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Abstract
The global output synchronization problem for heterogeneous nonlinear systems
having relative degree 2 or higher is studied. The proposed approach consists in
two steps. First, a partial projection of individual subsystems into the Brockett
oscillators is performed using a sliding-mode control. Second, the network of these
oscillators is synchronized using the global synchronization results of a particular
second order nonlinear oscillator model from Ahmed et al. (2019). Our approach is
based on output feedback and uses a higher order sliding mode observer to estimate
the states and perturbations of the synchronized nonlinear systems. Along with
numerical simulations, the performance of the proposed synchronization scheme is
experimentally verified on a network of Van der Pol oscillators.

KEYWORDS
Output synchronization, Sliding mode observation, Van der Pol oscillator,
Real-time control

1. Introduction

Over the last decade, the synchronization of complex dynamical systems and/or net-
work of systems has attracted a great deal of attention from multidisciplinary research
communities due to their pervasive presence in nature, technology and human society
[Blekhman (1988); Pikovsky et al. (2003); Strogatz (2003); Osipov et al. (2007)]. Among
potential application domains of synchronization, it is worth to mention the smooth
operations of microgrid [Efimov et al. (2016); Schiffer et al. (2014)], secure communica-
tion [Martínez-Guerra et al. (2016); Fradkov & Markov (1997)], deployment of mobile
sensor networks [Wang et al. (2012)], formation control [Ren & Beard (2008)], chaos
synchronization [Rodriguez et al. (2009)], genetic oscillators [Efimov (2015)], etc.
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Significant progress have been made in the past decade in the area of control
design for synchronization, consensus or motion coordination, the existing literature
is huge and covers a wide area of topics [Gazi & Passino (2011); Olfati-Saber et al.
(2007); Panteley & Loría (2017)]. Until now, a large number of works are available on
the problem of synchronization of networks with identical nodes, particularly when the
nodes are linear time-invariant systems [Scardovi & Sepulchre (2009); Olfati-Saber et al.
(2007)]. However, most physical systems are often not identical and frequently they are
nonlinear in nature. The behavior of dynamical networks with heterogeneous nodes is
much more complicated than the identical-node case. Usually, no common equilibrium
for all nodes exists even if each isolated system has an equilibrium, the same for other
invariant solutions, which can be destroyed or created by synchronization protocols.

The study of synchronization of dynamical networks with heterogeneous nodes
is complicated and very few results have been reported by now. Some attempts have
been made recently to propose output synchronization of heterogeneous systems and
most of them employ the internal model principle [Wieland et al. (2011); Isidori et al.
(2014); De Persis & Jayawardhana (2014); Liu et al. (2015); Bidram et al. (2014)]. The
main idea is to assign each agent a (identical) local reference generator. The control
algorithm then consists of two layers: a protocol, synchronizing the (identical) reference
generators and local model-matching controllers, synchronizing the agents to their
generators. Since agents share the same internal model, global network information is
needed to implement the distributed controllers. Some other results are also available in
the literature for particular classes of systems. For example, in Ahmed et al. (2016), the
authors have proposed robust synchronization for homogeneous/heterogeneous multi-
stable systems. However, the systems are assumed to admit a decomposition without
cycles (neither homoclinic nor heteroclinic orbits). Recently, the results of Ahmed et
al. (2016) have been applied to a multi-stable oscillator model [Ahmed et al. (2019)].

The goal of this work is to address the issue of synchronization of heterogeneous
nonlinear systems using output feedback only, and an additional sub-goal is to have an
oscillatory behavior in the synchronized state. Since many engineering systems have
relative degree 2 or higher (e.g., pendulum systems, oscillators, robot manipulators, DC
motor), the particular focus is put on this class of systems. Studying heterogeneous
systems in general setting, we will assume that neither an equilibrium for each isolated
node nor a synchronization manifold exists, so to synchronize them it is necessary
to apply a feedback transformation [Khalil (2014)] that projects all subsystems to
a common (not necessarily identical) dynamics that can be synchronized next (the
internal model principle). In this paper, the Brockett oscillator model is selected for
this purpose. This is motivated by a global synchronization control recently proposed
for such systems in Ahmed et al. (2019). Then higher order sliding mode (HOSM)
observer is applied to estimate the unmeasurable states and perturbations using the
idea presented in Fridman et al. (2008). In short, the main idea is to compensate the
nonlinearities of individual systems followed by a nonlinear injection converting some
parts of the systems into the Brockett oscillator form. The only restriction is that
the individual systems should have relative degree 2 or higher (see Appendix for the
definition), but most popular nonlinear benchmarks satisfy this criteria provided that
the output signal is properly selected.

In this work, we have considered the output oscillatory synchronization of het-
erogeneous nonlinear systems. Potential applications for such a kind of synchronization
include grid synchronization and load-sharing among DC/AC Inverters, to name a few.
Grid current controllers working in synchronous reference frame require the phase of
the grid voltage signal. This signal cannot be measured but can only be estimated.
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Using the idea of master-slave output synchronization of oscillatory system, [Ahmed
et al. (2019); Pay & Ahmed (2019); Ahmed et al. (2019)] estimated the phase of the
grid voltage signal. In this approach, the grid voltage is considered as the output of
the master oscillator while the slave oscillator tracks the master oscillator to estimate
the parameters with oscillating dynamics. Similarly in the context of multiple oscil-
lators, Virtual Oscillator Control (VOC) [Sinha et al. (2017)] for load sharing among
multiple inverters can be considered as another potential application of the class of
synchronization studied in this paper.

Main contribution: this paper studies the global output synchronization problem
of nonlinear SISO (affine in control) heterogeneous multi-agent systems in a general
setting. The proposed distributed synchronizing control law does not require any global
network (or leader) information and uses the coupling with neighboring agents only.
It can be applied to a network of systems having different orders. Moreover, precise
information about the system parameters, uncertainties/disturbances etc., are also not
needed as they are locally estimated using HOSM observer.

A preliminary conference version of this article has been presented in Ahmed
et al. (2017) where the authors consider only the case when all the agents have same
relative degree. In this article, the results are extended for systems having different rel-
ative degrees and dimensions. All the omitted technical proofs of Ahmed et al. (2017)
are included in the current manuscript. Moreover, experimental results are provided to
demonstrate the feasibility of the proposed controllers for real-time application. The
results presented in this work use feedback transformation to project the subsystems
dynamics to a common dynamics of Brockett oscillator [Ahmed et al. (2019)]. The re-
sults of Ahmed et al. (2019) are only applicable to the Brockett oscillator model which
is of second order. However, the current work considers the global output synchroniza-
tion problem of nonlinear SISO (affine in control) heterogeneous multi-agent systems
in a general setting. This is a significant development with respect to Ahmed et al.
(2019).

The rest of the article is organized as follows: Section 2 gives the problem state-
ment followed by the synchronizing control design in Section 3. In Section 4, simulation
and experimental studies are given, and finally Section 5 concludes this article. Pre-
liminaries on relative degree and a summary of the result of Ahmed et al. (2019) can
be found in the Appendix.

2. Problem Statement

The following family of nonlinear SISO systems (affine in control) is considered in this
work for i = 1, N = 1, . . . , N with N > 1:

ẋi = fi(xi) + gi(xi)ui,

yi = hi(xi), (1)

where xi ∈ Rni is the state, ui ∈ R (ui : R+ → R is locally essentially bounded and
measurable signal) is the input, yi ∈ R is the output; fi : Rni → Rni , hi : Rni → R
and gi : Rni → Rni are sufficiently smooth functions. Denote the common state vector
of (1) as x = [xT1 , . . . , x

T
N ]T ∈ Rn with n =

∑N
i=1 ni, y = [y1, . . . , yN ]T ∈ RN as

the common output, and u = [u1, . . . , uN ]T ∈ RN as the common input. The relative
degree condition (see Appendix) imposed on system (1) is summarized by the following
assumptions:
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Assumption 1. For all i = 1, N , the systems in (1) have global uniform relative degree
ri ∈ [2, ni] and a globally defined normal form [Marino & Tomei (1996)].

Under this assumption, for each subsystem in (1) there is a diffeomorphic trans-
formation of coordinates Ti : Rn → Rn such that [Marino & Tomei (1996); Khalil
(2014)]: [

ηi
ξi

]
= Ti(xi),

where ξi ∈ Rri and ηi ∈ Rni−ri are new components of the state, and for all i = 1, N
the ith subsystem of (1) can be represented in the normal form:

η̇i = ϕi(ηi, ξi), (2)
ξ̇i = Ariξi + bri [αi(ξi) + βi(ξi)ui], (3)
yi = criξi,

where ϕi : Rni → Rni−ri , αi : Rri → R and βi : Rri → R are smooth functions, βi is
separated from zero, and

Ari =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 , bri =


0
0
...
0
1

 ,
cri =

[
1 0 . . . 0

]
are in the canonical form. The subsystem (2) is called the zero dynamics of ith subsys-
tem in (1), which we assume to be robustly stable:

Assumption 2. For all i = 1, N , the systems in (2) are input-to-state stable (ISS)
with respect to the inputs ξi [Sontag (1989); Dashkovskiy et al. (2011); Angeli & Efimov
(2015)].

Concerning the definitions of ISS property used in this work, we will not distin-
guish ISS with respect to a set in the conventional sense [Dashkovskiy et al. (2011)] or
for a multistable system [Angeli & Efimov (2015)], the only property we need here is
the boundedness of the variables ηi for bounded ξi. More detailed analysis of the pos-
sible asymptotic behavior in (2) for the latter scenario is presented in Forni & Angeli
(2015).

Then the synchronization problem consists in finding a control u such that the
members of the family (1) perform synchronous (in phase) oscillations. Since the states
of the subsystems in (1) may have different dimensions ni, a state synchronization error
xi − xj cannot be defined in general (i.e. the states of the subsystems in (1) cannot
follow their neighbors), but an output synchronization can be formulated:

Definition 1. The family (1) exhibits a global output synchronization if

lim
t→∞

(yi(t)− yj(t)) = 0, ∀i, j = 1, N
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for any initial conditions xi(0) ∈ Rni , i = 1, N .

Note that under Assumption 1 an additional requirement can be imposed on
synchronization of derivatives:

lim
t→∞
{ẏi(t)− ẏj(t)} = 0 ∀i, j = 1, N,

and an auxiliary restriction for synchronization is

yi(t) 6= constant ∀i = 1, N,

i.e. the systems perform a kind of oscillations in the synchronous mode.
An output feedback controller has to be designed to achieve the global output

synchronization for (1).

3. Synchronization control design

The idea of this work is to design a feedback controller that will convert a part of
subsystems (3) into the form of the Brockett oscillator [Brockett (2013)] through non-
linearity injection. Then global synchronization results can be easily obtained using the
control proposed in Ahmed et al. (2019) (a summary is given in Appendix). However,
this controller requires all components of the state vector to be available, which limits
its implementation. Therefore, to overcome this difficulty, a high-order sliding-mode
observer is used.

To simplify the presentation of the forthcoming synchronization protocol design,
let us assume that

ui + di = αi(ξi) + βi(ξi)ui,

where di ∈ R is a new disturbance signal in (3) for each i = 1, N (since βi is not singular,
such a representation always exists), and it may represent a parametric mismatch in
the functions αi(ξi) and βi(ξi), but mainly it is introduced to model the estimation
errors for the unmeasured state components ξi. In such a case, if the further proposed
observer for ξi ensures its estimation, di is always bounded and converging to zero or its
vicinity. Finite-time convergence of di using observer structure similar to the proposed
one can also be found in the literature, cf. Ríos et al. (2018). These useful properties
are reflected in the following assumption:

Assumption 3. For all i = 1, N , the unknown input di : R+ → R is continuously
differentiable for almost all t ≥ 0, and there is a constant 0 < ν+ < +∞ such that
ess sup
t≥0

|ḋi(t)| ≤ ν+.

The condition imposed by Assumption 3 is also satisfied by many engineering
systems, e.g. stepper motor [Defoort et al. (2009), Assumption 1], DC/AC power in-
verter [Gadelovits et al. (2019), Eq. (2)], hydraulic actuators [Ruderman et al. (2019),
Eq. (12)], to name a few. In many applications the disturbances are harmonic signals
(coming from vibration of a part of the plant), Assumption 3 is also valid in those
cases.
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3.1. Observer design

Following the ideas presented in Fridman et al. (2008) and Levant (2003), let us first
consider decoupling the input and disturbance. For that purpose, let us consider first,
for all i = 1, N a Luenberger observer [Luenberger (1964)] for (3):

ζ̇i = Ariζi + briui + li(yi − criζi), (4)

where ζi ∈ Rri is an auxiliary variable (an estimate of ξi through a Luenberger ob-
server), and li ∈ Rri is the observer gain designed such that the matrix Ari − licri is
Hurwitz. The estimation error ei = ξi − ζi yields the following differential equation:

ėi = (Ari − licri)ei + bridi,

and to estimate also the unknown input di, we consider an extended error vector:

ẽi = [eTi di]
T .

Then from the available measurement output signal ψi = criei, we obtain:

˙̃ei = Ari+1ẽi − l̃iψi + bri+1ḋi,

where l̃i = [lTi 0]T . Based on Levant (2003), the following high order sliding mode
differentiator can be applied to estimate the error ẽi:

żi,1 = νi,1 = −λi,1|zi,1 − ψi|
ri

ri+1 sign(zi,1 − ψi)

+zi,2 − l̃i,1ψi,

żi,j = νi,j = −λi,j |zi,j − νi,j−1|
ri−j+1

ri−j+2 sign(zi,j − νi,j−1)

+zi,j+1 − l̃i,jψi, j = 2, ri, (5)
żi,ri+1 = −λi,ri+1sign(zi,ri+1 − νi,ri),

where λi = [λi,1 . . . λi,ri+1]
T ∈ Rri+1 is the vector of tuning parameters. The system

(1) equipped with the observer (4), (5) is discontinuous due to the presence of sign
function. The classical theory of differential equations is now not applicable since Lip-
schitz assumptions are employed to guarantee the existence of unique solutions. The
solutions of the system (1) equipped with the observer (4), (5) are to be understood in
the Filippov sense [Filippov (2013)]. The solution concept proposed by Filippov for a
differential equation with discontinuous right-hand-side is constructed as the “average”
of the solutions obtained from approaching the point of discontinuity from different
directions.

Denote by

ξ̂i = ζi +

 zi,1
...

zi,ri

 , d̂i = zi,ri+1

the estimates of ξi and di, respectively, provided by the observers (4) and (5). Then
the following result can be proven:
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Proposition 2. Let assumptions 1 and 3 be satisfied, the matrices Ari − licri be Hur-
witz. Then there exist λi ∈ Rri+1 (λi,ri+1 > ν+ for all i = 1, N) and Ti > 0 such that
for the system in (1) (or in (3)) and the observer in (4), (5) for all t ≥ Ti :

y
(j)
i (t) = ξ̂i,j(t), j = 1, ri,

di(t) = d̂i(t).

Proof. Under the introduced assumptions, the system (1) can be transformed to the
form (2), (3). In addition, the disturbance di can be introduced with a bounded deriva-
tive for almost all instants of time. Next, for a properly selected λi the result follows
Lemma 8 in Levant (2003), where the finite-time convergence and boundedness of the
estimation error for (5) was proven, while the linear observer (4) serves to decouple the
external disturbance di and the control ui, which appear in the same equation.

The designed observers (4), (5) only use local input-output information ui and
yi for each node i = 1, N , thus the proposed estimator is completely decentralized.

3.2. Control design

Once we have the estimates of ξi and di for all i = 1, N , i.e. the estimates for the states
and the disturbances of the system (3), we are in position to design the synchronization
control law.

3.2.1. The relative degree 2 case

First, assume that ri = 2. Then the following synchronizing control law can be proposed
for all i = 1, N :

ui = −d̂i︸︷︷︸
part 1

−ξ̂i,1 − biξ̂i,2
(
ξ̂2i,1 + ξ̂2i,2 − 1

)
︸ ︷︷ ︸

part 2

(6)

+ aik
(
ξ̂i−1,2 − 2ξ̂i,2 + ξ̂i+1,2

)
︸ ︷︷ ︸

part 3

,

where ai > 0, bi > 0 and ki > 0 are tuning parameters. The control law (6) has three
parts: part 1 annihilates the nonlinearity of the original system (di is dependent on αi
and βi); while part 2 injects additional nonlinearities to convert the system (3) into
the form of the Brockett oscillator; finally, part 3 guarantees synchronization, since it
contains the information of the left and right neighbors in the form of (17) (given in
Appendix). In (6), part 1 and part 2 use only local information about the estimates
calculated into the node (ξ̂i and d̂i), and only part 3 is based on signals sent over the
network in (1). Thus, the control (6) is also decentralized, as in the observer (4), (5),
and just the variables ξ̂i,2(t) have to be communicated.

Theorem 3. Let assumptions 1, 2 and 3 be satisfied, the matrices Ari−licri be Hurwitz,
ri = 2 and λi ∈ Rri+1 for all i = 1, N be selected as in Proposition 2. Consider the
system (1) with the observers (4), (5) and the synchronizing feedback control (6). If
there is an index 1 ≤ i ≤ N such that 2aik < bi, then all trajectories in the closed-loop
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system are bounded, and for almost all initial conditions they converge to the largest
invariant set, where the following restrictions are satisfied for all i = 1, N :

ẏi−1 + ẏi+1 = (2 +
bi
aik

(y2i + ẏ2i − 1))ẏi, (7)

y2i + ẏ2i = constant 6= 0,

(yi − yi+1)2 + (ẏi − ẏi+1)2 = constant .

Proof. Since all conditions of Proposition 2 are satisfied, the observer (4), (5) is finite-
time convergent and for t ≥ T = max1≤i≤N Ti the estimates y(j)i (t) = ξ̂i,j(t) for j = 1, ri
and di(t) = d̂i(t) are valid for all i = 1, N . Therefore, due to the structure of the control
(6), for t ≥ T the family (3) become a family of Brockett oscillators which implies the
synchronization result stated in Theorem 9 thanks to part 3 of the controller (6). Let
us prove that there is no finite-time escape of trajectories on the interval [0, T ]. The
convergence of observers is independent of the form of control and the estimation errors
ξi− ξ̂i and di− d̂i stay bounded for all t ≥ 0. Then the system (3) with the control (6)
can be presented in the following form:

ξ̇i,1 = ξi,2

ξ̇i,2 =

3∑
s=1

δi,s − ξi,1 + biξi,2,

where

δi,1 = aik(ξi−1,2 − 2ξi,2 + ξi+1,2),

δi,2 = ξi,1 − ξ̂i,1 + di − d̂i − bi(ξi,2 − ξ̂i,2)

+aik{ξ̂i−1,2 − ξi−1,2 − 2(ξ̂i,2 − ξi,2)

+ξ̂i+1,2 − ξi+1,2},

δi,3 = bi(ξi,2 − ξ̂i,2)|ξ̂i|2 − biξi,2|ξ̂i|2

are auxiliary inputs, δi,1 contains coupling signals, δi,2 is bounded since it is composed
by the observer estimation errors, and δi,3 contains all nonlinear terms. Let us consider
a Lyapunov function Ui(ξi) = 0.5|ξi|2 for this subsystem, whose derivative takes the
form (in the calculations below we will use convention for the indexes as N + 1 = 1):

U̇i = ξi,2

3∑
s=1

δi,s + biξ
2
i,2 ≤ ξi,2

3∑
s=1

δi,s + biUi,

and the following upper estimates can be calculated using Young’s inequality [Khalil
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(2014)]:

ξi,2δi,1 ≤ 0.5aik(ξ2i−1,2 + ξ2i+1,2) ≤ aik(Ui−1 + Ui+1),

ξi,2δi,2 ≤ 0.5(ξ2i,2 + δ2i,2) ≤ Ui + 0.5δ2i,2,

ξi,2δi,3 = bi(ξi,2 − ξ̂i,2)ξi,2|ξ̂i|2 − biξ2i,2|ξ̂i|2

≤ bi|ξ̂i,2 − ξi,2||ξi,2||ξ̂i|2 − biξ2i,2|ξ̂i|2

= bi

(
|ξ̂i,2 − ξi,2| − |ξi,2|

)
|ξi,2||ξ̂i|2

≤ bi

{
0 |ξ̂i,2 − ξi,2| ≤ |ξi,2|
|ξ̂i,2 − ξi,2|2|ξ̂i|2 |ξ̂i,2 − ξi,2| > |ξi,2|

.

Note that

|ξ̂i|2 = |ξ̂i − ξi + ξi|2 ≤ 2|ξ̂i − ξi|2 + 2|ξi|2,

then finally we obtain:

ξi,2δi,3 ≤ 2bi|ξ̂i,2 − ξi,2|2[|ξ̂i − ξi|2 + 2Ui]

Therefore

U̇i ≤ aik(Ui−1 + Ui+1) + (4bi|ξ̂i,2 − ξi,2|2 + bi + 1)Ui

+ 0.5δ2i,2 + 2bi|ξ̂i,2 − ξi,2|2|ξ̂i − ξi|2

There are constants %i > 0 and $i > 0 (dependent on initial conditions) such that

4bi|ξ̂i,2 − ξi,2|2 + bi + 1 ≤ %i,

|ξ̂i,2 − ξi,2|2|ξ̂i − ξi|2 ≤ $i,

consequently,

U̇i < aik(Ui−1 + Ui+1) + %iUi + 0.5δ2i,2 + 2bi$i

and considering a common Lyapunov function for (3)

U(ξ1, . . . , ξN ) =

N∑
i=1

Ui(ξi)

we obtain that

U̇ <

N∑
i=1

[aik(Ui−1 + Ui+1) + %iUi + 0.5δ2i,2 + 2bi$i]

= σU + 0.5

N∑
i=1

δ2i,2 + 4bi$i,
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where σ = max1≤i≤N %i + max1≤i≤N aik. Since δi,2 is bounded for all i = 1, N ac-
cording to Proposition 2, then the above inequality implies that U admits an upper
estimate exponential in time and the system is forward complete (Angeli & Sontag,
1999, Corollary 2.11).

Remark 4. In control (6), it is assumed that the agents are connected through a
N -cycle graph1[Pemmaraju & Skiena (2003)] similar to Ahmed et al. (2019). Other
network topology may also be considered.

3.2.2. The higher relative degree case

Now, consider the general case with ri ≥ 2, then the parts 2 and 3 of the control (6)
form a reference signal ξdi,3 for the variable ξi,3:

ξdi,3 = −ξ̂i,1 − biξ̂i,2
(
ξ̂2i,1 + ξ̂2i,2 − 1

)
+aik

(
ξ̂i−1,2 − 2ξ̂i,2 + ξ̂i+1,2

)
,

where the parameters ai > 0, bi > 0 and ki > 0 save their meaning, and next this
reference signal has to be propagated over chain of integrators, and the part 1 of the
control (6) has to be applied on the last step to annihilate di. Let us denote

ξ̃i,s = ξi,s − ξdi,s

as the error or realization of a desired signal ξ̂di,s by ξi,s for s = 3, ri. For t ≥ T =

max1≤i≤N Ti (the time when the estimates y(j)i (t) = ξ̂i,j(t) for j = 1, ri and di(t) = d̂i(t)
are valid for all i = 1, N) consider the Lyapunov function from Ahmed et al. (2019):

V (ξ) =

N∑
i=1

αi
4

(ξ2i,1 + ξ2i,2 − 1)2

+
1

2

N∑
i=1

(ξi,1 − ξi+1,1)
2 + (ξi,2 − ξi+1,2)

2,

where αi = bi
kai

, then

V̇ =

N∑
i=1

−biα−0.5i z2(ξ, i)− aiz(ξ, i)ξ̃i,3

and z(ξ, i) = ξi−1,2+ξi+1,2−ξi,2{2+αi(ξ
2
i,1+ξ2i,2−1)}. Next, applying the backstepping

approach [Krstic et al. (1995)], we can derive:

ξdi,4 = ξ̇di,3 − κξ̃i,3 + aiz(ξ, i),

ξdi,s+1 = ξ̇di,s − κξ̃i,s − ξ̃i,s−1, s = 4, ri − 1,

ui = −d̂i + ξ̇di,ri − κξ̃i,ri − ξ̃i,ri−1. (8)

1A cycle graph CN is a graph on N nodes containing a single cycle through all nodes, or in other words, N
number of vertices connected in a closed chain.
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With such a control algorithm, the Lyapunov function

W (ξ) = V (ξ) + 0.5

N∑
i=1

ri∑
s=3

ξ̃2i,s

admits the time derivative

Ẇ = −
N∑
i=1

biα
−0.5
i z2(ξ, i) + κ

ri∑
s=3

ξ̃2i,s ≤ 0.

In order to implement the control ui given in (8) it is necessary to calculate the deriva-
tives dj ξ̂i−1,2(t)

dtj and dj ξ̂i+1,2(t)
dtj for j = 1, ri − 3. Therefore, they have to be either trans-

mitted by the network or reconstructed on-line by additional differentiators of a kind
presented in (5). The latter solution is more preferable for a distributed synchronization
protocol, i.e. for a = −1,+1:

%̇ai,0 = νi,0 = −µi,0|%ai,0 − ξ̂i+a,2|
ri−3

ri−2 sign(%ai,0 − ξ̂i+a,2) + %ai,1,

%̇ai,j = νi,j = −µi,j |%ai,j − νi,j−1|
ri−j−3

ri−j−2 sign(%ai,j − νi,j−1)
+%ai,j+1, j = 1, ri − 4, (9)

%̇ai,ri−3 = −µi,ri−3sign(%ai,ri−3 − νi,ri),

then by Lemma 8 in Levant (2003) for a proper selection of µi = [µi,0, . . . , µi,ri−3]
T > 0

there is Ti > 0 such that

%ai,j(t) = ξ̂
(j)
i+a,2(t) ∀t ≥ Ti

for all j = 0, ri − 3 and a = −1,+1. Note that from (5), ξ̂i+a,2 has only ri+a − 1
continuous derivatives, consequently

ri ≤ ri+a + 2 ∀i = 1, N, a = −1,+1. (10)

The following result has been proven:

Theorem 5. Let assumptions 1, 2 and 3 be satisfied, the matrices Ari−licri be Hurwitz,
ri ≥ 2 under (10), and λi ∈ Rri+1, µi ∈ Rri−2 be properly selected for all i = 1, N .
Consider the system (1) with the observers (4), (5), (9) and the synchronizing feedback
control (8). If there is an index 1 ≤ i ≤ N such that 2aik < bi, then all trajectories in
the closed-loop system are bounded, and for almost all initial conditions they converge
to the largest invariant set, where the restrictions (7) are satisfied.

Proof. For t ≥ max1≤i≤N Ti + max1≤i≤N Ti all arguments presented above are valid,
and the forward completeness can be proven similarly to the case of Theorem 3.

Remark 6. Theorem 5 doesn’t assume that the relative degrees of the individual
systems in a network are same. It shows that global oscillatory synchronization is
possible even when the individual systems in a network have different relative degrees
(see Sec. 4.1 for numerical example).
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Instead of the conventional backstepping [Krstic et al. (1995)], the command
filtered backstepping [Farrell et al. (2009)] can also be applied, and since it does not
need derivatives of the virtual controls, the observers (9) can be avoided in this case.
A drawback in this case is that exact synchronization becomes impossible.

4. Results and discussions

4.1. Numerical simulation results

In this Section, numerical simulations are considered to show the effectiveness of the
proposed synchronization scheme. For this purpose, let us consider the synchronization
of three heterogeneous nonlinear oscillatory systems composed of two Van der Pol
oscillators and one oscillator with dynamics like Van der Pol oscillator. The dynamics
of Van der Pol oscillator is given by

ẋ1i = x2i, i = 1, 2

ẋ2i = −x1i + ςi {1− x1i}x2i + ui

yi = x1i (11)

where i represents the oscillator number, x1i, x2i are the states, yi is the output, ςi is
the model parameter and ui is the control input of oscillator i. The dynamics of the
third system is given by

ẋ1i = x2i,

ẋ2i = x3i

ẋ3i = −x2i + ςi

{
1− (x2i)

2
}
x3i + ui

yi = x1i (12)

where i = 3 represents the oscillator number and the rest of the variables retain the
same meaning as used for eq. (11). Although (12) represents one oscillator but we have
used the notation i for uniformity. The parameters ςi are selected as ςi = 0.1 × i for
simulation. So, here the synchronization of systems with different relative degree and
order is considered. With the output yi, the system (11) has relative degree ri = n = 2,
while with the output yi, the system (12) has relative degree ri = n = 3. Then the
family (11), (12) can be written in the form (3) as for i = 1, 2

˙[
x1i
x2i

]
=

[
0 1
0 0

] [
x1i
x2i

]
+

[
0
1

]ui +−x1i + ςi

{
1− (x1i)

2
}
x2i︸ ︷︷ ︸

di

 (13)

and
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Figure 1. Evolution of the oscillator states with control (6) and (8).

˙ x1i
x2i
x3i

 =

 0 1 0
0 0 1
0 0 0

 x1i
x2i
x3i



+

 0
0
1


ui +−x2i + ςi

{
1− (x2i)

2
}
x3i︸ ︷︷ ︸

di

 (14)

Since the states of Van der Pol oscillators are bounded, then the disturbances di in
(13) and (14) satisfy Assumption 3. Then, for systems (13) and (14), the design of
observers (4) and (5) is straightforward. For the Van der Pol oscillators, the observer
parameters are selected as L =

[
20.2 102

]T , λ1 = 3M , λ2 = 1.5M and λ3 = 1.1M
for M = 50 while for Van der Pol like oscillator, the observer parameters are selected
as L =

[
30.6 312.1 1061.1

]T , λ1 = 5M , λ2 = 3M , λ3 = 1.5M and λ4 = 1.1M
for M = 70. With the estimated states, the synchronizing controller (6) can be easily
designed for Van der Pol oscillators represented by (11). System (12) is of relative degree
3. So, the controller (8) is to be designed for (14). The parameters of the controllers
are selected as: a1k1 = 0.4, a2k2 = 0.8, a3k3 = 1.2, b1 = 1, b2 = 2, b3 = 3 and κ = 10.
With these values of the parameters, the conditions of Theorem 5 are satisfied.

The evolution of the oscillator states with controls (6) and (8) is given in Fig.
1. For this simulation, the oscillators were initialized as (2,−2), (0, 2) and (−2, 0, 2).
From Fig. 1, it is clear that the control (6) successfully converted the Van der Pol
oscillators in a finite-time to Brockett oscillators through nonlinearity injection while
the control (8) converted part of system (14) into the form of Brockett oscillator. Then
the result of global synchronization follows directly from Theorem 5. The phase plot
of the individual systems and the the graph of (yi− yi+1)

2 + (ẏi− ẏi+1)
2 as mentioned

in Theorem 3 are given in figures 2 and 3 respectively. Numerical simulation results
demonstrate the effectiveness the of the proposed synchronization scheme. The impact
of perturbations are studied in detail in the experimental study section and skipped
here to avoid repetition.
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Figure 2. Phase plot i.e. yi vs ẏi of the three systems.

Figure 3. Graph of (yi − yi+1)
2 + (ẏi − ẏi+1)

2 for the three systems.

4.2. Experimental Study

To verify the practical feasibility and performance of the synchronization scheme de-
veloped in Section 3, let us consider the synchronization of a network of the Van der
Pol oscillators with N = 3 as given by eq. (13). To implement the proposed synchro-
nizing control, a dSPACE 1104 controller board was used. The control algorithms were
implemented using Simulink. The solver was the fixed-step fourth-order Runge-Kutta
and the time-step was 0.2 milliseconds. An overview of the experimental setup and
the circuit diagram of an autonomous Van der Pol oscillator can be seen in Fig. 4.
For experiments ςi = 0.1 was selected in (11), and the circuit parameters of Fig. 4 are
chosen accordingly (the values of the circuit parameters are skipped here for brevity).
We have selected identical values of circuit parameters for the experimental realization
of the network of Van der Pol oscillators. However, nonidealities and nonlinearities of
the practical devices, make the oscillators heterogeneous in a practical settings. For
example the resistors that are used in this experiment have a tolerance limit of ±10%.
So, even if we take the resistors of the same nominal values for individual oscillators,
the final values are different due to the tolerance limit.

Van der Pol oscillator is a benchmark model for second order nonlinear system.
Global synchronization of model (13) is a very interesting problem. However, it is
difficult to prove analytically the global synchronization of model (13) with heteroge-
neous nodes. As an alternative way, it is possible to globally synchronize family (13)
by transforming individual oscillators into Brockett form as mentioned in Section 3.

For system (13), the design of observers (4) and (5) are straightforward. The
parameters of observers used in the experiments are L =

[
20.2 102

]T , λ1 = 3M ,
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Figure 4. Schematic overview of the practical implementation and circuit diagram of an autonomous Van
der Pol oscillator.

Figure 5. Convergence of the observer. A zoomed version of the the measured state variable (after analog to
digital conversion) can be seen in the inset.

λ2 = 1.5M and λ3 = 1.1M for M = 100. With these values of the parameters,
the convergence of the observed states to actual states is shown in Fig. 5, where the
estimation errors converge in finite-time. Parameters of the controllers are a1k1 = 1,
a2k2 = 2, a3k3 = 2.5, b1 = 10, b2 = 20 and b3 = 30. With these values of the
parameters, the conditions of Theorem 3 are satisfied. The evolution of the oscillator
states with control (6) is given in Fig. 6 where it is clear that the control (6) successfully
converted the family of Van der Pol oscillators in a finite-time to a family of Brockett
oscillators through nonlinearity injection. Then for the family of Brockett oscillators,
the result of global synchronization follows from Theorem 3. The oscillators in this
case converge approximately to the unit circle in the (x1i, x2i) - space which is similar
to the simulation results of Ahmed et al. (2019). The unit circle is inside the set Ω′∞
where the oscillators are supposed to converge from Theorem 9. This demonstrates the
effectiveness of the proposed control.

To check the robustness of the proposed control strategy, two tests were done. In
the first case, successive perturbations (in the form of additional DC voltage inputs)
were added to x23. The evolution of the state variables and the control inputs in this
case is given in Fig. 7. It is evident from Fig. 7 that the proposed control strategy is
very robust with respect to perturbations. Although the oscillators lose synchrony at
the beginning, they return to the synchronous state in a very short period of time due
to global nature of the control (6). To further check the robustness, large amplitude
perturbations were added to state x12 (note that the control influences directly x2i,
but not x1i, which is why it is an interesting case to consider). The results in this case
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Figure 6. Evolution of the oscillator states. Solid lines - x2i and dashed lines - x1i.

Figure 7. Evolution of the oscillator states and control inputs in the case of perturbations added to x23.
Solid lines - x2i and dashed lines - ui. Arrow indicates the time when perturbations were added.

are shown in Fig. 8. The experimental results again demonstrate the robustness of the
proposed control. However, in this case, the oscillators need more time to synchronize
because of large amplitude of perturbations and also due to the fact that x1i do not
depend directly on ui.

5. Conclusion

This paper studied the problem of global synchronization of nonlinear systems with
relative degree 2 and higher using an output feedback. The nonlinear systems were

Figure 8. Evolution of the oscillator states and control inputs in the case of large amplitude perturbations
added to x12. Solid lines - x2i and dashed lines - x1i. Arrow indicates the time when the first perturbation was
added.
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first converted to a normal canonical form. Then higher order sliding mode observers
were used to reconstruct the states and the perturbations in a finite time. Using these
information, individual systems were projected to Brockett oscillator dynamics through
dynamic output feedback control. The synchronization result was obtained by applying
the results of Ahmed et al. (2019). Experimental study demonstrated the effectiveness
of our method using a network of heterogeneous Van der Pol oscillators.
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Appendix

A. Relative Degree

Consider the following nonlinear system

ẋ = f(x) + g(x)u,

y = h(x), (15)

where x ∈ Rn is the state vector, u ∈ R is the input, y ∈ R is the output variable of the
system, f and g are smooth vector fields. A vector field is said to be forward complete
if all solutions to ẋ = f(x) are defined for all t ≥ 0 [Khalil (2014)].

Definition 7. (Global Uniform Relative Degree [Marino & Tomei (1996)]) The global
uniform relative degree r of (15) is defined as the integer such that

LgL
i
fh(x) = 0, ∀x ∈ Rn, 0 ≤ i ≤ r − 2,

LgL
r−1
f h(x) 6= 0, ∀x ∈ Rn.

We say that r =∞ if

LgL
i
fh(x) = 0, ∀x ∈ Rn, ∀i ≥ 0.
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B. Synchronization of Brockett oscillators

The following family of Brockett oscillators [Brockett (2013)] is considered in this
section for some N > 1:

ẋ1i = x2i,

ẋ2i = aiui − x1i − bix2i
(
|xi|2 − 1

)
, i = 1, N, (16)

where ai, bi > 0 are the parameters of an individual oscillator, the state xi =
[x1i x2i]

T ∈ R2 and the control ui ∈ R (ui : R+ → R is locally essentially bounded and
measurable signal). Denote the common state vector of (16) by x = [xT1 , . . . , x

T
N ]T ∈

R2N and the common input by u = [u1, . . . , uN ]T ∈ RN .
The following synchronizing control is selected for family (16):

u = kM


x21
...

x2(N−1)
x2N

 , (17)

where k > 0 is the coupling strength and

M =


−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
. . . 0

1 · · · 0 1 −2


is the interconnection matrix. From a graph theory point of view, the oscillators are
connected through aN -cycle graph [Pemmaraju & Skiena (2003)] (each oscillator needs
only the information of its left and right neighbors). Define the synchronization error
among the various states of the oscillators as

e2i−1 = x1i − x1(i+1), ė2i−1 = x2i − x2(i+1) = e2i

and e2N−1 = x1N − x11, ė2N−1 = x2N − x21 = e2N . Then the main results of Ahmed
et al. (2019) can be summarized as below:

Proposition 8. [Ahmed et al. (2019)] For any k > 0 in the system (16), (17) all
trajectories are bounded and converge to the largest invariant set in

Ω∞ =
{
x ∈ R2N : |xi| = const, e22i−1 + e22i = const,

x2(i−1) + x2(i+1) = (2 +
bi
aik

(|xi|2 − 1))x2i, i = 1, N

}
.

Theorem 9. [Ahmed et al. (2019)] For any k > 0, if there is an index 1 ≤ i ≤ N such
that 2aik < bi, then in the system (16), (17) all trajectories are bounded and almost
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all of them converge to the largest invariant set in

Ω′∞ =
{
x ∈ R2N : |xi| = const 6= 0, e22i−1 + e22i = const,

x2(i−1) + x2(i+1) = (2 +
bi
aik

(|xi|2 − 1))x2i, i = 1, N

}
.

In the set Ω∞ we have for all i = 1, N :

x21i + x22i = r2i ,

ρ2i = e22i−1 + e22i = r2i + r2i+1 − 2(x1ix1(i+1) + x2ix2(i+1))

for some ri ∈ R+ and ρi ∈ R+, and

x2(i−1) + x2(i+1) = βix2i, x1(i−1) + x1(i+1) = βix1i + ci (18)

for βi = 2 + αi(r
2
i − 1), αi = bi

kai
and some ci ∈ R.

Corollary 10. [Ahmed et al. (2019)] Let all conditions of Theorem 9 be satisfied, and
all solutions of the following equations

ρ2i =
1 + αi(r

2
i − 1)

2 + αi(r2i − 1)
r2i+1 − (1 + αi(r

2
i − 1))r2i

+
1

2 + αi(r2i − 1)
r2i−1, i = 1, N, (19)

0 =

N∑
i=1

(ρ2i − r2i − r2i+1)k(ai + ai+1)

+2r2i
(
bi(r

2
i − 1) + 2kai

)
, (20)

with ri 6= 1 admit the restriction:

r2i <
1

3

(
1− 2

kai
bi

)
(21)

for some 1 ≤ i ≤ N . Then for almost all initial conditions the system (16), (17) is
synchronized.
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