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HAMILTONIAN CYCLES IN STRONG
PRODUCTS OF GRAPHS

BY
J. C. BERMOND, A. GERMA, AND M. C. HEYDEMANN

ABSTRACT. Let XG* denote the graph GXGX::-XG
(k times) where GX H is the strong product of the two graphs G
and H. In this paper we prove the conjecture of J. Zaks [3]: For
every connected graph G with at least two vertices there exists an
integer k = k(G) for which the graph X G* is hamiltonian.

Let G be a graph (undirected) and let V(G) and E(G) denote the vertex set
and the edge set of G. The strong product GX H of two graphs G and H is
defined by

V(GXH)=V(G)x V(H)

E(GX H)={(tt1, v1)(ttz, )} | uy, € V(G), vy, v, V(H) and

either u; =u, and {v,, v,}e E(H)

either v, =v, and {u,, u,}e E(G)

either {u,, u,} e E(G) and {01, v} e E(H)}.

This product is commutative and associative and following [3] we shall
denote by X G* the graph GXGX---XG (k times).

In [3] J. Zaks proved that: “For every h and k, h=1, k=1, there exists an
h-connected graph G = G(h, k), such that the graph X G* is non-hamiltonian”
and asked:

“Is it true that for every connected graph G with at least two vertices there
exists an integer k =k(G) for which the graph X G* is hamiltonian”.

We give an affirmative answer to this question in Theorem 11, the proof of
which needs Lemmata and Propositions 1 to 10.

Our notations are as follows:

— P,, the path with n vertices.

—dg(x) the degree of the vertex x in G.

— A(G) the maximum degree of the vertices of G.

—For a in V(H) (resp. b in V(G)) G, (resp. H,) denote the subgraph
Gx{a} of GXH (resp. {b} X H of G X H).



The reader is referred to C. Berge [1] for any graph theory terms not defined
here.

Levva 1. The strong product of two connected graphs is connected.

Lemma 2. For every graph G and every integer n =2, there exists a covering of
the vertices of GX P, by vertex-disjoint subgraphs isomorphic to P,

Proof. The subgraphs of the covering are (P,), with a e V(G). W

Lemma 3. For every n and m, 2=n <m, there exists a covering of the vertices
of K\, XK, . by vertex-disjoint subgraphs isomorphic to K, ,,.

Proof. The subgraphs of the covering are (K, ,), with a € V(K,,) B

Lemma 4. For every n, n= 3, there exists a covering of the vertices of X K3, by
vertex-disjoint subgraphs isomorphic to K, .. with n,<n.

Proof. The general construction is an casy generalization of decomposition
shown in Fig. 1 for n=5. B

Figure 1

Prorosition 5. For every connected graph G, there exists an inieger k, = k,(G)
such that V(X G") can be covered by vertex-disjoint paths of positive length.

Proof. Every non empty graph G with no isolated vertices is vertex covered
by disjoint paths of positive length and by stars, as can be casily shown by
induction on the number of vertices of G (or by considering a maximal
matching of G). Let the disjoint paths P,, i€l of positive length and stars



K, ., i J, cover all vertices of G. If J = the proposition is true for ky=1.1If
J# D, V(XG?) can be covered by vertex-disjoint subgraphs of the foliowing
types: P, XP,, P, XK, ., K, % K.

Then, as a consequence of Lemmata 2, 3, 4, V(X G?) admits a covering by
vertex-disjoint subgraphs isomorphic to paths of positive length and stars Ky
leL with

max{n,l e L}=max{n, jeJ}—1.

Since X G? is connected (Lemma 1) an easy induction on max{n;, j € J} shows

that an integer k, exists, as required; in fact, k, can be chosen to satisfy
k,=<24¢—2 n

Lemma 6. For every n and m, n, m=2, P.XP. admits a hamiltonian cycle
(of length nm).

Proof. The construction of a hamiltonian cycle in P.XP, is an immediate
generalization of one of the two following constructions of Fig. 2. B

n or m even n and m odd

Figure 2

PROPOSITION 7. Let G be g graph of maximum degree A(G); if there exists a
covering of V(G) by vertex-disjoint paths of positive length, then there exists an
integer k, = k,(G) such that V(X G"*) can be covered by vertex-disjoint cycles of
length at least A(G).

Proof. Let us consider a covering of V(G) by vertex-disjoint paths P.icl,
n; =2. Then, by Lemma 6, V(X G?) admits a covering by vertex-disjoint cycles
of length at least (Inf,_, n,)? and thus by paths with at least (Inf,.; n;)? vertices.
‘Then, by induction, X GP can be covered by vertex-disjoint cycles of length at
least (Inf n,)°. As Inf;.; n; =2, there exists an integer k, such that (Inf;¢; ;)2 =
AG) W

As pointed out by the referee the following lemma is similar to lemma 5 of
[2] (see also the proof of theorem 4 in [2]).



Lemma 8. Let T be g tree of maximum degree A(T) and C be a cycle of length
k=A(T), then TXC is hamiltonian and there exists a hamiltonian cycle which
uses, for any vertex y V(T) exactly k—dr(u) edges of C.,.

Proof. By induction on [V(T)|.

When T={u}, {u}xC is isomorphic to C, so the result is true.

If [V(T)|>1, let u be an end vertex of T and v its neighbour in T, let T’ be
the subtree induced by V(T)—{u}. By induction hypothesis, T'X C admits a
hamiltonian cycle which uses k—dr(v)=k—(d(v)— 1) edges of C,. Since
k=A(T), k—d(v)=1, so there exists an edge {(v, ¢;)(v, ¢,)} of this hamil-
tonian cycle, with {c,, Co} in E(C).

Then we construct a hamiltonian cycle in TX C by replacing this edge by the
following path: |

—the edge {(v, ¢;)(1, ¢,)}
—the path obtained by removing the edge {(u, ¢;)(u, c,)} of the cycle C,
—the edge {(1, c,)(v, ¢,)}.

This cycle uses for any vertex u in T exactly k—d,(u) edges of C,. B

ReMARk. Lemma 8 gives an iterative method to construct a hamiltonian
cycle of TX C. Furthermore, by starting the construction with u and p we have
that, for any edge {u, v} of T and for any edge {c,, ¢;} of C, there exists a
hamiltonian cycle in T C which uses the two following edges {(u, c)(v, ¢}
and {(u, ¢,)(v, c,)}. W

CoroLLary 9. If XG* s hamiltonian, then for every p=0, XGk*® jg
hamiltonian too.

Proof. By induction on p- Lemma 8 applied with T a spanning tree of G and
C a hamiltonian cycle in X G* shows that X G**! is hamiltonian. W

Corollary 9 is true even for just the cartesian product and it has been proved
in [3] as theorem 1.

Propostion 10. If G is connected and if there exists a covering of V(G) by «
vertex-disjoint cycles of length at least I, with o = 2, then for every tree T with at
least two vertices and with A(T)=<1, there exists q covering of V(GXT) by B
vertex-disjoint cycles of length at least | with B=a-1.

Proof. Since G is connected, there exists two cycles of the covering C; and
C,, and vertices ¢; in V(C)) and ¢, in V(C,) with {c,, ¢} in E(G).

By Lemma 8, there exists a covering of V(GX T) by & hamiltonian cycles of
C,XT. To prove the proposition it suffices to construct a hamiltonian cycle in
V(C, XTYU V(C, X T).

Let {u, v} be an edge of T By the remark of Lemma 8, we can construct a



hamiltonian cycle H, in C,%XT (vesp. H, in C,XT) which uses the edge
1w, ¢1)(v, ¢;)} (resp. {(u, c,)(v, c,)}). We obtain a cycle in V(C, X DY, %T)
by replacing in E(H,)UE(H,) the preceding edges by {(u, c)(u, c,)} and
{(vc)w,c). M

THEOREM 11. For any connected graph G with at least two vertices there exists
an integer k =k(G) for which the graph X G* is hamiltonian.

Proof. By Proposition 5, there exists an integer k, such that there exists a
covering of V(X GH) by vertex-disjoint paths, with at least two vertices; then
by Proposition 7 applied to XG", there exists an integer k, such that
V(X G"*2) can be covered by e vertex-disjoint cycles of length at least AG)
(since A(G*)=A(G)).

Repeated applications of Proposition 10 show that there exists an integer

ks=a —1 such that X G**akas g hamiltonian. Thus Theorem 11 js proved with
k=kk,k,, W

REMARK. The integer k found in the proof of theorem 11 is not the best
possible. We conjecture that:

ConsecTuRE. For any connected graph G with at least two vertices X GA©
is hamiltonian.
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