J. Bradley, . Nelson, K. Ioannis, J. J. Kaliakatsos, and . Abbott, Microrobots for minimally invasive medicine, Annual review of biomedical engineering, vol.12, pp.55-85, 2010.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots, Proceedings of the IEEE, vol.103, issue.2, pp.205-224, 2015.

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, R. Benjamin et al., Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery, Advanced Functional Materials, vol.25, issue.11, pp.1666-1671, 2015.

D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick et al., Intelligent, self-powered, drug delivery systems, Nanoscale, vol.5, issue.4, pp.1273-1283, 2013.

J. Michael and . Mack, Minimally invasive and robotic surgery, Jama, vol.285, issue.5, pp.568-572, 2001.

S. Fusco, . Mahmut-selman, S. Sakar, C. Kennedy, R. Peters et al., An integrated microrobotic platform for on-demand, targeted therapeutic interventions, Advanced Materials, vol.26, issue.6, pp.952-957, 2014.

W. Gao, D. Kagan, . On-shun, C. Pak, S. Clawson et al., Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery, Small, vol.8, issue.3, pp.460-467, 2012.

E. Lauga and . Thomas-r-powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics, vol.72, issue.9, p.96601, 2009.

T. Qiu, T. Lee, A. G. Mark, K. I. Morozov, R. Münster et al., Swimming by reciprocal motion at low reynolds number, Nature Communications, vol.5, 2014.

A. F. Tabak and S. Yesilyurt, Computationally-validated surrogate models for optimal geometric design of bioinspired swimming robots: Helical swimmers, Computers and Fluids, vol.99, pp.190-198, 2014.

A. Barbot, D. Decanini, and G. Hwang, The rotation of microrobot simplifies 3d control inside microchannels, Scientific Reports, vol.8, issue.1, p.438, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02380001

F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona et al., Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery, Advanced Functional Materials, vol.25, issue.11, pp.1666-1671, 2015.

R. Dreyfus, J. Baudry, L. Marcus, M. Roper, . Fermigier et al., Microscopic artificial swimmers, Nature, vol.437, issue.7060, p.862, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02106273

S. M. Islam, . Khalil, C. Herman, L. Dijkslag, S. Abelmann et al., Magnetosperm: A microrobot that navigates using weak magnetic fields, Applied Physics Letters, vol.104, p.223701, 2014.

B. Jang, A. Aho, J. Bradley, S. Nelson, and . Pane, Fabrication and locomotion of flexible nanoswimmers, IEEE/RSJ International Conference on Intelligent robots and systems (IROS), 2018.

S. Kim, S. Lee, J. Lee, J. Bradley, L. Nelson et al., Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation, Scientific reports, vol.6, p.30713, 2016.

X. Ma, S. Jang, M. N. Popescuand, W. E. Uspal, A. Miguel-lópez et al., Reversed janus micro/nanomotors with internal chemical engine, vol.10, pp.8751-8759, 2016.

B. Jang, A. Hong, H. E. Kang, C. Alcantara, S. Charreyron et al., Jordi Sort, Sung Sik Lee, et al. Multiwavelength light-responsive au/b-tio2 janus micromotors, ACS nano, vol.11, pp.6146-6154, 2017.

D. Ahmed, T. Baasch, B. Jang, S. Pane, J. Dual et al., Artificial swimmers propelled by acoustically activated flagella, Nano Letters, vol.16, pp.4968-4974, 2016.

T. Xu, J. Yu, X. Yan, H. Choi, and L. Zhang, Magnetic actuation based motion control for microrobots: An overview. Micromachines, vol.6, pp.1346-1364, 2015.

A. Oulmas, N. Andreff, and S. Régnier, 3d closed-loop motion control of swimmer with flexible flagella at low reynolds numbers, Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pp.1877-1882, 2017.

J. Jake, K. E. Abbott, M. C. Peyer, L. Lagomarsino, L. Zhang et al., How should microrobots swim?, The international journal of Robotics Research, vol.28, pp.1434-1447, 2009.

J. Gray and G. J. Hancock, The propulsion of seaurchin spermatozoa, Journal of Experimental Biology, vol.32, issue.4, pp.802-814, 1955.

. Bm-friedrich, J. Riedel-kruse, F. Howard, and . Jülicher, High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory, Journal of Experimental Biology, vol.213, issue.8, pp.1226-1234, 2010.

C. Moreau, L. Giraldi, and H. Gadelha, The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella, Journal of the Royal Society Interface, vol.15, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01658670

F. Alouges, A. Desimone, L. Giraldi, and M. Zoppello, Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers, International Journal of Non-Linear Mechanics, vol.56, pp.132-141, 2013.

F. Alouges, A. Desimone, L. Giraldi, and M. Zoppello, Can magnetic multilayers propel artificial microswimmers mimicking sperm cells? Soft Robotics, vol.2, pp.117-128, 2015.

P. Falugi, E. V. Ec-kerrigan, and . Wyk, Imperial college london optimal control software (iclocs), 2010.

E. Marchand, F. Spindler, and F. Chaumette, Visp for visual servoing: a generic software platform with a wide class of robot control skills, IEEE Robotics and Automation Magazine, vol.12, issue.4, pp.40-52, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00351899

T. Xu, Propulsion characteristics and visual servo control of scaled-up helical microswimmers, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00977906

G. T. Yates, How microorganisms move through water: The hydrodynamics of ciliary and flagellar propulsion reveal how microorganisms overcome the extreme effect of the viscosity of water, American Scientist, vol.74, issue.4, pp.358-365, 1986.

, See supplemental material at [url] for the movies showing the trajectory of the swimmer under both fields

S. M. Islam, A. F. Khalil, M. A. Tabak, A. Seif, M. Klingner et al., Controllable switching between planar and helical flagellar swimming of a soft robotic sperm, PloS one, vol.13, issue.11, p.206456, 2018.

A. T. Chwang, Y. Th, and . Wu, A note on the helical movement of micro-organisms, Proceedings of the Royal Society of London. Series B. Biological Sciences, vol.178, pp.327-346, 1052.

F. Jan, L. Jikeli, . Alvarez, M. Benjamin, L. G. Friedrich et al., Sperm navigation along helical paths in 3d chemoattractant landscapes, Nature communications, vol.6, p.7985, 2015.

K. Ishimoto and E. A. Gaffney, A study of spermatozoan swimming stability near a surface, Journal of Theoretical Biology, vol.360, pp.187-199, 2014.

H. Shum and E. A. Gaffney, Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels, Phys. Rev. E, vol.92, 2015.