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We present an automated procedure for the design of optimal actuation for flagellar magnetic
microswimmers based on numerical optimization. Using this method, a new magnetic actuation
method is provided which allows these devices to swim significantly faster compared to the usual
sinusoidal actuation. This leads to a novel swimming strategy which makes the swimmer perform a
3D figure-8 trajectory. This shows that a faster propulsion is obtained when the swimmer is allowed
to go out-of-plane. This approach is experimentally validated on a scaled-up flexible swimmer.

I. INTRODUCTION

Untethered robotic micro-swimmers have the potential
to make a serious impact on the development of new
promising therapeutic techniques [1-7]. However, due
to their microscopic size, controlling their navigation
through fluids inside the body faces numerous challenges
[8, 9]. These devices can take different shapes and
designs (helicoidal [10-12], beating flexible tail [13, 14],
2-linked structure [15], ciliary micro-robots [16], etc.),
and are actuated using multiple methods like chemical
fuel propulsion [17, 18], acoustic-based actuation [19], or
external magnetic fields [1, 20]. In this paper, we focus
on sperm cell-inspired robotic swimmers composed of
a magnetic head and an elastic tail and actuated by
external magnetic fields [14, 21]. As far as we know,
the most commonly used actuation method for these
swimmers is sinusoidal actuation. This consists in ap-
plying the superposition of a static orientating magnetic
field parallel to the desired swimming direction and
a perpendicular sinusoidal field that induces a planar
symmetric beating of the tail, allowing a displacement
along the swimming direction ([22]). The purpose of
this paper is to propose an automatic design method
for the actuation of flexible magnetic micro-robots that
optimizes the swimming speed. The aim of this work is
twofold: firstly, to provide a more efficient alternative to
the commonly used sinusoidal actuation, and, secondly,
to present an optimal control design method than can
be adapted to deal with more demanding tasks, like
swimming in a complex environment. Our method is
based on the resolution of an optimal control problem
under the constraints of an approximate dynamical
model of the swimmer’s displacement. In particular,
we focus on computing a magnetic field shape that

maximizes the horizontal swimming speed of these
devices. This actuation pattern is experimentally
validated on a scaled-up flexible magnetic swimmer and
compared to the classical sinusoidal actuation. The key
for this approach is the use of a dynamical model that
is sufficiently computationally inexpensive to be used
as a constraint for an optimization process but still
accurate enough to predict the displacement of a real-life
low Reynolds swimmer. For this purpose, we use a 3D
simplified dynamic model based on the approximation of
the hydrodynamical forces using Resistive Force Theory,
[23, 24] and the discretization of the curvature and
elasticity of the tail of the swimmer, generalizing the
planar ”N-Link” models of [25-27]. Using this dynamic
model as a constraint, the optimal control problem
is numerically solved with a direct method using the
software JCLOCS [28]. This results in a magnetic
actuation pattern that induces a significantly faster
propulsion than the common sinusoidal actuation. The
optimal magnetic field has two time-varying components
which makes the trajectory of the swimmer non planar.
In particular, the optimal swimming strategy is to
perform a 3D ’figure-8’ trajectory around the swimming
direction. This indicates the importance of going out of
plane in order to maximize the propulsion speed of flex-
ible swimmers. The optimal actuation is experimentally
validated on a scaled-up flexible magnetic swimmer using
a similar setting as [21] and compared to the sinusoidal
field. The horizontal displacement of the experimental
swimmer is accurately predicted by the dynamic model
for both fields. These results show the usefulness of
the simplified swimmer model for the design of optimal
controls that are usable in experiments.



II. EXPERIMENTAL SETTING

The flexible swimmer used in experiments consists
of magnetic disk (Neodyminum-Iron-Boron permanent
magnet) with 0.3mm in height and 0.77mm in diame-
ter attached to a silicone tail with 7mm in length and
Imm in diameter (see Figure 1). The swimmer is im-
mersed in pure glycerol to ensure low-Reynolds condi-
tions (~ 1072). It is placed at the center of three or-
thogonal Helmholtz coil pairs that generate the actuating
magnetic field. Each pair of coils is driven by a servoam-
plifier (Maxon Motor) which outputs a constant current
for a fixed input voltage. Two cameras provide a side
view and a top view of the swimmer, and its position
in 3D is tracked in real-time using Visp software [29].
More information on the experimental setting used can
be found in [21, 30].

We consistently use a fixed frame (z,y,z) where the z
axis is vertical and the y axis is along the axis of the side
camera. In what follows , the desired swimming direction
will be along the x-axis.

The propulsion of the experimental swimmer is char-
acterized by measuring its velocity-frequency response
(given by the dotted line in Figure (3)) under a magnetic
field of the form :

B(t) = (B, Bysin(2rft) 0)", (1)

where B, = 2.5mT,B, = 10mT.

FIG. 1. The three orthogonal

Experimental setup ([21]).
Helmholtz coils generate a homogeneous magnetic field in the
center, where the swimmer has been placed. The swimmer
is tracked using two perpendicular cameras. In the corner:
Scaled-up flexible magnetic swimmer used in the experiments.

III. MODELING OF THE SWIMMER

A simplified dynamical model of the swimmer is used
to simulate the swimmer’s displacement under a three-
dimensional magnetic field. The hydrodynamic effects on
the swimmer are approximated by Resistive Force The-
ory [23] and the shape of the tail is discretized into an
articulated chain of N rigid slender rods, as done in the
planar swimmer models of [25-27].

A. Kinematics of the swimmer

‘"I:Iead’s Frame :

h oh oh
Ri = (On, ey, ey, €;

€e; /
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FIG. 2. Reference and local frames of the discrete-shape
model. The swimmer’s head frame is oriented relative to the
reference frame. For each link ¢, the corresponding local frame
R; is oriented relative to Ry,.

. . _ h _h _h
We consider a moving frame Rpead = (O, ey, €y, €2)

associated to the head of the swimmer, where Oy, is the
center of the head. The orientation of each link 7 is repre-
sented by the moving frame R; = (O;, %, e;, et), where
O; is the extremity of the i-th link. We call Rpeqa €
SO(3) the rotation matrix that allows the transformation
of coordinates from the fixed reference frame to Rpecqd-
Similarly, the matrix R; € SO(3), fori = 1--- N, denotes
the relative rotation matrix that transforms coordinates
from Rpeaq to R;. We use the angles (60,,0,,6.) result-
ing from a (Z — X —Y) rotation sequence to parametrise
Rpeaq- Since each link is considered to be slender and ax-
isymmetric, the vectors e; and et are only defined up to
one rotation around, hence we parametrize each matrix
R; by only two angles ( Z, #%), resulting from a Z — Y
rotation sequence relative to the head frame.

With these notations, the swimmer is described by two
sets of variables : The 6 Position variables: (X, ©) where

X = (zh,yn, zn) € R%and
O = (0,,0,,0.) € [0, 27)°,
, and the 2N Shape variables, denoted by

(2)



B. Dynamics of the swimmer

We assume that the swimmer is immersed in an un-
bounded domain of a viscous fluid. Due to its scale, we
consider that the swimmer moves at low Reynolds Num-
ber, i.e., that viscosity prevails over inertia, and thus that
the fluid is governed by Stokes equations. In what fol-
lows, the hydrodynamical interactions between the fluid
and the swimmer are further simplified by using the Re-
sistive Force Theory (RFT) framework [23], where the
interactions on the global scale between a slender Stoke-
sian swimmer and the surrounding fluid are neglected in
favor of the local anisotropic friction of the surface of the
slender body with the nearby fluid. This results in ex-
plicit expressions of the density of force applied by the
fluid to the swimmer that are linear with respect to the
velocities, hence to (X, ©, ®).

From the integration of the local hydrodynamic force
densities on each link, we are able to obtain the expres-
sion of F,?ead and Fih, the hydrodynamic drag forces on

the head of the swimmer and on each link ¢ € (1,--- , N)
respectively. The expressions for Tj 4,p and Ti'}P, the

moments of these forces about any given point P, are
similarly derived from the local drag densities. We con-
sider that the head of the swimmer is magnetized along
the e” axis. Denoting by M the magnetization vector of
the head and considering an external homogeneous time-
varying field B(t), the following torque is applied to the
swimmer:

T™a9 = M x B(t). (4)

The acceleration terms in the dynamics are neglected
due to the Low Reynolds assumption [31], thus, the bal-
ance of forces and torques applied on the swimmer gives:

N
Ff’:ead—’—ZFih :037
= (5)

N
h § h mag
Thead + ,I:i,H =-T )
=1

which leads to 6 independent equations. In addition to
these equations, the internal contributions of the tail are
taken into account by adding the balance of torque on
each subsystem consisting of the chain formed by the
links ¢ to N for ¢ = (1--- N). These additional 3N equa-
tions reduce to 2N non-trivial equations by taking only
the components perpendicular to the link & when calcu-
lating the sum of the torques from &k to N. The elasticity
of the tail is discretized by considering a restoring elastic
moment TE at each joint O; that tends to align each
pair (i,7 + 1) of adjacent links with each other:

TE = keel x ei™t. (6)

Thus, the dynamics of the swimmer are described by the

following system of 2N 4+ 6 equations :

N
h h
Freaa + ZFz =03,
=1

N
h h mag
Theqa + § I’y =-T )

i=1

N

h 1 _ el 1
E T;H.e, = —17 .y,
i=1

N

h 1 el 1
§ Ti,l'ez - 7T1 €25
1=1

h n __ el _n
TnNey =T, €,
h n __ el n
T N-er =T .e].

Following Resistive Force Theory, the hydrodynamic
contributions (left-hand side of the previous system) are
linear with respect to the rotational and translational ve-
locities, thus, the previous system can be rewritten ma-
tricially in the form :

X
M'(O,®) | 6
L

=B(X,0,9), (8)

where M"(®,®) is a 2N + 6 x 2N + 6 matrix. The
left-hand side of the equation represents the hydrody-
namic effects on the swimmer and the right-hand side
B(X,0, ®) is the magnetic and elastic contributions on
the swimmer. We refer the reader to the appendixA
for the full derivation of the matrix M". The previous
equation can be rewritten as a control system where the
dynamics of the swimmer are affine with respect to the
components of the actuating magnetic field viewed as a
control:

X Fi(©,®)
O | = Fo(©,®)+(Bx(t) By(t) B.(t)) | F2(©,®)
@ F3(®7‘§)

(9)
where the vector fields Fy,---, F3 are functions of the
columns of (M")~! and of the magnetic and elastic con-
stants.

C. Parameter Identification

The hydrodynamic parameters (RFT coefficients) and
the elasticity coefficient of the model are identified
by non-linear fitting to match the observed velocity-
frequency response curve of the experimental swimmer
under sinusoidal actuation. Three links were used for
the approximation of the tail. Figure 3 shows the agree-
ment between the experimental and simulated frequency



responses. The fitted parameter values are given in the
appendix I.
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FIG. 3. Experimental (N = 6) and simulated horizontal swim-
ming velocities for the frequency range f = (0---3Hz).

It is worth noting that using a finer discretization
(more than 3) of the tail only marginally improves the
fitting error while adding to the computational cost of
the magnetic field optimization, as it is shown in figure
9 of the appendix.

IV. MAGNETIC FIELD OPTIMIZATION

In what follows we focus on finding the time-varying
magnetic field that maximizes the mean horizontal
propulsion speed of the swimmer under the constraint
of a periodic deformation. The admissible controls are of
the form (B, By(t), B.(t)), where the static orientating
field B, is fixed and the two dimensional time-varying ac-
tuating field (B, (t), B,(t)) is optimized. The bounds on
the orientating field and the time-varying fields are taken
to be the same as the sinusoidal field used in the experi-
ments (B, = 2.5mT and ||(By(t), B;(t))|| < 10mT). The
deformation period is chosen to be the same as the ob-
served optimal period for a sinusoidal actuation and it
is imposed that the swimmer returns in its initial ori-
entation and position on the y and z-axis at the end
of the period. This optimal control problem is numeri-
cally solved with the direct solver ICLOCS [28]. Figure
4 shows the result of the numerical optimization, where
we can see the y (a) and z (b) components of the opti-
mal magnetic field. Interestingly enough, this results in a
simple magnetic field shape, shown in (¢), where the ac-
tuating strategy over one deformation period is a partial
rotation (about two thirds of a circle) of the magnetic
field followed by a full rotation in the opposite direction.
Repeating this pattern over time makes the swimmer re-
volve around the x axis, drawing a ”figure-8” in the y — z
plane. Figure 5 shows the simulated optimal trajectory
of the swimmer compared to the trajectory under the si-
nusoidal field. The simulated fields perform better (mean

4

propulsion speed of 1.451072 ms~!) than the sinusoidal
actuation (mean propulsion speed of 1.21073 ms™1).
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FIG. 4. Actuating magnetic field that maximizes the horizon-
tal speed of the swimmer. (a) and (b) are respectively the y
and z components of the magnetic field. (¢) : Shape of the ac-
tuating optimal magnetic field deriving from the optimization
process during one period.
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FIG. 5. Simulated trajectory of the head of the swimmer

under both the optimal and sinusoidal field for 3 seconds of
straight swimming under both actuation patterns. In the cor-
ner, the trajectory in the y — z plane.

V. EXPERIMENTAL RESULTS

The numerical solution of the optimal control problem
(Figure 4) is interpolated by its truncated Fourier expan-
sion (first 10 modes) and then implemented in the mag-
netic generation system to actuate the swimmer. As pre-
dicted by the simulations, the optimal field out-performs
the sinusoidal field in terms of horizontal propulsion
speed, as shown in Figure 6. Figure 7 shows the 3D tra-
jectory of the experimental swimmer during one period.
Figure 8 shows the deformation pattern undergone by
the swimmer in the two perpendicular planes. Under op-
timal actuation, the swimmer reaches a mean horizontal
propulsion speed of 1.54 £0.31073ms™* (N = 6). The
mean relative error (co-norm) between the simulated and
observed z-displacement is 0.16(40.02).



We refer the reader to the supplemental movies [32]
for a side-by-side comparison of the displacements of the
swimmer actuated by the optimal and sinusoidal field.

4 _ =—Sinusoidal Field (Simulated)
-=-Sinusoidal Field (Experimental)
—Optimal Field (Simulated)
D 3 - Optimal Field (Experimental) T *

E A e

FIG. 6. Simulated and experimental horizontal displacements
of the swimmer actuated by the optimal magnetic field and
the sinusoidal magnetic field for 3 seconds of straight swim-
ming under both actuation patterns.

FIG. 7. Trajectory of the experimental swimmer actuated
by the optimal magnetic field given in Figure 4 during three
periods of the magnetic field.

VI. DISCUSSION

The optimization process exploits two time varying com-
ponents of the field in order to maximize the horizontal
speed of the swimmer, which allows the swimmer to per-
form a 3D trajectory. This swimming strategy shows
the necessity of allowing flagellar swimmers to go out-of
plane in order to swim at a maximal propulsion speed,
as illustrated in Figure 5 and Figure 7. The effectiveness
of non-planar actuation has been corroborated in the lit-
erature by studies where non-planar helical waves have
been shown to induce a faster propulsion speed for flagel-
lar swimmers. For example, in [33], the sperm-like swim-
mer’s swimming speed increases between 1.2 and 2 times
(depending on the viscosity of the fluid) when switching
between a planar swimming induced by sinusoidal actu-
ation and helical swimming induced by a conical mag-

(a) (b)

0.66
0.528

0.396

_n B

: (c) (d)

FIG. 8. Deformation pattern of the experimental swimmer
actuated by the optimal magnetic field and the sinusoidal
magnetic field over one period in two planes. ( (a) : Optimal
field, top view, (b) : Sinusoidal field, top view, (¢): Optimal
field, side view, (d) : Sinusoidal field, side view.). The snap-
shots of the experimental swimmer are taken at equal time
steps over a period of the actuating fields. We observe (as
expected) no deformation in the side plane for the sinusoidal
field.

netic field. This characteristic is also shown in [34] for
self propelled swimmers. However, our work differs from
these approaches as it does not rely on an a priori pre-
scribed actuation pattern or shape deformation but op-
timizes the 3D driving magnetic field of the swimmer
which allows the generation of swimmer-specific optimal
actuation. From figure 6, we see that the dynamic model
accurately predicts the horizontal displacements of the
swimmer under both magnetic fields. It is less accurate
in predicting the value of the amplitudes of the oscilla-
tions of the swimmer along the y and z axis as can be seen
from comparing figures 7 and 5. However, the shapes of
the predicted and experimental trajectories match quali-
tatively. The swimmer’s displacements are characterized
by the deformations of its tail, as a consequence of the
forces and torques balances in equation 5. The experi-
mental deformation patterns of the tail under both mag-
netic fields are shown in Figure 8, which illustrates how
the swimmer breaks the time-reversible symmetry of the
Stokes flow to propel in both cases. In particular, the
deformation pattern under the optimal field shows a tor-
sion of the tail of the swimmer in addition to a beating
pattern. This torsion of the tail causes the swimmer to
go out-of-plane. This same effect of the torsion on the
trajectory has been shown in the case of flagellated cells
that self propel along a 3D chiral path when the torsion
of the flagellum is coupled with an oscillating waveform
[35].

Although the main focus of this work was to opti-
mize the speed of the flexible robot for swimming along
a straight line, this swimming strategy is easily imple-
mentable for open loop or closed loop path following (see



[21] for an example) by applying the static component of
the magnetic field in the direction tangent to the curve,
and the time-varying components in the normal and bi-
normal directions.

VII. CONCLUSION

We have investigated the design of optimal actuation pat-
terns for a flexible low Reynold number swimmer actu-
ated by magnetic fields using a simple computationally
inexpensive model that predicts the horizontal displace-
ment of the swimmer. This provides an automated pro-
cedure for the optimal control design of flexible magnetic
low-Reynolds swimmers. Using this approach, we simu-
late magnetic fields that maximize the horizontal propul-
sion speed of the swimmer. From this, we are able to
propose a novel magnetic actuation pattern that allows
the swimmer to swim significantly faster compared to
the usual sinusoidal actuation. This actuation pattern
is experimentally validated on a flexible low Reynolds
swimmer. The dynamic model used accurately predicts
the horizontal displacement of the experimental swim-
mer under both the optimal and sinusoidal actuation.
The simulation and experimental results show that it is
necessary to go out-of plane in order to maximize the
propulsion speed of flexible magnetic low-Reynolds swim-
mers. Although the dynamic model used is limited in its
accuracy, since it is based on an approximation of the
fluid-structure interaction of the swimmer, this study
showcases the usefulness of such a simplified model for
computationally-inexpensive control design for the actu-
ation of flagellar magnetic swimmers. Current research
is focused on finding a solution to allow propulsion of
flagellated swimmers in confined environments ([36, 37])
or in the presence of obstacles, such as the human vascu-
lature ([15]). For this purpose, the technique presented
in this paper could be generalized to find magnetic fields
that allows the propulsion of the robot in a confined en-
vironnement by adapting the model.
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Appendix A: Formulation of the hydrodynamics of
the swimmer.

1. Parametrization of the rotation matrices and
angular velocities.

The rotation matrix Rpeqq represents the coordinates
transform between the world frame and Rpeeq. It is
parametrized by three angles (6;,6,,0.) resulting from
a Z —Y — X rotation sequence :

Rhead - Ra: (al)Ry (ey)Rz (ew)v (Al)
where R,, R,, and R, are the elementary rotation ma-
trices around the z,y, and z axes.

Similarly, for each link 4, the rotation matrix R; rep-
resents the coordinates transform between the head’s
frame Rpeqq and the frame associated‘ with link ¢ R;.
It is parametrized by two angles (¢;, ¢} ) resulting from
a Z — Y rotation sequence :

Ri = RpeaaRiRY.,; forie(1,---,N). (A2)
where R; = Ry(qS;)Rz(qﬁi).
For all skew-symmetric matrix A € R3*3, we can define
a vector € verifying :

VWER AV =Q x V. (A3)
Using this property, we define the following angular
velocity vectors :

® Qpeqa is the vector defining the cross prod-
uct associated with the skew-symmetric matrix
RheadRY, - Qheaa depends linearly on (0,,6,,60.)

as follows :
),
Qhead = Lhead ey ) (A4)
0.
where
1 0 sin(6,) 0,
Lheaa = | 0 cos(8;) —cos(8,)sin(6,) 0, (A5)
0 sin(fy) cos(f)cos(y) 0,

e (2, is the vector defining the cross product asso-

LT
ciated with the skew-symmetric matrix R; R; for

i€ (1---N). Q; depends linearly on (¢, ¢l) as
follows :
9%
Q=L ¢, | (A6)

oL



where
sin(gbiy) 0 Qﬁ;
Li= | cos(¢y) O | ]- (A7)
0" 1) \at

2. Hydrodynamical force and torque on the head
of the swimmer

We consider a drag force acting on the head of the
swimmer that is proportional to its velocity in each di-
rection of the head frame’s Ryeaq and a resistive torque
proportional to the angular velocity of the head :

. k?H,H 0 0 . )
Fhead = _Rhead 0 kH,J— 0 RheadX )
0 0 k. (A8)

T s = —krDnead = —krLneaa®,

where k| and kg | are the parallel and perpendicular
hydrodynamic coefficients of the head and kg is a rota-
tionnal drag coefficient.

3. Expression of the hydrodynamical force density
on a point of the tail of the swimmer

Fori= (1---N), we consider a point x;(s) on the i-th
link of the tail parametrized by its arclength s such as
x;i(s) = O; — sel. (A9)
Using the rotation matrices defined in the previous para-
graph, @;(s) is written as :

i—1
i(s) = O —rRhcadez—1 Y | RhcadRies—5RhcaaRiea ,
k=1
(A10)
where r is the distance between Oy and O;. We differ-
entiate the previous equation to obtain the expression of
the velocity of @;(s):

i—1
2]37,(8) =X — rRpeadz — | Z Rheaalres
k=1
i—1 . .
-1 Z RpeadRier — sRpeaalRi€e — SRpeaali€s.
k=1

(A11)

Following Resistive Force Theory, the density of hydro-

dynamic force f; is linear with respect to the components
of &;(s):

fi(s) =— kH(m'i(s).efc)eim - kl(m'i(s).ez)e;
- kJ_(:bi(s).ei)ei
:Sidfi(s)a

(A12)

where k) and k_ are respectively the parallel and prepen-
dicular drag coefficients of the swimmer’s tail and, for
each link ¢ :

Si - (Rheadéi>D(Rh6adRi)T' (A13)
where
k0 0
D=—|0 k. o0 (Al4)
0 0 ki

Using the expression of #;(s) ( equation (A11)) in equa-
tion (A12), the hydrodynamic force density reads:

fi(s) =8iX — 7(RneaaRiDRT)RL, i Rhcadea

-1
— I(RneaaRiDR]) > " R} qRhcaaRrea
k

==

_ - [ Al5
A(Reaa Bs DET) S BB Fepes (A15)

k=1
- S(RheadRiDR;‘T)R,}{eadRheadRiem

— S(RheadRiDRZT)éiem.

Using the definition of the angular velocity vectors
(equations A4,A6 ) , we rewrite the expression above as

fz(s) :S1X - 7q(]:iheadjjbi-D-Rl?ﬂ)szhead X eg

i—1
B Z(Rhe“dRiDRiT) Z Qhead X (Rkem)

k=1

It (A16)

- Z(RheadRzDRZT) Z Rkﬂk X €x

k=1
- S(RheadRiDRiT)ﬂhgad X (Riem)

- S(RheadRiD)Qi X €g.

In order to write cross products in matricial form, we
introduce the following notation :

0 Vs V3
VW=V Va Va) eRP VX=|Vz 0 -V
-V, Vi 0

(A17)

Using this notation and the linear dependency of
Qhead and Q; on the angular velocities (equations A4
and AG6), the hydrodynamical drag force density on link
i is written as a linear function of X, €2, and ® :

X

fils) = Al(s) [ © |
oo}

(A18)



where A%(s) € R3?N*6 is defined block-wise as :

Ay € R3S
Ay e ijz
Alis) = | A ERT (A19)
Al € R?X3
where
' o i-1
Ay(s) =(RheaaRiDR] ) [res + 1 Rrea]* Lhcad
k=1
+ (RheadRiDRT)[sRi€x)” Lhcad »
Al(s) =l(RheagRiDRY) Ry €] L1,
Al (8) =l(RheaaRiDRY)R; _1[ex)* Li_1
AE(S) :s(RheadRiD)[em] XLi ,
Al =03 Vj>i .
(A20)

4. Hydrodynamical forces and torques on each link

We define the two 3 x 2N + 6 matrices B’ and C* as
follows :

!
B'= [ AY(s)ds,
‘/Ol (A21)

CZ:/ sA'(s)ds.
0

Using this notation, the hydrodynamical force on link
i depends linearly on the position and shape velocities as
follows :

(X
F'=p"|(6
b

(A22)

The hydrodynamic torque on link ¢ calculated about
the point Oy is computed from the hydrodynamical force
density as follows :

!
Thy = [ (@ile) = Om) x fls)ds. (A2
0
We rewrite (x;(s) — Op) as :
i—1
(z;(s) — On) = — rRheqd€a — IRpeaaRiex
; (A24)

- SRheadRi (=

T, i',‘H is then expressed as :

i—1

l
TZ}H = — [TRheadem + Z theadeem]X / fZ (S)ds
k=1 0

!
_[Rheadéi]x/ sfi(s)ds.
0

(A25)
Thus, the matricial form of Ti’}H is :
i—1 ) 4 X
Ti’,lH = ([TRheadew + Z theadeem]XBZ) ®
k=1 P
(X
- ([RheadRi} XCl) (:‘)
P
(A26)

Similarly, for k = (¢, -+ , N), the hydrodynamic torque
on link 7 about Oy, reads :

i—1 X
Tz”lj - (Z [theadeew] * Bl - [RheadRi} x Ol) @
(A27)

5. Equations of motion

Using the expressions of the hydrodynamical forces and
torques in the previous section (equations A22,A26, and
A27), the left-hand side of the dynamical system (7) is
written as a linear function of the state derivatives :

YL, Fr+ Fl
T ona + Zf\; Ti’,LH
(Ef\; Ti},LH)'e;LIJ
(Zi\; ’I’i’}H)'e;

X
=M"'©,®) | 6 (A28)
N h k b b
. Iy-e .
Z%k Jk z i3}
Dick i,k €z
TN,N €z

where M" € R2N+6x2N+6 i5 defined by blocks as :

Mh — MX c R3><2N+6
M@ c R3><2N+6
Ml c R2X2N+6

MN c R2><2N+6



s ppendix B: Simulation Parameters
A29 A dix B: Simulation P
Parameter value
Length of the tail L=Tmm
Radius of the head r = 0.3mm
Parallel resistive coefficient, head ki) = 1.15Nsm ™"
Perpendicular resistive coefficient, head |kx,1 = 4.37TNsm™!
Rotational resistive coefficient, head ki,r = 0.6Nms
where Parallel resistive coefficient, tail kp) = 0.35Nsm ™1
Perpendicular resistive coefficient, tail |kr . = 0.813Nsm ™!
Elastic coefficient kel = 8.678107"N.m—1
Magnetization M =1.68510"*A.m™!
N
i TABLE I. Parameters used for the sperm cell simulations
MX =~ (RheadDu R}, 0q 03 Oz 2xN) + ZBZ p
i=1
M® — _ kr (03 Liead O3 3><N) Appendix C: Fitting error and number of links
N i—1
_ Z[Rh a(res + lz: 1Rpe )] x gi Figure 9 shows the result of the parameter fitting
ea T xT

(relative [2-norm) between the experimental velocity-

i;1 =t frequency response curve and the simulated velocity-
(Rn R] C frequency response curve. As seen in the figure,
— cad Tt the model fails to accurately match the experimental
= N il velocity-frequency curve with N = 1 and N = 2 links.
_ R Z . iR e ] ) The fitting results in a small error for N > 3.
headilk€Ex
0.1
i=1 k=1
0.08 i
- Rl Z RheadR 5
i=1 S 0.06 1
2
£ .04 A
N-1
MN == Ry > ([[Rncaaltre)* BY) 002 1
k=1 0
. 4 5
B R}k\f [RheadRN] ) CN ’ Number of Links

(A30)
where R} is the 2 x 3 matrix consisting of the second and  FIG. 9. Fitting error in function of the number of links of the
third line of the matrix (Rhea¢Ri)T which represents the model.
projection on the plane (e, e} ).
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