Z. Zhu, Y. Lu, C. You, and C. Chiang, Deep learning for sensor-based rehabilitation exercise recognition and evaluation, Sensors, vol.19, 2019.

I. Susnea, L. Dumitriu, M. Talmaciu, E. Pecheanu, and D. Munteanu, Unobtrusive monitoring the daily activity routine of elderly people living alone, with low-cost binary sensors, Sensors, vol.19, 2019.

M. Elhoushi, J. Georgy, A. Noureldin, and M. J. Korenberg, A survey on approaches of motion mode recognition using sensors, IEEE Trans. Intell. Transp. Syst, vol.18, pp.1662-1686, 2017.

S. A. Waheed and P. S. Khader, A novel approach for smart and cost effective IoT based elderly fall detection system using Pi camera, Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp.1-4, 2017.

Y. Hsu, S. Yang, H. Chang, and H. Lai, Human daily and sport activity recognition using a wearable inertial sensor network, IEEE Access, vol.6, pp.31715-31728, 2018.

L. Xie, J. Tian, G. Ding, and Q. Zhao, Human activity recognition method based on inertial sensor and barometer, Proceedings of the IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), pp.1-4, 2018.

H. Li, S. Derrode, and W. Pieczynski, An adaptive and on-line IMU-based locomotion activity classification method using a triplet Markov model, Neurocomputing, vol.362, pp.94-105, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02270579

I. Gorynin, H. Gangloff, E. Monfrini, and W. Pieczynski, Assessing the segmentation performance of pairwise and triplet Markov models, Signal Process, vol.145, pp.183-192, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01681354

W. Pieczynski, C. Hulard, and T. Veit, Triplet Markov chains in hidden signal restoration. In Image and Signal Processing for Remote Sensing VIII, International Society for Optics and Photonics, vol.4885, pp.58-68, 2003.

B. Barshan and M. C. Yüksek, Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units, Comput. J, vol.57, pp.1649-1667, 2014.

A. Parri, K. Yuan, D. Marconi, T. Yan, S. Crea et al., Real-time hybrid locomotion mode recognition for lower limb wearable robots, IEEE/ASME Trans. Mechatron, vol.22, pp.2480-2491, 2017.

Z. Chen, Q. Zhu, Y. C. Soh, and L. Zhang, Robust human activity recognition using smartphone sensors via CT-PCA and online SVM, IEEE Trans. Ind. Inform, vol.13, pp.3070-3080, 2017.

J. Wannenburg and R. Malekian, Physical activity recognition from smartphone accelerometer data for user context awareness sensing, IEEE Trans. Syst. Man Cybern. Syst, vol.47, pp.3142-3149, 2017.

H. Zhao, Z. Wang, S. Qiu, J. Wang, F. Xu et al., Adaptive gait detection based on foot-mounted inertial sensors and multi-sensor fusion, Inf. Fusion, vol.52, pp.157-166, 2019.

T. Van-kasteren, G. Englebienne, and B. J. Kröse, Activity recognition using semi-Markov models on real world smart home datasets, J. Ambient Intell. Smart Environ, vol.2, pp.311-325, 2010.

A. Sathyanarayana, S. Joty, L. Fernandez-luque, F. Ofli, J. Srivastava et al., Impact of physical activity on sleep: A deep learning based exploration. arXiv 2016

P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, Applications of deep learning in biomedicine, Mol. Pharm, vol.13, pp.1445-1454, 2016.

F. Ordóñez and D. Roggen, Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition, Sensors, vol.16, 2016.

S. Ramasamy-ramamurthy and N. Roy, Recent trends in machine learning for human activity recognition-A survey, Wiley Interdiscip. Rev. Data Min. Knowl. Discov, 1254.

Y. Bao and W. Chen, Automatic model construction for activity recognition using wearable devices, Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp.806-811, 2018.

S. A. Rokni and H. Ghasemzadeh, Autonomous training of activity recognition algorithms in mobile sensors: A transfer learning approach in context-invariant views, IEEE Trans. Mob. Comput, vol.17, pp.1764-1777, 2018.

T. Schneider, N. Helwig, and A. Schütze, Automatic feature extraction and selection for condition monitoring and related datasets, Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp.1-6, 2018.

H. Rezaie and M. Ghassemian, An adaptive algorithm to improve energy efficiency in wearable activity recognition systems, IEEE Sens. J, vol.17, pp.5315-5323, 2017.

M. S. Dao, T. A. Nguyen-gia, and V. C. Mai, Daily human activities recognition using heterogeneous sensors from smartphones, Procedia Comput. Sci, vol.111, pp.323-328, 2017.

C. F. Martindale, S. Sprager, and B. M. Eskofier, Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables, Sensors, vol.19, 1820.

V. S. Barbu and N. Limnios, Semi-Markov Chains and Hidden Semi-Markov Models toward Applications: Their Use in Reliability and DNA Analysis
URL : https://hal.archives-ouvertes.fr/hal-00530330

S. Z. Yu, Hidden Semi-Markov Models: Theory, Algorithms and Applications

M. Kaufmann, , 2015.

J. Lapuyade-lahorgue and W. Pieczynski, Unsupervised segmentation of hidden semi-Markov non-stationary chains. Signal Process, vol.92, pp.29-42, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01347981

N. Shetty and S. Bendall, Understanding the gait cycle, as it relates to the foot, Orthop. Trauma, vol.25, pp.236-240, 2011.

O. Cappé, Online EM algorithm for hidden Markov models, J. Comput. Graph. Stat, vol.20, pp.728-749, 2011.

J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, Deep convolutional neural networks on multichannel time series for human activity recognition, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp.25-31, 2015.

D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster et al., Collecting complex activity datasets in highly rich networked sensor environments, Proceedings of the 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp.233-240, 2010.

C. A. Ronao and S. Cho, Human activity recognition with smartphone sensors using deep learning neural networks, Expert Syst. Appl, vol.59, pp.235-244, 2016.

H. S. Bhat and N. Kumar, On the Derivation of the Bayesian Information Criterion; School of Natural Sciences, 2010.

T. W. Arnold, Uninformative parameters and model selection using Akaike's Information Criterion, J. Wildl. Manag, vol.74, pp.1175-1178, 2010.

Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, Mining periodic behaviors for moving objects, Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1099-1108, 2010.

Z. He, X. S. Wang, B. S. Lee, and A. C. Ling, Mining partial periodic correlations in time series, Knowl. Inf. Syst, vol.15, pp.31-54, 2008.