W. D. Travis, The 2015 World Health Organization Classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification, J. Thorac. Oncol, vol.10, pp.1243-1260, 2015.

G. Rindi, A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal, Modern Pathol, vol.31, pp.1770-1786, 2018.

M. E. Caplin, Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids, Ann. Oncol, vol.26, pp.1604-1620, 2015.

D. R. Swarts, Interobserver variability for the WHO classification of pulmonary carcinoids, Am. J. Surg. Pathol, vol.38, pp.1429-1436, 2014.

E. Thunnissen, The Use of immunohistochemistry improves the diagnosis of small cell lung cancer and its differential diagnosis. An international reproducibility study in a demanding set of cases, J. Thorac. Oncol, vol.12, pp.334-346, 2017.

C. Marchio, Distinctive pathological and clinical features of lung carcinoids with high proliferation index, Virchows Arch. : Int. J. Pathol, vol.471, pp.713-720, 2017.

G. Pelosi, G. Rindi, W. D. Travis, and M. Papotti, Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice, J. Thorac. Oncol, vol.9, pp.273-284, 2014.

J. L. Derks, New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management, J. Thorac. Oncol, vol.13, pp.752-766, 2018.

G. Pelosi, Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm, Virchows Arch, vol.472, pp.567-577, 2018.

N. Rekhtman, Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets, Clin. Cancer Res, vol.22, pp.3618-3629, 2016.

L. Fernandez-cuesta, Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids, Nat. Commun, vol.5, p.3518, 2014.

J. George, Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors, Nat. Commun, vol.9, p.1048, 2018.

M. Peifer, Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer, Nat. Genet, vol.44, pp.1104-1110, 2012.

J. George, Comprehensive genomic profiles of small cell lung cancer, Nature, vol.524, pp.47-53, 2015.

R. Argelaguet, Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets, Mol. Syst. Biol, vol.14, p.8124, 2018.

K. Straif, A review of human carcinogens-Part C: metals, arsenic, dusts, and fibres, Lancet Oncol, vol.10, pp.453-454, 2009.

M. Carbone, BAP1 and cancer, Nat. Rev. Cancer, vol.13, pp.153-159, 2013.

J. Kiefer, Abstract 3589: a systematic approach toward gene annotation of the hallmarks of cancer, Cancer Res, vol.77, pp.3589-3589, 2017.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nat. Rev. Immunol, vol.11, pp.762-774, 2011.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat. Rev. Immunol, vol.13, pp.159-175, 2013.

C. V. Jakubzick, G. J. Randolph, and P. M. Henson, Monocyte differentiation and antigen-presenting functions, Nat. Rev. Immunol, vol.17, pp.349-362, 2017.

M. Cernadas, J. Lu, G. Watts, and M. B. Brenner, CD1a expression defines an interleukin-12 producing population of human dendritic cells, Clin. Exp. Immunol, vol.155, pp.523-533, 2009.

D. T. Odom, Control of pancreas and liver gene expression by HNF transcription factors, Science, vol.303, pp.1378-1381, 2004.

T. Janco, J. M. Lamichhane, P. Karyampudi, L. Knutson, and K. L. , Tumorinfiltrating dendritic cells in cancer pathogenesis, J. Immunol, vol.194, pp.2985-2991, 2015.

A. F. Gazdar, P. A. Bunn, and J. D. Minna, Small-cell lung cancer: what we know, what we need to know and the path forward, Nat. Rev. Cancer, vol.17, p.765, 2017.

C. M. Rudin, Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study, Lancet Oncol, vol.18, pp.42-51, 2017.

R. K. Gara, Slit/Robo pathway: a promising therapeutic target for cancer, Drug Discov. Today, vol.20, pp.156-164, 2015.

J. E. Boers, J. L. Den-brok, J. Koudstaal, J. W. Arends, and F. B. Thunnissen, Number and proliferation of neuroendocrine cells in normal human airway epithelium, Am. J. Respir. Crit. Care Med, vol.154, pp.758-763, 1996.

K. D. Sutherland and A. Berns, Cell of origin of lung cancer, Mol. Oncol, vol.4, pp.397-403, 2010.

K. Branchfield, Pulmonary neuroendocrine cells function as airway sensors to control lung immune response, Science, vol.351, pp.707-710, 2016.

H. Kimura, Randomized controlled phase III trial of adjuvant chemoimmunotherapy with activated killer T cells and dendritic cells in patients with resected primary lung cancer, Cancer Immunol. Immunother.: CII, vol.64, pp.51-59, 2015.

A. Scarpa, Whole-genome landscape of pancreatic neuroendocrine tumours, Nature, vol.543, pp.65-71, 2017.

M. Simbolo, Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D, J. Pathol, vol.241, pp.488-500, 2017.

D. R. Swarts, CD44 and OTP are strong prognostic markers for pulmonary carcinoids, Clin. Cancer Res, vol.19, pp.2197-2207, 2013.

G. Papaxoinis, Prognostic significance of CD44 and orthopedia homeobox protein (OTP) expression in pulmonary carcinoid tumours, Endocr. Pathol, vol.28, pp.60-70, 2017.

T. Koyama, ANGPTL3 is a novel biomarker as it activates ERK/MAPK pathway in oral cancer, Cancer Med, vol.4, pp.759-769, 2015.

K. J. Kurppa, K. Denessiouk, M. S. Johnson, and K. Elenius, Activating ERBB4 mutations in non-small cell lung cancer, Oncogene, vol.35, pp.1283-1291, 2016.

C. S. Williams, ERBB4 is over-expressed in human colon cancer and enhances cellular transformation, Carcinogenesis, vol.36, pp.710-718, 2015.

A. Fabbri, Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ss-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary highgrade neuroendocrine tumor: a paradigm shift, Virchows Arch, vol.471, pp.31-47, 2017.

T. T. Wang, Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway, Gut, vol.66, pp.1900-1911, 2017.

M. Mojic, K. Takeda, and Y. Hayakawa, The dark side of IFN-gamma: its role in promoting cancer immunoevasion, Int. J. Mol. Sci, vol.19, p.89, 2017.

M. R. Zaidi and G. Merlino, The two faces of interferon-gamma in cancer, Clin. Cancer Res, vol.17, pp.6118-6124, 2011.

A. Ocana, C. Nieto-jimenez, A. Pandiella, and A. J. Templeton, Neutrophils in cancer: prognostic role and therapeutic strategies, Mol. cancer, vol.16, p.137, 2017.

L. H. Tang, O. Basturk, J. J. Sue, and D. S. Klimstra, A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas, Am. J. Surg. Pathol, vol.40, pp.1192-1202, 2016.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B (Methodol.), vol.57, pp.289-300, 1995.

P. Di-tommaso, Nextflow enables reproducible computational workflows, Nat. Biotechnol, vol.35, pp.316-319, 2017.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

G. G. Faust and I. M. Hall, SAMBLASTER: fast duplicate marking and structural variant read extraction, Bioinformatics, vol.30, pp.2503-2505, 2014.

A. Tarasov, A. J. Vilella, E. Cuppen, I. J. Nijman, and P. Prins, Sambamba: fast processing of NGS alignment formats, Bioinformatics, vol.31, pp.2032-2034, 2015.

L. E. Mose, M. D. Wilkerson, D. N. Hayes, C. M. Perou, and J. S. Parker, ABRA: improved coding indel detection via assembly-based realignment, Bioinformatics, vol.30, pp.2813-2815, 2014.

T. M. Delhomme, needlestack: an ultra-sensitive variant caller for multisample deep next generation sequencing data, 2019.

K. Wang, M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucl. Acids Res, vol.38, p.164, 2010.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

A. Dobin and T. R. Gingeras, Mapping RNA-seq Reads with STAR, Curr. Proto. Bioinforma, vol.51, 2015.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, and S. L. Salzberg, Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, Nat. Protoc, vol.11, pp.1650-1667, 2016.

P. Ewels, M. Magnusson, S. Lundin, and M. Kaller, MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, vol.32, pp.3047-3048, 2016.

L. Fernandez-cuesta, Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data, Genome Biol, vol.16, p.7, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

S. Dray and A. B. Dufour, The ade4 package: implementing the duality diagram for ecologists, J. Stat. Softw, vol.22, p.20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434575

F. Finotello, Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data, Genome Med, vol.11, p.34, 2019.

M. J. Aryee, Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays, Bioinformatics, vol.30, pp.1363-1369, 2014.

Z. Xu, L. Niu, L. Li, and J. A. Taylor, ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip, Nucl. Acids Res, vol.44, p.20, 2016.

M. E. Ritchie, limma powers differential expression analyses for RNAsequencing and microarray studies, Nucl. Acids Res, vol.43, p.47, 2015.

Q. Mo, Pattern discovery and cancer gene identification in integrated cancer genomic data, Proc. Natl Acad. Sci. USA, vol.110, pp.4245-4250, 2013.

M. D. Wilkerson and D. N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinformatics, vol.26, pp.1572-1573, 2010.

S. Durinck, P. T. Spellman, E. Birney, and W. Huber, Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt, Nat. Protoc, vol.4, pp.1184-1191, 2009.

J. D. Zhang and S. Wiemann, KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor, Bioinformatics, vol.25, pp.1470-1471, 2009.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Softw, vol.33, pp.1-22, 2010.

L. F. Nih-r03ca195253-to, J. D. M-;-u, L. R. , G. S. , A. B. et al., Author contributions L.F.C. conceived and designed the study. L.F.C. and M.F. supervised all the aspects of the study, and the Italian Association for Cancer Research (AIRC) (IG 19238 to M.V. and MFAG 12983 to L.A.M.) (Special Programme 5X1000, ED No12162 to

, J.F. Deleuze, vol.22

, Section of Genetics, p.150

, GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202 AZMaastricht, The Netherlands. 5 International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 28 Rue Laennec, 69008 Lyon, France. 9 Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700 La Tronche, vol.150, p.8091

, 13 Bad Berka Institute of Pathology, Robert-Koch-Allee 9, 99438 Bad Berka, Germany. 14 Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, Am Klinikum, vol.1, p.14076

, 20 Nancy Regional University Hospital, CHRU, CRB BB-0033-00035, INSERM U1256, 29 Avenue du Maréchal de Lattre de Tassigny, 54035 Nancy Cedex, France. 21 Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Hospital, Biobank BB-0033-00025, IRCAN Inserm U1081 CNRS 7284, University Côte d'Azur, 30 avenue de la voie Romaine, CS, 51069-06001 Nice Cedex 1, France. 22 Drammen Hospital, Vestre Viken Health Trust, Vestre Viken HF, Postboks, vol.800, issue.23, p.24, 20133.

, Marie Lannelongue Hospital, 133 avenue de la Resistance, 92350 Le Plessis Robinson, France. 25 Fondazione IRCCS Casa Sollievo della Sofferenza, p.26

, Belgrade 11000, Serbia. 28 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Clinical Center of Serbia, Pasterova, vol.2, p.50931

G. Cologne, , p.29

, Via Santena 7, 10126 Torino, Italy. 31 Department of Immunity, Virus, and Inflammation, Cancer Research Centre of Lyon (CRCL), 28 Rue Laennec, 69008 Lyon, France. 32 Cancer Research Centre of Lyon (CRCL), Inserm U 1052, IRCCS Multimedica, Via Gaudenzio Fantoli, vol.5286, p.69008, 20138.

I. Curie, 34 European Reference Network (ERN-EURACAN), 28 rue Laennec, 69008 Lyon, France. 35 These authors contributed equally, 36 These authors jointly supervised this work: Foll M