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Motivation: Haplotype aware genome assembly plays an important role in genetics, medicine, and various
other disciplines, yet generation of haplotype-resolved de novo assemblies remains a major challenge.
Beyond distinguishing between errors and true sequential variants, one needs to assign the true variants
to the different genome copies. Recent work has pointed out that the enormous quantities of traditional
NGS read data have been greatly underexploited in terms of haplotig computation so far, which reflects
that methodology for reference independent haplotig computation has not yet reached maturity.

Results: We present POLYTE (POLYploid genome fitTEr) as a new approach to de novo generation of
haplotigs for diploid and polyploid genomes of known ploidy. Our method follows an iterative scheme
where in each iteration reads or contigs are joined, based on their interplay in terms of an underlying
haplotype-aware overlap graph. Along the iterations, contigs grow while preserving their haplotype
identity. Benchmarking experiments on both real and simulated data demonstrate that POLYTE establishes
new standards in terms of error-free reconstruction of haplotype-specific sequence. As a consequence,
POLYTE outperforms state-of-the-art approaches in various relevant aspects, where advantages become
particularly distinct in polyploid settings.

Availability and implementation: POLYTE is freely available as part of the HaploConduct package at

https://github.com/HaploConduct/HaploConduct, implemented in Python and C++.

Contact: as@cwi.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In most eukaryotic organisms genomes come in copies, where each copy
stems from one of the ancestors. The number of copies determines the
ploidy of the organism: while diploid relates to two copies, polyploid
refers to more than two copies!. The copy-specific sequences are referred
to as haplotypes, which generally differ in terms of the genetic variants
affecting them. Distinguishing the two haplotypes in diploid organisms
(such as in most vertebrates) or more than two in polyploid organisms
(such as many plants and some funghi) plays an important role in various
disciplines. Prominent examples are genetics, where assigning variants to

! Depending on the context, polyploid includes diploid, but here we refer
to polyploid as more than two copies.

ancestors is key (Tewhey et al., 2014), and medicine, because very often
haplotype-specific combinations of variants establish clinically relevant
effects, for example, when disease risks have been inherited (Glusman
etal., 2014). In general, determining haplotypic sequence, that is, in other
words keeping track of ancestry based dependencies is instrumental in
many biomedical settings.

Assembling the two (diploid) or more (polyploid) haplotypes from
sequencing reads is known as haplotype aware genome assembly, and the
resulting assembled pieces of sequence are haplotigs, as a shorthand for
haplotype aware contigs. The advent of next-generation sequencing (NGS)
has brought about a plethora of NGS read compatible assembly programs.
The vast majority of these programs, however, do not yield haplotigs, but
consensus genome sequence, as a summary across all haplotypes involved.
Even then, sequencing errors, read length and hardware limitations already
pose fundamental challenges during the assembly process.
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Generating haplotigs from NGS reads—which is the challenge that
we tackle here—comes with additional obstacles. Beyond distinguishing
between errors and true sequential variants, one needs to assign the true
sequential variants to the different copies. This requires keeping track
of information that allows to link the true sequential variants stemming
from identical copies. However, NGS reads in general are rather short:
techniques are needed that can link haplotype-specific variants across read
boundaries. Despite the many recent advances, this is not (yet) a standard
procedure in genome assembly: haplotype aware assembly can still be
considered in its early stages of development which explains that further
advances are desirable.

Motivation. The majority of sequencing machines installed worldwide
perform traditional NGS, such as Illumina sequencing. A plethora of
population-scale sequencing studies (e.g. (Besenbacher et al., 2015;
Sudmant et al., 2015; The Genome of the Netherlands Consortium,
2014; The UKI10K Consortium, 2015)) have filled up databases with
traditional, short NGS reads. In terms of quantities, traditional short
NGS reads exceed the amount of reads stemming from more recent
third-generation-sequencing (TGS) protocols by at least one order of
magnitude. The increase in read length due to TGS has considerably
spurred the development of methods for haplotype-aware assembly (see
Related work). While the increase in length is beneficial, the increase
in sequencing error rates is also a major obstacle when distinguishing
between haplotypes, usually leaving applicants with ambiguities that are
hard to resolve.

Recent work has pointed out that targeted examination of NGS
(Illumina type) reads can have significant positive effects in haplotype
aware assembly (Berger et al., 2014; Patterson et al., 2015). Seemingly, the
enormous quantities of traditional NGS read data have been underexploited
in terms of haplotig computation so far. This establishes our major
motivation.

To better understand where serious progress can be made, one needs to
realize that existing methods for haplotype computation from traditional
NGS (Illumina) reads fall into two classes: the first (and arguably more
popular) choice of approaches are referred to as haplotype assembly
programs. These approaches make use of a reference genome to call
variants from aligned reads, which are subsequently phased into separate
haplotypes. The advantage of haplotype assembly programs is their
stability and their resource-friendly usage. Examples for diploid haplotype
assembly are WhatsHap (Patterson et al., 2015), Phaser (Castel et al.,
2016), HapCut2 (Edge et al., 2017), ProbHap (Kuleshov, 2014) and
HapCol (Pirola et al., 2016). Examples for polyploid haplotype assembly
are HapCompass (Aguiar and Istrail, 2012), HapTree (Berger et al.,
2014), SDhaP (Das and Vikalo, 2015), and H-PoP (Xie et al., 2016).
The disadvantage of haplotype assembly programs is that they depend on
high-quality reference sequence as a backbone. In addition, they depend on
external variant call sets. These two factors can introduce non-negligible
biases.

The second class of methods are de novo haplotype aware assembly
approaches that can deal with traditional NGS (in particular Illumina)
reads. The advantage of such approaches is that they are independent
of reference genomes and external call sets, which eliminates the
externally induced biases. There are only little such approaches available
however; to the best of our knowledge, only ALLPATHS-LG (Ribeiro
et al., 2012), Platanus (Kajitani et al., 2014), and dipSPAdes (Safonova
et al., 2015) explicitly aim at computation of haplotigs from (diploid)
NGS data. However, ALLPATHS-LG and Platanus require particularly
tailored libraries, which renders their general application difficult, and the
dipSPAdes software is no longer maintained. In results of ours, we further
noted that SPAdes (Bankevich ef al., 2012) can be run in diploid mode
(which is not to be confused with the no longer maintained dipSPAdes),
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Fig. 1. Algorithm overview.

and is able to compute haplotigs (surprisingly not only in diploid, but also
in conventional mode), thereby likely establishing the only tool among
the (myriad of) approaches for consensus oriented genome assembly (see
Bradnam et al. (2013); Salzberg et al. (2011) for references) that one can
use for computation of haplotigs from short NGS reads.

In summary, there are no approaches that 1) specialize in the generation
of (high-quality) haplotigs, but 2) do not depend on high quality reference
sequence as a backbone, 3) do not depend on external variant call sets and
4) do not require particularly tailored sequencing libraries.

Contribution. The contribution of this paper is to close this gap in the
landscape of approaches. We present POLYTE (POLYploid genome
fitTEr), as an approach to do this for genomes of known ploidy. Our
results indicate that POLYTE outperforms state-of-the-art approaches of
the two classes—haplotype assembly and de novo assembly approaches—
with significant advantages in a variety of relevant aspects. As an
example of an application scenario, POLYTE outperforms the other
approaches in reconstructing individual haplotypes of the human Major
Histocompatibility Complex (MHC). This region of 6Mb on chromosome
6 is essential to the acquired immune system and shows very high
genetic variability; haplotype-aware reconstruction of the MHC region
therefore usually is particularly challenging during the assembly process.
Note finally that the majority of approaches focuses on diploid genomes.
Therefore, the lack of approaches that can compute haplotigs for organisms
of ploidy larger than two is even more striking. For ploidy larger than two,
POLYTE achieves performance rates that are nearly on a par with those
achieved for diploid organisms. To the best of our understanding, because
of the lack of competitors, one might perceive POLYTE’s achievements
for polyploid organisms as a novelty in its own right.

Related work. In terms of assembly paradigms, POLYTE is an overlap
graph based approach. It adopts ideas from earlier work that either focused
on variant discovery (Marschall et al., 2012), viral quasispecies assembly
(Baaijens et al., 2017; Topfer et al., 2014) or metagenome gene assembly
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(Gregor et al., 2016) and unites the virtues of Marschall et al. (2012)—
the ability to handle low coverage—on the one hand, and Baaijens ef al.
(2017); Topfer et al. (2014)—dealing with real overlap graphs and contig
computation—on the other hand. That is, POLY TE brings forth an iterative
overlap graph based scheme for contig generation that reliably works in low
coverage settings, requiring coverage of only as low as 5x per haplotype.

Note finally that our approach also draws motivation from the recent
technology shifts, such as the advent of third-generation sequencing
(TGS) and explicitly haplotype-aware sequencing protocols like StrandSeq
(Porubsky et al., 2017), which have put the computation of haplotigs
into the focus of current attention. Chin et al. (2016); Jain et al.
(2018); Weisenfeld et al. (2017) describe approaches that aim to exploit
the respective advances in sequencing technology and protocol design.
Although there are similarities between these approaches and POLYTE,
we focus on NGS data and hence our method fully exploits paired-end read
information. We consider the adaptation of POLYTE to TGS data most
interesting future work: the framework of POLYTE is generic in terms of
choosing reads, such that this is a matter of adapting parameters, more
than anything else. We recall, however, that our motivation was to bring
forward a method that exploits (the abundantly available) traditional NGS
reads in the first place. This, for example, enables to reconstruct MHC
region haplotypes in various population-scale studies (e.g. Besenbacher
et al. (2015); Sudmant er al. (2015); The Genome of the Netherlands
Consortium (2014); The UK10K Consortium (2015)), which has been a
major challenge so far.

2 Methods

We present POLYTE, an algorithm to assemble individual haplotypes
of diploid and polyploid genomes from short read sequencing data; see
Figure 1 for the complete workflow. POLYTE follows the overlap-layout-
consensus (OLC) paradigm, where consensus refers to removing errors
within haplotypes (instead of the common interpretation of reaching
consensus across different haplotypes). Our method starts by constructing
a read overlap graph which is used for error correction of the input
sequences. Subsequently, we make use of an iterative OLC scheme,
where in each iteration a contig overlap graph is constructed. This graph
is further reduced by applying transitive edge removal and read-based
branch reduction. Then, contigs are clustered and merged according
to their interplay within the overlap graph, resulting in a collection of
extended contigs (‘contig extension’ in Figure 1). These extended contigs
establish the nodes of the contig overlap graph of the next iteration, which
is achieved by an updating procedure. When contigs can not be merged
any further, POLYTE outputs the final set of contigs. When dealing with
diploid organisms, an additional assembly stage can be activated which
consists of two additional steps (‘diploid branch reduction’ and ‘contig
extension’ in Figure 1), creating an optional output that is refined for
diploid organisms.

Given that we are dealing with data of relatively low sequencing depth,
we need to exploit the information present in the sequencing reads as much
as possible. The initial error correction procedure is particularly crucial,
as sequencing errors can heavily disturb the process of distinguishing
between different haplotypes. For this error correction step, approximate
suffix-prefix overlaps are computed to establish an initial read overlap
graph. Inspired by Baaijens et al. (2017) and Topfer et al. (2014),
maximal cliques are enumerated in the non-oriented graph and errors are
corrected by inspecting the read overlaps within the cliques. By design
of the overlap graph—edges indicate that two reads stem from identical
haplotypes—every clique only contains reads from identical haplotypes,
which allows to eliminate errors based on majority votes. Note that this
procedure is particularly tailored to low coverage settings with known

ploidy: admissible clique sizes and minimal sequence overlap lengths can
heavily vary in comparison to earlier approaches. However, with edge
criteria that are much less restrictive than in other approaches, we obtain
a larger number of spurious edges. We have developed a procedure for
read-based branch reduction to reduce the number of spurious edges in
the overlap graph, which is of great importance for accurate reconstruction
of haplotigs.

In the following sections we will discuss each of the steps involved in
POLYTE, following the workflow depicted in Figure 1.

2.1 Read overlap graph construction

The steps outlined in this section refer to the initial step ‘approximate
suffix-prefix overlaps’ that leads to the establishment of the ‘read overlap
graph’ in Figure 1.

Read overlap graph: definition. The read overlap graph follows the
idea that nodes are reads and edges indicate that a pair of reads stem from
identical haplotypes. Given the input consisting of paired-end sequencing
reads (Illumina), let R be the collection of single end sequences from all
paired-end reads. The read overlap graph G = (V, E) is a directed graph
where V' corresponds to the collection of input sequences R. That is, for
every paired-end read we have two vertices v, v’ € V/, one for each single
end sequence R € R. Directed edges v; — v; € E connect sequences
R;, R; whenever the suffix of R; overlaps the prefix of R for atleast 50%
of the average sequence length of all reads. Furthermore, for each edge
v; — vj, we require QS(R;, Rj) > &, where QS : R X R — Risa
quality score and d is an appropriate threshold. This threshold is determined
based on empirical statistics so as to maximize the chances that the edge
(vi,v;) indeed indicates that the corresponding sequences R; and R;
stem from identical haplotypes; increasing the d-threshold would lead to
a higher accuracy but possible loss of low abundance haplotypes. In this,
we largely follow ideas presented in earlier work (Baaijens et al., 2017;
Marschall ez al., 2012; Topfer ez al., 2014).

The difference with respect to these prior approaches is that only single
ends are considered, whereas in the earlier approaches nodes represent
the entire paired-end reads. Also note that here overlap graphs are twice
as large in comparison to the earlier approaches, because each paired-
end read is represented by two nodes, instead of only one. While this
difference imposes substantial methodical and technical challenges, it is
key to dealing with low coverage because it decisively increases the recall
in terms of recovering reads that stem from identical haplotypes.However,
it also implies follow-up complications, because the information that read
ends come in pairs is temporarily lost. In POLYTE, paired-end information
is stored and used in later steps; see Section 2.4 below.

Construction. Computation of the edges for the read overlap graph
requires enumeration of all pairwise approximate suffix-prefix overlaps
(of sufficient length) between the single read ends R € R and evaluation
of a quality score QS(R;, R;) for each pair of sequences for which a
sufficiently good overlap was established during the approximate suffix-
prefix overlap computation. We further orient the edges (which is necessary
because reads can stem from either the forward or the reverse stand) and
systematically remove double transitive edges, which ensures that one can
enumerate maximal cliques in an efficient manner (see Section 2.2). Each
of these graph construction steps is described in detail in Section 1 of the
Supplementary Material.

The computation of approximate suffix-prefix overlaps for vertebrate
genome sized input read sets is a serious issue, currently hardly conceivable
without external auxiliary means (see also Simpson and Durbin (2012)).
Here, we suggest a method that aims to suppress externally introduced
biases to a maximum degree. We make use of a reference genome for
binning reads in an initial step and, after binning, we discard the reference
genome and any related information entirely such that POLYTE operates
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in full de novo mode. This binning step does not require a high-quality
reference genome, as long as reads get mapped; any unaligned reads are
discarded (see also Supplementary Section 9).

2.2 Correction of sequencing errors

After the establishment of the read overlap graph, we cluster its nodes
by enumerating the maximal cliques contained in the non-oriented graph.
The idea is to collect groups of reads belonging to the same haplotype and
produce error-free sequences for subsequent assembly steps (‘corrected
sequences’, Figure 1). By definition of a maximal clique—a maximal
group of nodes all of which are connected by edges—maximal cliques
represent maximum-sized groups of reads all of which belong to the
same haplotype. Once all maximal cliques are determined, it is therefore
reasonable to merge the reads within a maximal clique into a single contig.
Note that this contig is longer than the individual reads participating in the
contig and that sequencing errors can be eliminated by raising majority
votes among the reads participating in the maximal clique. While this
reflects an approved procedure in its generic form (Baaijens et al., 2017;
Gregor et al., 2016; Topfer et al., 2014), accounting for the particular
setting we are facing here—namely low coverage in combination with
sequence-based edge definition—requires particular care.

The minimum clique size depends on the coverage per haplotype; in
all settings considered we are dealing with known ploidy, while the overall
coverage of reads can be determined by usual considerations, which yields
per-haplotype-coverage estimates. To determine the optimal minimum size
of a clique for a given per-haplotype coverage, we compute the probability
P,k that, due to unfortunate fragmentation of sequencing reads, at a per-
haplotype coverage of c there is no clique of size k that extends a given
sequencing read R to the right when requiring at least 50% read overlap. In
other words, we compute the probability that there are ar most k — 1 reads
extending R to the right; the exact same analysis applies to extensions to
the left.

For determining p.. 5, we assume that sequencing reads are fragmented
randomly, which implies that reads are generated independently of one
another. Let R be aread and S be a set containing reads from the haplotype
of R at exactly 1x coverage, further assuming that all reads R’ € S have
the same length as R (which reflects that all single read ends have the
same length). It is straightforward to see that the probability that there is
R’ € S that overlaps R at at least 50% of its length (into one direction,
left or right) as 0.5. When dealing with a per-haplotype coverage of ¢, we
assume the existence of ¢ sets of reads S;, 7 = 1, .., c all of which contain
reads that cover the haplotype c at 1x. For computing p. . we consider
that for only & — 2 of the ¢ sets S;,72 = 1,...,c we have that there is
R’ € S; that overlaps R at at least 50% of its length (resulting in a clique
of size at most k — 1), which evaluates as

k—2 c—1 . k—2 c—1
Per=3 ( . )0.510.56*1*1 -3 ( . )0.5“1‘ m
=0 i=0

We aim to have p,. x low to be able to deal with sufficiently many cliques,
hence for every choice of ¢ we compute £ such that p. < 0.001. In this
regard, we obtain that for up to 10x per haplotype an appropriate choice
for the minimum clique size is 2, for coverages between 10x and 15x
a minimum clique size of 3 is required, while for ¢ > 15x an optimal
choice for the minimum clique size is 4. Note that in practice cliques do
not grow larger than size 4 because of double transitive edge removal (see
Supplementary Material).

2.3 Contig overlap graph construction

Given the corrected sequences obtained by merging maximal cliques, we
build a new graph: the contig overlap graph (see Figure 1).

Fig. 2. Illustration of branching components in a contig overlap graph. Edges of the same

color belong to the same branching component.

Contig overlap graph: definition. The contig overlap graph G’ =
(V’, E') is very similar to the read overlap graph, except that we construct
it from a set of contigs assumed to be free of sequencing errors. Therefore,
every node v € V"’ corresponds to a contig and we add an edge between
a pair of nodes whenever they have an exact (i.e. error-free) overlap of
sufficient length.

Construction. The contig overlap graph can be constructed very
efficiently by making use of the FM-index-based algorithm from
Section 2.1 while allowing only exact overlaps. This gives us the complete
edge set E’ without any further computations, since we do not need to
compute the overlap quality score for exact overlaps. Note that the minimal
overlap length in the contig overlap graph does not need to be as high
as before error correction and it is independent of the read length: all
experiments were performed using a minimal contig overlap of 50bp.

Remark. Allowing approximate overlaps in this stage of the algorithm,
for example by allowing some substitutions, would slow down the contig
overlap graph construction considerably. Although the additional edges
could lead to improved recovery of true haplotypes, it would also bring the
risk of collapsing highly similar sequences and thus missing haplotypes.

2.4 Branch reduction in the contig overlap graph

Before using the contig overlap graph to extend our contigs, we trim the
graph by removing redundant vertices and edges and resolving branches
based on read evidence where possible, now also exploiting the paired-end
information. After completing this step, we have a ‘reduced graph’ (see
Figure 1) that is ready for contig extension.

Transitive edge removal. An edge v — w € E' is called transitive
if there exists a vertex v € V"’ and edges u — v,v — w € E’. Now that
sequences (contigs) are assumed to be error-free, transitive edges have
become fully redundant, hence we remove all transitive edges from the
graph before further processing.

Branching edges and nodes. The indegree (resp. outdegree) of anode
v € V' is defined as the total number of incoming (resp. outgoing) edges
in G’. If v has indegree greater than one, we say v has an in-branch;
analogously, if v has outdegree greater than one, we say that v has an outr-
branch. We refer to the corresponding edges as branching edges and to v
as a branching node. Since we did not use any read pairing information
during construction of our overlap graphs, we observe many branches in
the contig overlap graph. We now use the information how ends are paired
to remove any branching edges in the contig overlap graph that do not
correspond to a true haplotype.

Merging simple paths. Following the above definition, any edges
that are not branching edges constitute simple paths through the contig
overlap graph. For such paths, there is only one possible way to combine
the corresponding contigs; hence, before processing the graph any further,
we merge every simple path into a single contig. Since edges in the graph
represent exact overlaps, this is a straightforward procedure.

Branching components. After merging simple paths, all remaining
edges are branching edges. We define a branching component as subgraph
H of the contig overlap graph, such that (1) H is an induced subgraph,
(2) H is connected as an undirected graph, and (3) within H, any vertex
has only incoming or outgoing edges in H, but not both. A branching
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Fig. 3. Two examples of contigs creating branches in the overlap graph. Edges
corresponding to true haplotypes are highlighted in yellow. The corresponding subreads

are aligned below, those providing read evidence are again highlighted.

component is defined to be maximal with respect to these three properties;
see Figure 2. Intuitively, a branching component reflects all possible
haplotypes within a small region of the genome.

Note that different components may intersect across their vertex sets,
but cannot have any edges in common. In other words, the maximal
branching components partition the set of all branching edges, as illustrated
in Figure 2. This partition can be found in time linear in the number
of branching edges by alternatingly traversing in-branch edges and out-
branch edges until every edge has been seen exactly once; see Section 2
in the Supplementary Material for further details. After enumerating
all maximal branching components, we evaluate read evidence per
component.

Read evidence. The main idea of read-based branch reduction is to
remove all branching edges for which there is insufficient read evidence in
the input data. For this purpose, we keep track of all original sequencing
reads (‘subreads’) that were used to build a contig; each of these
subreads may provide evidence for a branching edge. Within a branching
component, we first list all variant positions, i.e., the positions at which
the sequences corresponding to the different neighbors differ from each
other. Intuitively, these are the positions where we may find sequencing
reads supporting a given branching edge. A paired-end sequencing read
R = (R, Ry) is marked as evidence for the branching edge v — v if it
satisfies the following conditions:

(i) R spans the branching edge, meaning that at least one of the sequences
R1, Ry is a subread of u and at least one of the sequences Ry, Ro is
a subread of v;
(ii)The sequence spanning the edge is identical to the contig sequence of
the corresponding node for all variant positions it covers;
(iii) R is unique for this edge: it does not satisfy conditions (i) and (ii) for
any other edge involved in this branching component.

Figure 3 shows two examples of contigs creating branches in the
overlap graph, along with the sequencing reads (‘subreads’) that were
used to build these contigs; the subreads providing read evidence are
highlighted in yellow. Observe that in panel A, in order to satisfy condition
(iii) a subread has to cover at least one variant position on either contig.
In panel B, we illustrate that also a single read end can provide evidence:
the rightmost subread covers a variant position and satisfies all conditions
listed above.

Note that condition (ii) ensures that erroneous contigs do not find
evidence in correct reads: if a sequencing error accidentally ends up in
a contig, it will cause a branch in the overlap graph which can only be
supported by reads containing exactly this sequencing error. Whenever
such a branch occurs, there will be insufficient evidence and hence the

A B
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Fig. 4. Typical branching components in diploid assemblies: four contigs, two from each
haplotype, having identical sequence in their overlap. Depending on the contig lengths, all

contigs overlap (panel A) or only a subset of the contigs overlap (panel B).

erroneous contigs will never be merged. Eventually, these contigs can be
filtered out based on their short length. In the Supplementary Material we
discuss how an appropriate evidence threshold is determined (using similar
considerations as for determining the optimal clique size, Section 2.2).
Increasing the evidence threshold would lead to a higher accuracy but also
potential loss of low abundance haplotypes.

Branching edge removal. For every branching component, we count
the read evidence per branching edge and remove any edges with evidence
count below the evidence threshold.

2.5 Contig extension and graph updating.

After applying the read-based branch reduction techniques described
above, all branches have been either resolved or removed from the contig
overlap graph. Contig extension has become an easy task: any contigs
which are connected by an edge in the graph must belong to the same
haplotype, and, therefore, we merge each such pair of contigs into a
new, longer contig. Then, we update the overlap graph: the extended
contigs become the new nodes and the edges are updated accordingly. The
resulting updated graph is used for further assembly in an iterative manner,
as described in Section 2.6.

2.6 lterative procedure and diploid mode

Our workflow consists of iteratively performing the steps described in
Sections 2.3-2.5, as illustrated in Figure 1. The number of edges in
the contig overlap graph decreases with every iteration, since contigs
connected by an edge in the graph are merged (Section 2.5). The algorithm
terminates when the edge set E’ of the updated contig overlap graph
becomes empty, either upon construction or after branch reduction. Thus,
our algorithm is guaranteed to converge, and once it does we remove any
remaining inclusions from the final contig set. Also any contigs shorter
than the fragment size of the original reads are removed from the output.

Diploid mode. Knowing that a given sample is diploid is a very
strong piece of information when performing haplotype assembly. We have
developed a special module which can be activated for diploid samples. It
extends the POLYTE pipeline by two additional steps after the standard
algorithm has terminated: construction of a diploid contig graph, followed
by contig extension (see Figure 1). In these additional steps, we use the
knowledge that the sample is diploid to resolve additional branches (for
which there was insufficient evidence in the read set to resolve them during
the read-based branch reduction step; see Section 2.4).

In overlap graphs from diploid samples we typically see two types of
branching components; Figure 4 illustrates both types (Panel A and B)
and gives an example of a possible collection of contigs giving rise to
the corresponding branching component. In both situations we have four
contigs, two from each haplotype, which have identical sequence where
the contigs overlap. In diploid mode, a single read of evidence may already
be considered sufficient, depending on the amount of evidence found for
the other edges (Supplementary Material, Section 3).
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In this section we show results for POLYTE on both simulated and real
Tllumina data sets and evaluate the assembly quality in terms of haplotype
coverage, N50, NGAS5O0, error rate, and the number of misassembled
contigs relative to the total number of contigs. We also compare our method
against alternative haplotype reconstruction tools: SPAdes (Bankevich
et al., 2012), Phaser (Castel et al., 2016), HapCut2 (Edge et al., 2017),
‘WhatsHap (Patterson ez al., 2015), SGA (Simpson and Durbin, 2012), and
H-PoP (Xie et al., 2016). Other polyploid assemblers (Aguiar and Istrail,
2012; Berger et al., 2014; Das and Vikalo, 2015) were unable to process our
benchmarking data due to issues with the available software. All methods
were run with default settings and assembly statistics were obtained with
QUAST (Gurevich er al., 2013).

3.1 Data sets

Simulated data. We generated a collection of simulated data sets
of varying ploidy and sequencing depth to evaluate the effect of these
characteristics. We selected four human MHC haplotypes from the Vega
Genome Browser?: COX, DBB, MANN, and SSTO. Subsequently, we
used SimSeq® to simulate [llumina MiSeq reads of length 2x250bp for
each of those haplotypes at a coverage of 5x, 10x, 20x, 30x, 40x, and
50x, respectively, and combined the resulting read sets to form data sets of
ploidy 1 (only COX haplotype, a sanity check), ploidy 2 (COX and DBB),
ploidy 3 (COX, DBB, and MANN), and ploidy 4 (all).

Real data. For evaluation on real sequencing data, we considered
a data set from phase 3 of the 1000 Genomes project (1000 Genomes
Project Consortium et al., 2012; Sudmant et al., 2015) for individuals
NA19240. This data set was obtained from a 2x250 bp PCR free Illumina
protocol, sequenced to a coverage of 28-68x. Full haplotypes have been
reconstructed for this individual as part of a recent study (Chaisson et al.,
2017) using various specialized sequencing techniques and reconstruction
algorithms; we use the resulting haplotypes as a ground truth for a whole-
chromosome benchmarking experiment on chromosome 22.

Alignments and variant call sets for reference-guided methods.
Reference-guided methods Phaser, HapCut2, WhatsHap, and H-PoP
require as input a reference genome, read alignments to the reference
genome, and a pre-computed set of genomic variants. For the simulated
data we performed read alignment to the GRCh38 reference genome using
BWA MEM (Li and Durbin, 2009). The real data was already provided
as alignments to the GRCh37 reference genome, also obtained with BWA
MEM. We extracted the sequencing reads corresponding to chromosome
22 from the provided BAM files. Finally, we performed variant calling on
all data sets with FreeBayes*.

3.2 Assembly performance criteria

‘We evaluate assembly performance in terms of several statistics commonly
used for de novo assembly evaluation, as reported by QUAST.

2 http://vega.archive.ensembl.org/info/data/MHC_
Homo_sapiens.html

3 https://github.com/jst john/SimSeq
4 https://github.com/ekg/freebayes

Phaser 82.6 24785 16884  0.095 0 1.8
WhatsHap 85.2 32656 17980  0.098 0 2.2
Real data

POLYTE  78.2(90.5) 2838 2316  0.090 0 0.2
SGA 57.7(66.8) 2842 - 0.069 0 0.0
SPAdes 67.0(77.5) 5798 - 0131 0 0.6
SPAdes-dip 66.4(76.9) 5772 - 0.139 0 0.8
HapCut2 70.1(81.1) 6541 5306  0.090 0.9 0.2
H-PoP 62.4(72.2) 9583 7435 0.119 0.9 0.2
Phaser 66.2 (76.6) 6394 5245 0.094 0.9 0.2
WhatsHap  67.6 (78.2) 6257 6094 0.092 0.9 0.2

Table 1. Benchmarking results, HC = Haplotype Coverage, ER = Error Rate
(mismatches + indels), NR = N-Rate (ambiguous bases), MC = Misassembled
Contigs. Top: simulated diploid data for the MHC region. Bottom: real data
for chromosome 22 of 1000 Genomes individual NA19240. HC values within
parentheses indicate haplotype coverage relative to the amount of bases covered
by sequencing reads.

Haplotype coverage (HC). The completeness of the assembly is
measured by the fraction of nucleotides in the target haplotypes (ground
truth) covered by haplotigs, referred to as the haplotype coverage.

N50 and NGAS50. Assembly contiguity is measured using the N50
value, which is defined as the length for which the collection of all
contigs of that length or longer covers at least half the assembly. The
NGAS50 measure is computed in a similar fashion, but only aligned blocks
are considered (obtained by breaking contigs at misassembly events and
removing all unaligned bases). This measure reports the length for which
the total size of all aligned blocks of this length or longer equals at least
50% of the total length of the true haplotypes.

Error rate (ER) and N-rate (NR). We evaluate error rate as the sum of
mismatch rate and indel rate when comparing to the ground truth haplotype
sequences. In addition, we report the relative number of ambiguous bases
(‘N’s), referred to as the N-rate.

Misassembled contigs (MC). A contig or haplotig is called
misassembled if it contains at least one misassembly, meaning that left
and right flanking sequences align to the true haplotypes with a gap or
overlap of more than 1kbp, or align to different strands, or even align to
different haplotypes. We report the proportion of misassembled contigs.

3.3 Benchmarking results

‘We performed benchmarking experiments on one of the simulated MHC
data sets described above (ploidy 2, 20x coverage per haplotype) to
compare a variety of haplotype reconstruction tools. In addition, we ran
all methods on the chromosome 22 data of the 1000 Genomes individual
NA19240. The assembly statistics on both data sets are shown in Table 1.
Since both data sets are diploid, we present results for SPAdes in regular
mode and in diploid mode, referred to as SPAdes-dip.

In both experiments, we observe that across all methods POLYTE has
the largest haplotype coverage (HC, 92.4% and 78.2% for MHC and chr22,
respectively). In other words, it reconstructs the largest fraction of the true
haplotype sequences. In comparison, the other methods are all more or
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less on a par (81.7-85.2% [MHC] and 57.7-70.1% [Chr22], respectively).
On the real data the haplotype coverage achieved by all methods is rather
low; this can be explained by only 86.4% of the target haplotypes being
covered by sequencing reads. After normalizing the haplotype coverage
values by 86.4, POLYTE achieves a haplotype coverage of 90.5%.

In terms of assembly contiguity, indicated by high N50 and NGA50
values, reference-guided methods (HapCut2, Phaser, WhatsHap, H-PoP)
perform better than de novo assemblers (POLYTE, SGA, SPAdes). This
reflects a common advantage of reference-guided approaches, which can
make use of the external information to bridge regions only poorly covered
with informative reads, if appropriate. The increase in length, however, is
offset by a substantial decrease in terms of haplotig quality: reference-
guided approaches exhibit both substantially more misassemblies (which
in particular can lead to severe issues in downsteam interpretations) and
increased error rates, here larger by one to two orders of magnitude. Note
that several NGAS50 values are undefined (‘-’), because the aligned blocks
are unable to cover at least 50% of the total reference length.

Another important difference between reference-guided methods and
de novo approaches is reflected in the N-rates on the real data: the reference
genome contains several stretches of ambiguous nucleotides (‘N’s), which
the reference-guided methods cannot correct. De novo approaches, on
the other hand, can potentially uncover the true sequence behind these
ambiguous regions and show an N-rate of 0% (versus 0.9% for the
reference-guided methods).

Between de novo approaches, we compare POLYTE with SGA and
SPAdes and observe that POLYTE reconstructs a substantially larger
fraction of the true haplotypes. Although SPAdes achieves better N50
values, this comes at the expense of a decrease in terms of error rate and
misassemblies, also reflected in a low NGASO0 value on the simulated data
and the NGAS50 being undefined on the real data (see explanation above).
On the simulated data set, POLYTE and SPAdes achieve comparable
error rates of 0.035% and 0.031%, respectively. On the real data we
notice an advantage for POLYTE, with an error rate of only 0.090%
compared to 0.131% for SPAdes. In addition, POLYTE is less vulnerable
to misassemblies than SPAdes on real data, with 0.2% versus 0.6% MC.
SGA is able to reconstruct highly accurate contigs with slightly lower
error rates than POLYTE (0.025 vs 0.035% [MHC] and 0.069 vs 0.090%
[Chr22], respectively), but covers a significantly lower fraction of the
ground truth haplotypes (73.4 vs 92.4% [MHC] and 57.7 vs 78.2% [Chr22],
respectively).

In an overall account, we believe that, arguably, the major advantage
of POLYTE is established by the increase of 10-15% over the other
approaches in terms of haplotype-specific coverage, in combination with
the error rates, which are clearly lower than those of the other tools.

In terms of runtime and memory usage, de novo approaches are in
general more expensive than reference-guided methods. We also observe
this when comparing CPU time and peak memory usage (Supplementary
Tables 3-5). Reference-guided methods have CPU times that are orders of
magnitude less compared to de novo methods (where POLYTE requires 9—
15 times more (resp. 3—6 times more) runtime and 3 times less (resp. 12-17
times more) memory than SPAdes and SGA, respectively). It is important
to notice, however, that these de novo assemblers are highly parallelizable;
we demonstrate the effect of increasing the number of available CPU’s on
the effective runtime in Supplementary Table 6. This leads to feasible
runtimes on multi-core computing facilities in practice.

3.4 Effect of ploidy and sequencing depth

To study the effect of genome ploidy and sequencing depth on the assembly
quality and completeness, we ran POLYTE, SPAdes, SGA, and H-PoP on
all simulated data sets described in Section 3.1 (other tools were unsuitable
for polyploid genomes). Figure 5 shows the results for the 5x, 10x, and

20x data sets in terms of haplotype coverage (HC), N50, NGA50, error
rate (ER), and misassembled contigs (MC). For additional result tables we
refer the reader to the Supplementary Tables 8—11.

We observe that POLYTE excels regarding haplotype coverage, with
advantages becoming more distinct as the ploidy increases. SPAdes and
H-PoP achieve more contiguous assemblies (higher N50 values) but, as
we already observed on diploid data, this comes at the cost of significantly
higher error rates and misassemblies. SGA performs very similar to
POLYTE when considering N50, ER, and MC, but obtains much lower
HC values. The NGAS50 values highlight the improved assembly quality of
POLYTE over SGA and SPAdes: while POLYTE achieves NGAS50 values
comparable to the N50, SGA and SPAdes are unable to cover at least 50%
of the ground truth with alignments (hence NGAS50 is undefined). Overall,
we conclude that in polyploid settings the same advantages of POLYTE
apply as in diploid settings — increased haplotype-specific coverage in
combination with low error rates — and become even more pronounced.

All other methods evaluated (HapCut2, Phaser, Whatshap, SPAdes-
dip) are designed for diploid data, so for those we could only assess the
effect of sequencing depth. Results indicate that each of the reference-
guided methods already performs optimally at a coverage per haplotype
of 5x. Moreover, these methods are unaffected by a further increase in
sequencing depth (see Supplementary Table 12). SPAdes in diploid mode
(SPAdes-dip) performs optimally at a per-haplotype coverage 20x.

4 Discussion

Assembling the individual haplotypes of an organism from sequencing
reads is known as haplotype aware genome assembly and plays a major
role in various disciplines, including genetics and medicine (Glusman
et al., 2014; Tewhey et al., 2014). Computing haplotype-specific pieces
of sequence, also known as haplotigs, is a difficult task. Algorithms
addressing this task do not only need to distinguish between sequencing
errors and true variants, but also need to assign the true variants to the
individual haplotypes. Enormous quantities of next-generation sequencing
(NGS) reads generated worldwide have not been fully exploited in terms
of haplotig computation, because methodology for de novo haplotig
computation from NGS reads has been in a rather immature state.

We have presented POLYTE (POLYploid genome fitTEr) as a new
approach to de novo assembly of haplotigs from NGS data, suitable for
diploid genomes as well as genomes of higher ploidy. Unlike the majority
of NGS based de novo assemblers, our method follows the overlap-
layout-consensus (OLC) paradigm to achieve enhanced performance
rates in terms of haplotype-specific computation of contigs. In order to
appropriately distinguish between errors and true variants to be assigned
to haplotypes, it employs an iterative OLC scheme. Along the iterations,
contigs grow in length while preserving their uniqueness in terms of
haplotype identity. As a result, POLYTE outperforms the currently
available state-of-the-art approaches for haplotig computation, where
it performs particularly favorable in terms of quantities that refer to
haplotype-specific reconstruction of the genomes.

Experimental results showed that POLYTE can build accurate
assemblies from Illumina MiSeq reads (2x250bp) for data sets of varying
ploidy (di-, tri- and tetraploid), with results for tetraploid organisms almost
on a par with those for diploid organisms. Although building overlap
graphs for larger genomes remains a challenge, we provide a read binning
step that allows efficient assembly by splitting the work over multiple
cores. The typical use-case for POLYTE consists of Illumina NGS reads
for a specific gene, region or genome that is highly polymorphic (of any
ploidy greater than one).

We showed that POLYTE succeeds in accurate reconstruction of
individual haplotypes of the human MHC region. Future work may
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Fig. 5. Assembly results per method for simulated data of increasing ploidy (k=2,3,4) and per-haplotype coverage (5x,10x,20x). N50 and NGA50 values are plotted on a log-scale for

increased readability. For SGA (k=2,3,4) and SPAdes (k=3,4) the NGAS0 values are undefined.

therefore be to apply POLYTE to NGS data in population-scale human
genome projects, where individual genomes are still lacking proper
annotation of their MHC region, which applies in the majority of cases.
Advantages become particularly distinct on data of higher ploidy, leading
to plant genome assembly as another interesting future application of
POLYTE.

Our algorithm is, in its essence, generic in the choice of input reads, so
applying it for TGS reads essentially is a matter of adapting parameters,
which we will explore in the short-term future.
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