i)=j)∧(di≤2k)

ci,j

)
≤ β · 2k. (2)

Then for each j, 1 ≤ j ≤ m, dbff,j(t) ≤ 3βt for all
t ≥ 0.

Proof Consider any t ≥ 0 and let s := 2k denote the
smallest integer power of 2 that is not smaller than t

(i.e. s = 2k ≥ t > s/2).
Consider the assignment f : N →M of the tasks to

the processors as in the hypothesis of the theorem. For
any j ∈M , we have

dbff,j(t) =
∑

i:f(i)=j∧di≤t

⌊
t+ pi − di

pi

⌋
cij

≤
∑

i:f(i)=j∧di≤t

(
t
cij
pi

+ cij

)
≤ t

∑
i:f(i)=j

cij
pj

+
∑

i:f(i)=j∧di≤s

cij

= t
∑

i:f(i)=j

uij + β · 2k

≤ βt+ βs

≤ 3βt,

and the theorem is proved.

This implies that any f satisfying Inequalities 1
and 2 of Theorem 1 constitutes a feasible partitioning
of the tasks in τ upon the set of heterogeneous proces-
sors π, when the processors receive a speedup factor of
3β.

Corollary 2 Let f : N → M denote an assignment
of tasks to processors satisfying Inequalities 1 and 2 of
Theorem 1. Then f constitutes a feasible partitioning
of τ upon π under a speedup factor of 3β. In particu-
lar, if Inequalities 1 and 2 are satisfied with β ≤ 1/3,
then assignment f constitutes a feasible partitioning of
τ upon the given platform π. ut

We now apply the result of Theorem 1 above to
construct a 0/1 integer linear program (ILP) for spec-
ifying a feasible partitioning of sporadic task system
τ upon the platform π. That is, we will construct a
0/1 ILP, a solution to which will yield a partitioning
f : N →M that satisfies Inequalities 1 and 2. This ILP
is constructed as follows:

– For each i ∈ N, j ∈ M , we have a 0/1 integer vari-
able (i.e., an integer variable that takes on either the
value zero or the value one) xi,j , denoting whether
τi is to be assigned to processor πj .

– We specify that each task gets assigned to exactly
one processor; this is done by the following n con-
straints:

∀i ∈ N
(∑
j∈M

xi,j

)
= 1 (3)

– We next specify that Inequality 1 of Theorem 1
should be satisfied; this is achieved by the follow-
ing m constraints:

∀j ∈M
(∑
i∈N

xi,jui,j

)
≤ β (4)

– Finally, we specify Inequality 2 of Theorem 1 by the
following (log dmax ×m) constraints:

∀k ∈ D, ∀j ∈M
( ∑
(i∈N)∧(di≤2k)

ci,jxi,j

)
≤ β · 2k (5)

By Theorem 1, any assignment of integer values to the
{xi,j} variables satisfying the Constraints 3–5 above
bears witness to the schedulability of τ , with a speedup
of 3β, upon the platform π. Moreover, for a τ that is
feasible upon π the model always admits a solution with
β = 1, since all inequalities are clearly valid; thus, this
ILP guarantees a speedup factor of at most 3. When the
ILP model is feasible with β ≤ 1/3, Theorem 1 guar-
antees schedulability on the original platform; hence,
a reasonable objective function for the ILP with Con-
straints (3)–(5) would be to minimize β.

Throughout the rest of this paper, we will still re-
fer to the problem of the minimization of β subject to
(3)–(5) as ILP, even if β is not strictly constrained to
be integer. However, we adopt this terminology for ex-
tension, and also because β could equivalently be fixed,
for example in a binary search fashion.

The ILP model consisting of Contraints (3)–(5) will
be referred to as Model 1 in the remainder of the paper.

3.3 A generalization

Above, we derived an ILP model for the problem of
partitioned scheduling of constrained-deadline sporadic
task systems upon unrelated multiprocessors, such that
any solution to the ILP immediately yields a partition-
ing algorithm at a speedup bound of 4. We also saw that
this ILP has (n+m+m× dlog2 dmaxe) constraints; we
now briefly describe how to reduce the speedup bound
by increasing the number of constraints.

Recall that we had defined the deadline checkpoint
set D as powers of two:D = {0, 20, 2, 22, . . . , 2dlog2 dmaxe}.
For any given constant ρ > 1, we could instead have
chosen to define it as

Dρ = {0, 1, ρ, ρ2, ρ3, . . . , ρdlogρ dmaxe},
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The following generalization of Theorem 1 is easily proved
via a proof analogous to the proof of Theorem 1:

Theorem 2 Let f : N → M denote an assignment of
the tasks in task system τ to the processors of unrelated
multiprocessor platform π such that, for each j ∈M∑
i:f(i)=j

ui,j ≤ β,

and for each j ∈M and k, 1 ≤ k ≤ dlogρ dmaxe,( ∑
i∈N :(f(i)=j)∧(di≤ρk)

ci,j

)
≤ β · ρk

Then for each j ∈ M , dbff,j(t) ≤ (1 + ρ)βt for all
t ≥ 0. ut

It follows, from arguments virtually identical to those
of Corollary 2, that the speedup bound for the ILP con-
structed based on Theorem 2 above is (1 + ρ); hence
by choosing ρ to be smaller than 2 a speedup bound
smaller than 3 is obtained. The tradeoff is that the num-
ber of constraints increases to (n+m+m×dlogρ dmaxe);
this is > log2 dmax for ρ < 2, becoming larger as ρ→ 1.

Theorem 2 thus suggests one approach for obtaining
speedup bounds arbitrarily close to 2, by simply select-
ing a denser deadline checkpoint set. In Section 4 below,
we explore another approach, that allows for speedup
bounds arbitrarily close to one (once again at the cost
of having additional constraints).

4 A strengthened ILP formulation

We now explore a different idea that also trades off an
increase in the number of constraints in the ILP for a
superior speedup bound. Specifically, for any positive
integer constant k we will derive an ILP model with
(n+m+mnk) constraints, finding a feasible solution
to which corresponds a partitioning at a speedup bound
of
(
1 + 1

k

)
.

Approximation schemes have been defined for com-
puting the value of dbf to any desired degree of accuracy
(see, e.g. [3]). Equation 6 below gives such an approxi-
mation scheme; for any fixed positive integer value of k,
dbf(k)(τi, t) defines an approximation of dbf(τi, t) that
is exact for the first k “steps" of dbf(τi, t), and an upper
bound for larger values of t:

dbf(k)(τi, t) =

{
ci,j × b t+pi−dipi

c if t ≤ (k − 1)pi + di
ci + (t− di)ui otherwise

(6)

The following lemma (see, e.g., [5]) provides a quanti-
tative bound on the degree by which dbf(k) may deviate
from dbf:

Lemma 2 For all t ≥ 0

dbf(τi, t) ≤ dbf(k)(τi, t) <
(
1 +

1

k

)
dbf(τi, t).

That is, dbf(k)(τi, t) provides an upper bound on
dbf(k)(τi, t) that is no more than a fraction 1/k greater
than the actual value of dbf(k)(τi, t).

As previously stated, it is known that a collection
of sporadic tasks can be scheduled to always meet all
deadlines upon a preemptive uniprocessor by EDF if
and only if for all t ≥ 0, the sum of the dbf’s of all the
tasks in the collection over an interval of duration t does
not exceed t. For schedulability, it is clearly necessary
that the utilizations of all the tasks in the collection
sum to no more than 1. Since dbf(k)is an upper bound
on dbf, it follows that a sufficient uniprocessor EDF-
schedulability test for a collection of tasks is that the
sum of the dbf(k) functions of all the tasks in the collec-
tion over an interval of duration t not exceed t. Albers
and Slomka showed [3, Lemma 4] that it suffices to val-
idate this fact only for those values of t at which one
or more of the dbf(k) functions has a step discontinuity.
More precisely, let

Si,k = {t : t = di + hpi, h = 0, 1, . . . , k}

and Sk =
⋃
all i

Si,k

It suffices to test that the sum of the dbf(k) functions of
all the tasks in the collection over an interval of duration
t not exceed t, only for values of t ∈ Sk.

We can use this result to define a revised ILP formu-
lation for modeling the partitioned scheduling of spo-
radic task systems upon heterogeneous multiprocessors.
The first part of this revised ILP is identical to the one
constructed in Section 3:

– As in Section 3, we will have a zero-one integer vari-
able xi,j , denoting whether τi is to be assigned to
processor πj , for each i ∈ N, j ∈M .

– Again as in Section 3, the following n constraints
specify that each task gets assigned to exactly one
processor:

∀i ∈ N
(∑
j∈M

xi,j

)
= 1 (7)

– The following m constraints bound the total utiliza-
tion on each processor:

∀j ∈M
(∑
i∈N

xi,jui,j

)
≤ β (8)

The final set of constraints replace the Inequalities 5
of the ILP in Section 3 with constraints based upon
the dbf(k) approximation, that express the requirement
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that the sum of the dbf(k) functions of all tasks assigned
each processor over an interval duration not exceed the
duration. As we had stated above, this condition only
needs to be validated for interval durations in Sk; this
motivates the following set of constraints:

∀t ∈ Sk, ∀j ∈M
(∑
i∈N

(
xi,j × dbf

(k)
j (τi, t)

))
≤ β · t (9)

(where for each j ∈M , dbf
(k)
j (τi, t) denotes the function

dbf(k)(τi, t) when the WCET of τi is set equal to ci,j .)
Since each τi contributes at most k distinct points to
Sk, it follows that |Sk| ≤ nk; hence there are at most
mnk such constraints.

Note that the Inequalities 9 are constructed for spec-
ified values of t; i.e., for each t ∈ Sk. For each such
specified t, it is straightforward to observe that the in-
equality is indeed a linear one, since inspection of Ex-
pression 6 reveals that for a given value of t for each τi
the expression dbf

(k)
j (τi, t) is a constant .

Theorem 3 A feasible solution to the ILP on the 0/1
variables {xi,j}, i ∈ N, j ∈ M , with Constraints 7–
9 (defined above) yields a feasible partitioning of the
tasks in τ to a platform in which each processor in π

is speeded up by a multiplicative factor of (1 + 1/k)β.
In particular, if the inequalities are satisfied with β ≤
(1 + 1/k)−1, then a feasible solution to the ILP yields
a feasible partitioning on the given platform.

Proof It is evident from the result of Albers and Slomka
that satisfying Constraints 7–9 is sufficient for feasibil-
ity upon a speed-β(1 + 1/k) platform. Additionally we
conclude from the lower bound in Lemma 2 that failure
to satisfy these conditions implies infeasibility upon a
speed-β platform.

The ILP model consisting of Constraints (7)–(9) will
be referred to as Model 2 in the remainder of the paper.
The quality of the solution that is obtained by solving
Model 2 depends on the value of k: the larger this value,
the better is the quality (i.e., the lower the speedup fac-
tor) of the obtained solution. However we observe that
the number of constraints increases with k. It follows
that large values of k lead to an ILP that is not solvable
with state of the art packages.

5 An ILP that is amenable to polynomial time
approximation

In the previous sections, we discussed assignment al-
gorithms based on solving reasonably-sized ILPs. How-
ever, in some scenarios the solution of an ILP may be a
computational bottleneck – solving an ILP is, after all,

a prototypical NP-hard problem. Therefore, the design
of efficient (polynomial time) assignment and schedula-
bility algorithms retains interest.

A standard technique that has been developed for
efficiently obtaining an approximate solution to an ILP
is to first consider the linear program (LP) obtained by
“relaxing” (i.e., ignoring) the integrality requirement,
solve this LP (this can be done in polynomial time), and
then “rounding” the solution so obtained to obtained
an integral solution as desired. The main challenge in
designing the rounding procedure is to ensure that such
rounding does not degrade the feasibility or the quality
of the solution (i.e., the value of the objective function
that was optimized) too much.

Recently, a new approach to rounding, known as
iterative rounding [18], has been shown to provide im-
proved rounding guarantees. Analogously to prior round-
ing approaches, the first step requires that an LP relax-
ation be solved and a non-integer solution (say, X) be
obtained. However, instead of rounding all non inte-
gral values of X at the same time, only one variable is
rounded; assume, for example, that the value of variable
x1 is set to x̂1. Then the method iterates and solves a
new LP-relaxation that is obtained from the original
LP by fixing the value of x1 to x̂1. In this way, a new
solution X ′ is obtained; as in the previous case, the
method now rounds one variable of X ′; the method is
iterated until all variables satisfy the given integrality
constraints.

In this section, we seek to construct an ILP formula-
tion of the problem of partitioning sporadic tasks upon
heterogeneous multiprocessors that is more amenable to
iterative rounding than the ILP formulations we have
seen above. It will turn out (Theorem 4 below) that
this ILP has the same number of variables and con-
straints, but a poorer (larger) speedup factor than the
one described in Section 3.3 (Theorem 2). Hence from
the perspective of just developing an ILP, this is not
a particularly useful result. However, we will see that
this ILP can in fact be rounded iteratively in a manner
that we were unable to pull off with the earlier ILP for-
mulations, resulting in a polynomial-time algorithm for
partitioning sporadic tasks upon heterogeneous multi-
processors that has speedup bound of ≈ 7.83, thereby
improving the ≈ 12.9 speedup bound of Marchetti-
Spaccamela et al. [21].

5.1 LP-rounding based approach

As before, we use variables xij for each pair (i, j) ∈
N×M , modeling the assignment of τi to πj . Apart from
the usual assignment constraints, the first constraints
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we consider are the utilization bounds on the tasks as-
signed to the same processor. That is, we require that∑
i∈N

uijxij ≤ 1 ∀j ∈M. (10)

Now, let ρ denote any constant, ρ > 1. We de-
fine the function r(x) := ρdlogρ xe, and the set Dρ :=

{ρ0, ρ1, . . . , r(dmax)}. We want to express the require-
ment that for all tasks assigned to the same proces-
sor with deadline at most ρk, the sum of their WCETs
is at most ρk. Note that this is the set of tasks with
r(di) ≤ ρk. For technical reasons that will become ap-
parent later (in Lemma 3), we adopt the slightly weaker
constraint

∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
xij ≤ d ∀d ∈ Dρ, ∀j ∈M.

(11)

We call these constraints (11) the relaxed dbf constraints.
It is clear that these constraints have to be fulfilled by
any feasible task assignment. (In particular, if di ≤ ρk

and xij = 1, then dbff,j(ρ
k) ≥ cij > cij(1 − di/pi),

where f is the assignment represented by x). We there-
fore arrive at the following ILP, denoted poly-ILP.∑

j∈M
xij = 1 ∀i ∈ N (12a)

∑
i∈N

uijxij ≤ 1 ∀j ∈M (12b)

∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
xij ≤ d ∀d ∈ Dρ, ∀j ∈M

(12c)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M
s.t. cij ≤ di.

(12d)

If poly-ILP is infeasible, then there can be no feasi-
ble task assignment. Now assume that it is feasible and
consider its relaxation, which is obtained by replacing
each constraint (12d) by

xij ≥ 0 ∀i ∈ N, ∀j ∈M s.t. cij ≤ di. (13)

Since it is an LP and not an ILP, the relaxation can be
solved in polynomial time. Let x∗ denote its solution.
For each j ∈ M and deadline d ∈ Dρ, we compute the
value

bj,d :=
∑

i∈N : r(di)=d

cij(1− di/pi)x∗ij .

Note that, by (12c),∑
d′≤d

bj,d′ ≤ d ∀d ∈ Dρ,∀j ∈M. (14)

Based on these computed values, we define a variation
of poly-ILP, denoted by sparse-ILP in the sequel. We
obtain the latter by replacing the constraints (12c) with
the following set of constraints:∑
i∈N : r(di)=d

cij

(
1− di

pi

)
xij ≤ bj,d ∀d ∈ Dρ, ∀j ∈M.

By dividing both sides of the inequality by d, these
constraints can also be written as∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
xij ≤ b̄j,d ∀d ∈ Dρ, ∀j ∈M.

(15)

where b̄j,d = bj,d/d ≤ 1 (since x∗ is feasible for the
relaxation of poly-ILP) and c̄ijd = cij/d ≤ 1 (since if
r(di) = d then cij ≤ di ≤ d). Let A be the set of vectors
x satisfying (12a). We can now express sparse-ILP in
matrix notation as

{x ∈ A ∩ {0, 1}N×M : Ax ≤ b, x ≥ 0},

where A and b are, respectively, the matrix of coef-
ficients and the vector of right hand sides of the con-
straints (12b) and (15). Note that all entries of A and
b take values between 0 and 1.

By construction, if x∗ is a feasible solution for the
LP relaxation of poly-ILP it is also feasible for the LP
relaxation of sparse-ILP, and if the LP relaxation of
sparse-ILP is infeasible, then no feasible task assign-
ment exists. Our goal will be to round x∗ to an integral
vector which approximately satisfies the constraints of
sparse-ILP.

A reason for preferring sparse-ILP to poly-ILP is
that the former is an ILP formulation in which the
constraint matrix is sparse: each variable appears in
only a small number of constraints. This sparsity gives
the potential to derive efficient rounding schemes which
result in integral solutions, violating the relaxed dbf-
constraints only by constant factors. We present such a
rounding scheme below; to this end, the following the-
orem shows that—even when violated up to constant
factors–the relaxed dbf constraints (15), together with
the utilization constraints (12b), are approximately suf-
ficient.

Theorem 4 Let β ≥ 1 and let f : N → M be an
assignment encoded by a vector x̂ ∈ A ∩ {0, 1}N×M
such that, for each j ∈M and d ∈ Dρ,∑
i∈N

uij x̂ij ≤ β (16)
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and∑
i∈N : r(di)=d

cij

(
1− di

pi

)
x̂ij ≤ bj,d + (β − 1) · d. (17)

Then dbff,j(s) ≤ (β + ρ + (β − 1)ρ2/(ρ − 1))s for all
s ≥ 0. In particular, if β ≤ 2, f is a feasible assignment
under a speedup factor of (2 + ρ+ ρ2/(ρ− 1)).

Proof For any s ≥ 0 and j ∈M , we bound dbff,j(s) as
follows:

dbff,j(s) =
∑

i∈N : di≤s

bs+ pi − di
pi

ccij x̂ij

≤
∑

i∈N : di≤s

(
s
cij
pi

+ cij

(
1− di

pi

))
x̂ij

≤
∑

i∈N : r(di)≤r(s)

(
s
cij
pj

+ cij

(
1− di

pi

))
x̂ij

≤ s
∑
i∈N

cij
pi
x̂ij +

∑
i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

= s
∑
i∈N

uij x̂ij +

logρ(r(s))∑
k=0

∑
i∈N : r(di)=ρk

cij(1−
di
pi

) x̂ij

(16)
≤ βs+

logρ(r(s))∑
k=0

∑
i∈N : r(di)=ρk

cij(1−
di
pi

) x̂ij

(17)
≤ βs+

logρ(r(s))∑
k=0

(
bj,ρk + (β − 1)ρk

)
(14)
≤ βs+ ρlogρ(r(s)) +

logρ(r(s))∑
k=0

(β − 1)ρk

= βs+ r(s) + (β − 1)

logρ(r(s))∑
k=0

ρk

= βs+ r(s) + (β − 1) · ρ
logρ(r(s))+1 − 1

ρ− 1

= βs+ r(s) + (β − 1)
ρ · r(s)− 1

ρ− 1

≤ (β + ρ+ (β − 1)
ρ2

ρ− 1
)s.

The last inequality follows from r(s) ≤ ρ · s.

To construct x̂, we adopt an iterative rounding pro-
cedure that is similar to the procedure presented in [17,
21]. The idea of the iterative rounding procedure is the
following. In each iteration k, we first compute an ex-
treme point solution xk of a linear program LP k, where
LP 0 is the relaxation of sparse-ILP, and each LP k is
obtained by fixing the value for some variables or re-
moving some constraints of LP k−1.

Given a feasible fractional solution xk, to define
LP k+1 we first fix all variables which are integral in
xk, i.e., those variables are not allowed to be changed
anymore in the remainder of the procedure. Let v be
the number of variables in LP k and let wa, wb and wb
be the number of constraints of types (12a), (12b) and
(15), respectively. Let w = wa + wb + wc. To obtain
LP k+1 we either delete one or more variables, in case
v > w, or delete a constraint while ensuring that in the
final solution that constraint will not be violated too
much. Along the way we ensure that the constraints of
type (12a) are always satisfied exactly, so that xk ∈ A
at all times.

Note that if there is some variable xij that is fixed
at value 1 and removed from the program, then for all
j′ ∈ M \ {j}, xij′ will be set to 0 and also be removed
from the program. The constraint of type (12a) corre-
sponding to this i is then superfluous and will also be
removed.

To derive the bounds (16)–(17), we need to study
the coefficient matrix A in more detail. Let γ be the
maximum, over all xij , of the sum of the values of the
coefficients of variable xij in constraints (12b) and (15).
We first derive a bound on γ.

Lemma 3 For any task set τ , γ ≤ 1.

Proof Observe that γ is just the maximum value of uij+
c̄ijd(1 − di/pi) across all variables xij in the program.
Recall that for all such pairs (i, j), cij ≤ di, i.e., c̄ijd ≤
1, otherwise the variable xij is forced to 0 and removed
from the LP. We can now bound

uij + c̄ijd

(
1− di

pi

)
≤ cij

pi
+ 1− di

pi
≤ cij

pi
+ 1− cij

pi
= 1.

The following technical lemma is instrumental to
our rounding procedure. It is a specialization to our
setting of a more general rounding result for assignment
LPs [9].

Lemma 4 Let LP k be the linear program that is solved
in iteration k of the rounding procedure, with s variables
and r constraints. Let xk be an extreme point solution
to this LP. Then either,
(i) xk has at least one integer component; or
(ii) there is j ∈ M and a corresponding constraint of
type (12b) such that

∑
i∈N uijzij−

∑
i∈N uijx

k
ij ≤ γ for

any integer solution z; or
(iii) there are j ∈ M , d ∈ Dρ and a corresponding
constraint of type (15) such that∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
(zij − xkij) ≤ γ

for any integer solution z.
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Proof Let A be the coefficient matrix of LP k. If v > w,
the null space of A is nontrivial, so let x0 be a nonzero
vector in the null space. Since xk is an extreme-point
solution to LP k, it cannot be expressed as the con-
vex combination of two (or more) solutions to LP k. If
xk does not have any integral entry, then we can find
a value δ > 0 such that xk + δx0 and xk − δx0 are
both solutions to LP k (since A(x ± δx0) = Ax) and,
in particular, xk is a convex combination of these two
solutions. Therefore xk must have at least one integral
entry.

If v ≤ w, we show that there always exists a con-
straint of type (12b) or type (15) such that maxz∈S
{(Az)l − (Ax)l} ≤ γ, where γ is the maximum sum
of coefficients in a column of constraints (12b) and (15)
and where S is the integer solution space for all remain-
ing variables, i.e., S = {0, 1}v.

We show the statement by contradiction. Assume
that the statement is not true, that is, for each con-
straint l of type (12b) or (15) it holds that there exists
a vector z ∈ S such that

(Az)l − (Ax)l > γ. (18)

Note that all variables still present in the linear pro-
gram correspond to a processor j ∈M and a task i ∈ N
that is not yet assigned fully to one processor, but frac-
tionally to multiple processors. Hence, the constraint
of type (12a) corresponding to each τi is still present in
the linear program. It follows that∑
j∈M

∑
i∈N : xij∈(0,1)

xij = wa, (19)

where wa is the number of constraints of type (12a) re-
maining in LP k. Define L as the set of constraints of
types (12b) and (15) present in the current linear pro-
gram, and let wb and wc be their number, respectively
(so wa+wb+wc = w). For any q = (i, j), let Lq denote
the set of these constraints containing variable xq; by
definition of γ, we have

max
q

∑
l∈Lq

alq ≤ γ. (20)

Then,

γ(w − wa) = γ(wb + wc)

(18)
<
∑
l∈L

max
z∈S

((Az)l − (Ax)l)

as all alq≥0
=

∑
l∈L

((A1)l − (Ax)l)

=
∑
l∈L

∑
q

alq(1− xq)

=
∑
q

∑
l∈Lq

alq(1− xq)

≤
∑
q

γ(1− xq)

= γv −
∑
q

γxq

= γ(v − ra). (21)

The second inequality follows from (20).
The chain of inequalities implies that γ(w − wa) <

γ(w−wa)⇒ r < s which is a contradiction to being in
the case that v ≤ w. Hence we conclude that if v ≤ w,
there must be a constraint l of type (12b) or (15) for
which maxz∈S{(Az)l − (Ax)l} ≤ γ.

Lemma 4 is used to guide the rounding process. If
Case (i) applies, the variables that have an integer value
are fixed at that value and removed from the LP. If a
variable xij is fixed at value 1, then for all j′ ∈M\{j},
the variables xij′ are fixed at value 0 and the constraint
of type (12a) corresponding to i is removed. If we are
in Case (ii) or (iii), the constraint for which the claim
holds can be found in polynomial time by checking, for
each constraint l ∈ L of type (12b) or (15), whether∑
q alq(1 − xq) ≤ γ. This is sufficient since all alq ≥ 0

and the maximum value any variable xq can take is
1. If such a constraint is of type (12b) (Case (ii)) or
(15) (Case (iii)), the final task assignment will satisfy
(16) or (17) for that constraint, respectively, even if
the constraint is dropped ; thus, we drop the constraint,
obtaining the next (smaller) LP.

After either all constraints have been removed or
the values of all variables have been fixed at an integer
value, we obtain an integral vector x̂ which satisfies∑
i∈N uij x̂ij ≤ 1 + γ for each j ∈M and

∑
i∈N : r(di)=d

c̄ijd

(
1− di

pi

)
xij ≤ b̄j,d + γ

for all j ∈ M and all deadlines d ∈ Dρ. Hence, the
vector x̂ satisfies constraints (16), (17) with β := 1 +γ.
We are now in the position to invoke Theorem 4 to
obtain our final guarantee.

Theorem 5 There is a polynomial-time partitioning
algorithm with a speedup bound of (5 + 2

√
2) ≈ 7.83

for the problem of assigning constrained-deadline tasks
to heterogeneous processors.

Proof All steps required to construct x̂ can be carried
out in polynomial time. The assignment induced by x̂

satisfies (16)–(17) with β = 1 + γ ≤ 2 (Lemma 3).
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Thus, by Theorem 4 with ρ = 1+1/
√

2, the assignment
induced by x̂ is feasible with speedup

2 + ρ+
ρ2

ρ− 1
= 5 + 2

√
2 ≈ 7.83.

ut

5.2 Practical variant of the LP-rounding model

The above LP-rounding approach was designed with
the aim of minimizing the worst-case speedup bound in
Theorem 5. However, we observed that certain steps re-
quired for theoretical soundness –namely, sparsification
of the constraints– can be avoided in practice. Thus, in
this subsection we briefly discuss the practical variant
of the LP-rounding model that is the one we adopted in
the schedulability experiments, and that we will refer
to as Model 3.

The starting point is the following minimization ver-
sion of equations (12a)-(12d):

minβ (22a)∑
j∈M

xij = 1 ∀i ∈ N (22b)

∑
i∈N

uijxij ≤ β ∀j ∈M (22c)

∑
i∈N : r(di)≤d

cij
d

(
1− di

pi

)
xij ≤ β ∀d ∈ Dρ, ∀j ∈M

(22d)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M
s.t. cij ≤ di,

(22e)

where β is the speedup parameter to be minimized. We
apply to this model the iterative rounding procedure as
described in the previous subsection, except that when
we need to drop a constraint, we drop the constraint
l for which the potential violation (i.e.,

∑
q alq(1− xq)

where A is the coefficient matrix of Constraints (22c)–
(22d)) is the smallest. We also keep track of the largest
potential violation value during the whole process (we
call it γ, in analogy with the previous section). To de-
termine whether the instance is schedulable, at the end
of the process it is sufficient to compare the final value
of β+γ against (1+ρ)−1, due to the following Theorem.

Theorem 6 Let β, γ > 0 and let f : N → M be an
assignment encoded by a vector x̂ ∈ A ∩ {0, 1}N×M
such that, for each j ∈M and d ∈ Dρ,∑
i∈N

uij x̂ij ≤ β + γ (23)

and∑
i∈N : r(di)≤d

cij

(
1− di

pi

)
x̂ij ≤ (β + γ)d. (24)

Then dbff,j(s) ≤ (1 + ρ)(β + γ)s for all s ≥ 0. In
particular, if β + γ ≤ (1 + ρ)−1, then f is a feasible
assignment on unit speed processors.

Proof The proof is similar to that of Theorem 4. For
any s ≥ 0 and j ∈M , we bound dbff,j(s) as follows:

dbff,j(s) =
∑

i∈N : di≤s

bs+ pi − di
pi

ccij x̂ij

≤
∑

i∈N : di≤s

(
s
cij
pi

+ cij

(
1− di

pi

))
x̂ij

≤
∑

i∈N : r(di)≤r(s)

(
s
cij
pj

+ cij

(
1− di

pi

))
x̂ij

≤ s
∑
i∈N

cij
pi
x̂ij +

∑
i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

= s
∑
i∈N

uij x̂ij +
∑

i∈N : r(di)≤r(s)

cij

(
1− di

pi

)
x̂ij

≤ s(β + γ) + (β + γ)r(s)

≤ s(β + γ) + ρs(β + γ)

= (1 + ρ)(β + γ)s.

The last inequality follows from r(s) ≤ ρ · s.

6 Schedulability experiments

In the sections above, we saw how the problem of par-
titioned scheduling of sporadic task systems upon un-
related multiprocessors could be modeled by ILPs. Our
motivation for doing so is that the optimization commu-
nity has devoted immense effort to coming up with ex-
tremely efficient (although still exponential-time, since
solving ILPs is NP-hard) algorithms for solving ILPs,
and highly-optimized libraries implementing these effi-
cient algorithms are widely available. This is particu-
larly true for ILPs like the ones we have constructed
above, in which each variable is further constrained to
take in only the values zero or one. In this section, we
validate the performance of our ILP-based schedulabil-
ity tests against synthetic workloads in terms of the
percentage of schedulable task sets.

Our results show that Model 2 (the ILP model dis-
cussed in Section 4) provides solutions having better
quality, while Model 1 (the ILP model discussed in
Section 3) generates solutions of lower quality but in
less time. Model 3, the polynomial time LP-rounding
approach discussed in Section 5 has a solution quality
comparable to that of the Model 1, but runs even faster.
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6.1 Generation of the task sets and solutions

We developed a parametric framework with several pa-
rameters (m, κ, p, Ū , α – they are detailed below)
to randomly generate our workloads; this framework
is general enough to support our entire range of exper-
iments.

We consider m-processor platforms and n = κm

tasks, with κ ≥ 1 an integer-valued parameter. We ran-
domly generate an affinity mask Ri,j for each i ∈ N and
j ∈ M : Ri,j ← 1 with probability p and 0 with proba-
bility (1− p). These affinity masks help define the Ci,j
values: Ci,j has a value < ∞ if and only if Ri,j = 1. If
the generated mask does not allow a particular task to
be processed on any processor, we then allow that task
to be processed upon a randomly chosen processor.

We then generate utilization values for every allowed
pair (i, j) for which Ri,j = 1. Tasks are grouped into m
groups of size κ each: tasks τ1+(k−1)κ to τkκ form the
kth group. For each group we use the UUniSort algo-
rithm [8] to generate randomly distributed utilizations
with total value Ū for the allowed task-processor pairs
in the group. Note that since there are m groups, each
of total utilization Ū , the value Ū represents the average
load that a processor can expect if tasks are randomly
assigned. Note that Ū ≤ 1 is not a necessary condition
for schedulability (indeed some of our ILP formulations
are able to schedule task sets with Ū > 1).

We generate the periods by setting pi = 2∆i , with
each ∆i uniformly distributed in the range 3...10. The
worst-case execution times are computed directly from
the periods and utilizations. Finally, the relative dead-
line of each task is sampled uniformly in the range
[(1− α) · (maxj cij) + αpi, pi], where α ∈ [0, 1].

In the experiments we consider the three models:
Model 1 (that is, the ILP model discussed in Section
3.2), Model 2 (that is, the ILP model discussed in Sec-
tion 4) with k = 3, and Model 3 (that is, the iter-
ative LP-rounding approach discussed in Section 5).
All optimization models have been solved by using a
branch-and-cut approach implemented in the mathe-
matical programming solver Gurobi 6.50 [1] on a PC
with Intel i7-4770 CPU at 3.4 GHz and 16Gb RAM.
Collectively, the experiments consist of 5200 instances
of the task partitioning problem.

6.2 Discussion of the results

6.2.1 Schedulability

Experiment 1: Variation of Ū (Figure 1) In the first
type of experiment, we use the average load Ū as the
independent variable. We vary Ū from 0.2 to 1.5. We
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Fig. 1 Experimental results 1: percentage of task sets found
to be schedulable by the three models. Variation of Ū (m =
10, κ = 10, p = 0.5, α = 0.2).
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Fig. 2 Experimental results 2: percentage of task sets found
to be schedulable by the three models. Variation ofm (κ = m,
Ū = 1, p = 0.8, α = 0.2).

fix m = 10, κ = 10, p = 0.5, α = 0.2. We generate
30 task sets for each value of Ū . When the percent-
age of schedulable task sets was strictly between 0 and
1, we generated 20 additional task sets to achieve a
higher precision. Figure 1 shows the dependency on Ū
of the percentage of task sets that are guaranteed to
be schedulable by Corollary 2 (for Model 1), Theorem
3 (for Model 2) and Theorem 6 (for Model 3). Indeed,
as could be expected, schedulability decreases when the
load factor Ū increases. It is interesting to note that for
Model 2, more than 90% of the generated task sets are
schedulable as long as Ū ≤ 1.

Experiment 2: Variation of m (Figure 2) In the second
type of experiment, we look at the impact of the number
of processors on schedulability, so we vary m from 2 to
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Fig. 3 Experimental results 3: percentage of task sets found
to be schedulable by the three models. Variation of p (m = 10,
κ = 10, Ū = 1, α = 0.2).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8

R
eq

ui
re

d
sp

ee
du

p

processor types

Model 1
Model 2
Model 3

Fig. 4 Experimental results 4: speedup required to guarantee
schedulability by the three models. Variation of the number
of types of processors (m = 8, κ = 8, Ū = 0.6, p = 0.5,
α = 0.2).

12. We fix κ = m, so n = m2. In this set of experiments,
we fix Ū = 1, p = 0.8, α = 0.2. For each experiment,
we generated 30 task sets for each value of m. In all
cases, schedulability increases with the number of pro-
cessors even though Ū is fixed. This is due to the fact
that, for a fixed total utilization value of each group,
a higher number of tasks in a group implies lower uti-
lization values for the individual tasks, and therefore a
more efficient partitioning. The best quality is again ob-
tained by Model 2, while Model 1 and Model 3 achieve
a similar solution quality.

Experiment 3: Variation of p (Figure 3) In the third
type of experiment, we control the sparsity of the pro-
cessor affinity matrix R, by varying p from 0.2 to 0.9.

We fix m = 10, κ = 10, Ū = 1, α = 0.2. We gener-
ate 30 task sets for each value of p. We find out that
the sparsity has a high impact on schedulability: there
are clear schedulability thresholds around p = 0.7 (for
Models 1 and 3) and p = 0.45 (for Model 2). This is
not entirely unexpected, as when the affinity matrix is
sparser, it may happen that several tasks of large com-
bined utilization can only be assigned to a small set of
processors.

Experiment 4: Variation of the number of processor types
(Figure 4) In the fourth type of experiment, we control
the effect of similarity among processors. We group the
processors into types; we ensure that ci,τ = ci′,τ when-
ever i and i′ are of the same type. We then vary the
number of types of processors. We fix m = 8 and for
simplicity we consider equal-sized groups, so we vary
the number of types in the set {1, 2, 4, 8}. We also fix
κ = 8, Ū = 0.6, p = 0.5, α = 0.2, and we generate 30
task sets for each value of the independent variable. In
this case, it seems more significant to plot the average
speedup that is required to ensure schedulability (thus,
lower values are preferable, and values below 1 ensure
schedulability without speedup). As expected, similar-
ity is helpful, i.e., an increase in the number of types
is associated with an increase in the speedup required,
particularly for Models 1 and 3.

6.2.2 Running times

In this subsection we discuss the solution time required
to solve the instances for the experiments described in
the previous section. These times are reported in the
Tables 2, 3, 4, and 5. As a general observation, run-
ning times for solving Models 1 and 3 are considerably
shorter than those needed for Model 2, but as we have
seen the latter one is clearly more effective in terms
of schedulability. We also note that, for Models 1 and
2, each set of instances generated with the same pa-
rameters may have rather variable solution times: the
maximum time is often more than 10 times the average
time. Model 3, on the other hand, is extremely fast and
its maximum times are quite close to the averages.

For Experiment 1, where we vary the average load
Ū (Table 2), we observe a slight decrease of the running
times as the instances become less schedulable. This is
likely due to the solver being able to rule out quickly
those instances that happen to be markedly overloaded.

For Experiment 2, where we vary the number m of
processors (Table 3), the running times increase rapidly
with m, but this is in large part due to the fact that in
this scenario we generate n = m2 tasks per instance, so
even the size of the input becomes of the order of m3.
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Table 2 Running times for Experiment 1: average and maximum (in secs.) for different ranges of Ū .

Model Range of Ū
0.1–0.55 0.6–1.05 1.1–1.55 1.6–2.0

Model 1 Mean 0.39 0.37 0.36 0.39
Max 5.66 2.20 1.45 2.01

Model 2 Mean 9.65 9.73 7.09 4.65
Max 88.16 89.25 51.72 22.82

Model 3 Mean 0.03 0.03 0.03 0.03
Max 0.09 0.09 0.12 0.09

Table 3 Running times for Experiment 2: average and max-
imum (in secs.) for different values of m.

Model Range of m
2–8 9–10 11 12

Model 1 Mean 0.04 0.53 1.65 3.79
Max 0.26 3.03 13.60 28.50

Model 2 Mean 0.53 18.26 97.68 310.55
Max 4.47 160.49 380.05 709.27

Model 3 Mean 0.01 0.03 0.04 0.04
Max 0.04 0.04 0.05 0.07

After discounting this fact, the running times are still
positively correlated with m, in particular for Model 2.

For Experiment 3, where we vary the affinity prob-
ability p (Table 4), we observe a sharp transition from
unschedulable to schedulable instances, and running
times progressively increase. Again, this is likely due
to the solver being able to rule out quickly those in-
stances where the affinity relation is too sparse to allow
schedulability.

For Experiment 4, where we vary the number of
types of processors (Table 5), all running time are lim-
ited to a few seconds at most and we do not find any
significant correlation between the running time and
the number of types.

7 Summary and conclusions

In this work, we proposed a partitioning approach for
constrained-deadline tasks on heterogenous (unrelated)
processors. The approach is based on integer linear pro-
gramming formulations and allows the derivation of
guaranteed speedup bounds and consequently, sufficient
schedulability tests.

Experiments using randomly generated task work-
loads clearly show that the approach based on the solu-
tion of Model 2 is viable in terms of computation time,
and quite effective in its scheduling capacity, especially
when the task-processor affinity relation is dense. On
the other hand, the approach based on the solution of
Model 1, despite its reduced scheduling capacity, may

be of use in the case of instances so large that they can-
not be solved with the previous approach in reasonable
times. The LP-rounding variant, Model 3, achieves a
comparable quality to Model 1 and appears to be ex-
tremely fast in practice.
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