
HAL Id: hal-02351794
https://inria.hal.science/hal-02351794

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Firmware Updates for Constrained IoT Devices
Using Open Standards: A Reality Check

Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig,
Emmanuel Baccelli

To cite this version:
Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, Emmanuel Baccelli. Secure
Firmware Updates for Constrained IoT Devices Using Open Standards: A Reality Check. IEEE
Access, 2019, 7, pp.71907-71920. �10.1109/ACCESS.2019.2919760�. �hal-02351794�

https://inria.hal.science/hal-02351794
https://hal.archives-ouvertes.fr

Secure Firmware Updates for Constrained IoT Devices
using Open Standards: A Reality Check

Koen Zandberg
Inria & FU Berlin

Kaspar Schleiser
Inria & FU Berlin

Francisco Acosta
Inria

Hannes Tschofenig
Arm Ltd.

Emmanuel Baccelli
Inria

ABSTRACT
While IoT deploymentsmultiply in awide variety of verticals, most
IoT devices lack a built-in secure firmware updatemechanism.With-
out such a mechanism, however, critical security vulnerabilities
cannot be fixed, and IoT devices can become a permanent liabil-
ity, as demonstrated by recent large-scale attacks. In this paper,
we survey open standards and open source libraries that provide
useful building blocks for secure firmware updates for constrained
IoT devices – bywhichwemean low-power, microcontroller-based
devices such as networked sensors/actuators with a small amount
of memory, among other constraints. We design and implement a
prototype that leverages these building blocks and assess the se-
curity properties of this prototype. We present experimental re-
sults, including first experiments with SUIT, a new IETF standard
for secure IoT firmware updates. We evaluate the performance of
our implementation on a variety of commercial off-the-shelf con-
strained IoT devices. We conclude that it is possible to create a
secure, standards-compliant firmware update solution that uses
state-of-the-art security for IoT deviceswith less than 32kB of RAM
and 128kB of flash memory.

CCS CONCEPTS
• Computer systems organization → Embedded systems.

KEYWORDS
Internet of Things, IoT, Security, Software Update, Firmware Up-
date, Open Standards, Constrained Device

1 INTRODUCTION
The increasing availability of low-cost hardware, new low-power
radio technologies, and real-time operating systems specially de-
signed for these embedded devices makes the Internet of Things
(IoT) accessible to a broader range of developers. IoT devices are
now used in many verticals, from logistics to precision farming,
introducing new ways to optimize existing business processes and
enabling novel use cases. IoT devices are also used in critical infras-
tructures where safety and security plays an even more important
role.

However, while IoT devices are expected to have a major impact
on our economy, they are also known for their weak security. The
Mirai botnet [5], for example, demonstrated that large-scale DDoS
attacks using compromised IoT devices threaten other communi-
cation infrastructures. It is equally alarming that many of these
compromised IoT devices are not equipped with a firmware update
mechanism and, therefore, remain unpatched to this day.

This highlights the need to design a firmware update mecha-
nism into IoT devices at the beginning of the product development.
Of course, if designed incorrectly, firmware updates can become at-
tack vectors themselves. The Zigbee Worm [54], for example, trig-
gered a chain reaction combining a series of malicious firmware
updates and promiscuous wireless communications. The situation
would be significantly improved if developers could use a stan-
dardized firmware update mechanism rather than having to design
their own.

In this paper, therefore, we explore the options that developers
have today, and we design a prototype that enables IoT firmware
updates based on standardized building blocks.

We focus in particular on firmware update mechanisms that can
work on constrained IoT devices. Such devices, as specified in RFC
7228 [19], use microcontrollers – for instance Arm Cortex-M – on
which run real-time operating systems, such as RIOT, FreeRTOS,
µC/OS, Contiki, mbed OS, among others [30]. Compared to ma-
chines that run full-blown operating systems, such as Linux, con-
strained IoT devices use a fraction of the power and are equipped
with RAM and flash sizes in the kilobyte range. Constrained IoT
devices cannot afford the energy drain of Wi-Fi, and thus connect
to the network using low-power, wireless, link-layer technologies,
such as Bluetooth Low-Energy, IEEE 802.15.4, LoRa, 3GPP Cellular
IoT (NB-IoT), or through wired buses, such as BACnet.

The contributions of this paper are structured as follows:

(1) In Sections II-III, we survey available open standards and
open source libraries, which provide useful generic building
blocks that can be used to enable IoT firmware updates;

(2) In Section IV, we design and implement a prototype that
leverages the building blocks we surveyed. This prototype
enables secure firmware updates on a large variety of con-
strained IoT devices, while entirely avoiding proprietarymech-
anisms and code;

(3) In Section V, we measure and compare the performance of
various crypto libraries that are relevant in this context;

(4) In Section VI, we assess the security properties of our pro-
totype;

(5) In Section VII, we measure and compare the performance of
several deployment configurations using our prototype, and
provide the first experimental evaluation of the IETF SUIT
specification;

(6) In Section VIII, we discuss the limitations of our prototype.
We conclude that, as we have shown, it is possible today to
create a generic, secure firmware update mechanism that

complies with open standards, and we provide recommen-
dations for future work.

2 PRIOR WORK ON SOFTWARE UPDATES
FOR CONSTRAINED IOT DEVICES

An IoT firmware update solution is a special case of software up-
date, and consists of three areas of work [23], namely: (a) embed-
ded software design on low-end IoT devices, (b) backend frame-
work, and (c) network transport of the firmware towards the IoT
devices.

Embedded software design on low-end IoT devices. The software
on an IoT device has to be prepared to support a firmware update
mechanism. The device needs a bootloader, the logic that is exe-
cuted first when the device boots and determines which firmware
it launches. Sometimes devices are equipped with multiple boot-
loaders; for example, a stage 1 bootloader in the ROM and a stage
2 bootloader that can be updated. The reason for such designs is
security-related because updating a bootloader can lead to a bricked
device. Whenever a bootloader is present on a device, the memory
layout of the hardware has to be considered, and exception han-
dlers1 must be repositioned.

The typical firmware update procedure is fairly simple: a devel-
oper recompiles the code and generates an entirely new firmware
image, which is then distributed to the device. The flash memory
of the IoT device is split into memory regions (slots) containing (i)
the bootloader and (ii) firmware images (with some metadata). The
new firmware is stored into one of the available slots. The IoT de-
vice is then reset so that the bootloader can boot the new firmware
image [10]. This approach is used, for example, by MCUboot [2]
and ESPer [27].

Other considerations can lead to different designs. For instance,
one may consider the granularity of the software update, or the
amount of data that needs to be transmitted for an update. Certain
approaches enable partial update via dynamic loading of binary
modules [26, 55], while others use differential binary patching [33].
Yet another technique is binary compression [60]. Approaches us-
ing component-based programming [64, 65] aim to simplify dy-
namic modification and reconfigurability of the system on con-
strained IoT devices by enforcing black-box-style interactions be-
tween system modules. Partial updates of software can also use
scripts instead of binaries [15], whereby pieces of interpreted lan-
guage (for example, Javascript) are updatable on devices. Yet an-
other technique usesminiature virtual machines, such asMate [39]
or ReLog [64].

Despite the above-listed research, the typical approach used for
IoT software updates is to replace the full firmware image at once.
The advantage of updating the full firmware is in the simplicity of
this approach.

Backend framework. The second aspect of IoT firmware updates
concerns the backend framework and securing the supply chain
of IoT software. The Internet Engineering Task Force (IETF) Soft-
ware Updates for Internet of Things (SUIT) working group speci-
fies a simple back-end architecture [43] for IoT firmware updates.

1Exception handlers in the Arm architecture can be compared to the interrupt vector
table in the x86 architecture.

In addition to authentication and integrity protection, even when
updates are stored on untrusted repositories, the SUIT specifica-
tions enable encrypting the firmware image, to protect against at-
tacks based on reverse engineering. SUIT followed previous work
such as FOSE [?] which proposed firmware encryption and sign-
ing using JSON and JOSE. The Update Framework (TUF) [3] and
Uptane [37], designed for use in connected cars, aim to ensure the
security of a software update system, even against attackers who
compromise the repository or signing keys. ASSURED [14] builds
on TUF to improve support for constrained IoT devices by lever-
aging a trusted intermediate controller between the update reposi-
tory and IoT device. CHAINIAC [46] is another approach that uses
a blockchain-like mechanism to attest to the history of prior up-
dates, even without central authority.

Network transport. The third aspect of IoT firmware updates con-
cerns the dissemination of software through the network.The vari-
ety of approaches to this topic, as presented in recently published
literature, includes protocols that optimize the dissemination of up-
dates through multiple paths in a multi-hop, low-power wireless
network [31]; updating network stack modules to reconfigure the
network on the fly [65]; and using the Message Queuing Teleme-
try Transport (MQTT) protocol to disseminate software updates
to a fleet of IoT devices [27]. 6LoWPAN protocols [58] enable end-
to-end IP connectivity from constrained IoT devices to anywhere
on the (IPv6) internet. The IETF Trusted Execution Environment
Provisioning (TEEP) working group [32] is standardizing a trans-
port mechanism to update trusted applications running in trusted
execution environments (TEEs), such as Arm TrustZone and Intel
SGX.

3 OPEN STANDARDS FOR SECURE
CONSTRAINED IOT FIRMWARE UPDATES

Over the last few years, the technical community has been work-
ing on open standards [36] that can be combined to facilitate IoT
firmware updates. These open standards fall into the following cat-
egories:

Cryptographic algorithms;
Firmware metadata;
Protocols for transferring updates over the network;
IoT device management protocols.

We also have to consider IoT operating systems for use in our
prototype.

Cryptographic algorithms. Theuse of state-of-the-art cryptographic
algorithms is necessary to guarantee the security of firmware up-
dates. For many years, the impression was that algorithms used
on the wider Internet could not be used on constrained IoT de-
vices. This turned out to be incorrect; however, optimization and
selection of different algorithms is necessary. For public key cryp-
tography, Elliptic Curve Cryptography (ECC) is typically used be-
cause of the smaller key size (compared to RSA). The National In-
stitute of Standards and Technology (NIST) standardized the Ellip-
tic Curve Digital Signature Algorithm (ECDSA) for use with the
P256r1 curve [48], which became popular in the industry. With
ed25519 [35], another signature algorithm, based on a different

2

curve, was standardized. New standardization efforts are in progress
to evaluate algorithms for the post-quantum crypto area [47].

Firmware metadata. The IETF SUIT working group is currently
standardizing a format for describing firmware updates. The SUIT
group defines a so-calledmanifest, which provides (1) information
about the firmware required to update the device, and (2) a security
wrapper to protect the metadata end-to-end.

Taking TUF/Uptane [37] as a reference, for instance, the SUIT
manifest format could provide Uptane-compliant (custom) meta-
data about firmware images. (The TUF standards neither target in-
teroperability, nor specify concrete metadata formating, contrary
to the SUIT standards.)

The SUIT specifications include an architecture document [43],
an information model description [44], and a proposal for a mani-
fest specification [45].

To achieve its goals, SUIT builds upon a number of other open
standards that provide generic building blocks. In particular, the
Concise Binary Object Representation (CBOR) [20] specification
is used as a data format for serialization. CBOR is a schema-less
format optimized for a small message size using a binary encoding.
Furthermore, the CBORObject Signing and Encryption (COSE) [56]
specification is used to cryptographically secure data serialized
with CBOR. COSE defines a variety of structures, among them the
sign structure, which specifies how to protect a payload against
tampering by using a cryptographic signature.

Standards for IoT firmware transport. A number of protocols pro-
vide specifications for transferring a firmware update over the net-
work. Basic transport schemes enable a so-called Device Firmware
Update (DFU) over a specific low-power Media Access Control
(MAC) layer technology (such as Bluetooth), or over a specific bus
technology (such as USB). On the other hand, to transport firmware
over several hops, or over heterogeneous low-power networks, the
IETF suite of protocols standardized a network stack combining
Constrained Application Protocol (CoAP) over UDP [57] and CoAP
over TCP/TLS [58]. CoAP offers features equivalent to HTTP but
tailored to constrained IoT devices. The 6LoWPAN specification
was designed to offer an adaptation layer for networks that cannot
directly use IPv6. To provide communication security, DTLS and
TLS profiles [61] were standardized for use in IoT deployments.

Standards for remote IoT device management. The most promi-
nent open standard for IoT device management is the Lightweight
Machine-to-Machine (LwM2M) protocol [49–51] developed byOMA
SpecWorks2. To transfer data, LwM2M v1.1 uses CoAP, which can
be secured with DTLS [61] . The LwM2M specifications define a
simple data model and several RESTful interfaces for remote man-
agement of IoT devices. The interfaces enable devices to register to
a server, provide information updates, and obtain keying material.
A large number of objects and resources have already been stan-
dardized to support commonly used sensors, actuators, and other
resources. Among the standardized objects is the firmware update
object.

Amore recent design is the CoAPManagement Interface (CoMI)
[63], which is standardized by the IETF. CoMI uses CoAP and a
2OMA SpecWorks is the result of a merger between the Open Mobile Alliance (OMA)
and the IP Smart Object (IPSO) Alliance.

data model based on the YANG modeling language, and aims to
reuse existing SNMP-defined objects and resources. CoMI is still
in development, and a firmware update mechanism has not yet
been defined; we do, however, expect that such an extension will
be defined in the future.

The Open Connectivity Foundation (OCF3) standardizes an IoT
device management protocol operating on top of CoAP and TL-
S/DTLS for communication, similarly to LwM2M.The OCF defines
a data model with RESTful API Modeling Language (RAML) as the
data modeling language. While initially targeting bigger IoT de-
vices in smart home environments, the OCF is now also consider-
ing other industry verticals.

Earlier work on device management for IoT devices use remote
procedure calls instead of a RESTful design. For instance TR 69 [21],
also known as the CPEWANManagement Protocol (CWMP) devel-
oped by the Broadband Forum4 offers firmware update functional-
ity on higher-end IoT devices, such as Internet-connected printers.
The successor of TR 69, called User Services Platform (USP) [22],
was recently released by the Broadband Forum.

De facto standard IoT operating systems. Off-the-shelf open source
operating systems, such as Linux, cannot be used on low-end IoT
devices, which lack the necessary hardware resources. Unfortu-
nately, the increasing complexity of Internet-connected devices re-
quires a fairly complex protocol stack, which includes IPv6, UDP,
DTLS, and CoAP.

This situation has led to the development of IoT operating sys-
tems, includingmany open source IoT operating systems [30], such
as RIOT [16], Zephyr [4], Mbed OS [12], MyNewt or Tock [40].
Popular commercial operating systems in this category include
µC/OS [38] and FreeRTOS [11].

4 PROTOTYPE DESIGN
In this section, we describe a prototype we designed to implement
the functionality required by the scenario described in 4.1, below.
A link to the source code is provided in the References section at
the end of this article [1].

4.1 Scenario Setup
Prior work [43] outlines requirements for firmware updates of IoT
devices, and lists various common deployment scenarios. In this
paper, we consider the scenario shown in Fig. 1 for further investi-
gation. In this scenario, an IoT device is connected through a low-
power wireless network to a device management server, which
runs on the internet.

Over the lifetime of this IoT device, an authorized IoT software
maintainer should be able to:

(1) Produce firmware updates that are integrity-protected and
authenticated;

(2) Trigger the device to fetch (via push or pull) and verify the
integrity and authenticity of a firmware image, and then re-
boot;

3OCF is the result of a merger between the UPnP Forum, the Open Interconnect Con-
sortium (OIC), and the AllJoyn Alliance.
4The Broadband Forum was formerly known as the DSL Forum.

3

Figure 1: IoT Firmware Update Prototyping Scenario.

(3) Delegate authorization to anothermaintainer, in case of new
ownership or change of contracts (we use the same tech-
nique to switch trust anchor when it expires or has to be
revoked);

(4) Reconfigure the device so that cryptographic algorithms can
be upgraded, if needed.

There are several aspects we do not explore in the prototype we
aim for:

We only consider the case where the entire firmware is re-
placed. We do not consider differential updates.
We focus on the use of asymmetric cryptography for digital
signatures, although a symmetric key solution is also possi-
ble.
We do not make use of firmware encryption.
We avoid proprietary protocols, focus only on open source
software, and aim for simplicity; therefore, we do not ex-
plore optimization potential. Our results should therefore
be interpreted as representing the ”lower bar”.

We designed this prototype such that multiple configurations
are possible – for example, to switch crypto algorithms, crypto li-
braries, and network stacks – and the same code can be executed
on IoT hardware from different vendors. This provides us with a
good basis for comparing different features.

4.2 Components and Functional Overview
Based on our survey of applicable open standards in Section 3, we
utilize the following building blocks:

The firmware metadata format based on the IETF SUITman-
ifest.
The 6LoWPAN, IPv6, and CoAP transport stack.
The LwM2M IoT device management solution.
Digital signature algorithms based on ed25519 and ECDSA/P256r1.

We selected the RIOT [16] operating system for this prototype,
but the results can easily be transferred to other real-time operat-
ing systems.

The remainder of this section provides a functional overview of
the prototype.

IoT device commissioning. From the embedded software point of
view, the prototype we built is based on the design shown in Fig. 2,
articulating: (i) a minimalistic bootloader, (ii) two firmware image

slots in flash memory, each prefixed with space for their respec-
tive metadata, and (iii) a basic firmware update module, also im-
plemented on top of RIOT, integrated into each firmware image,
as detailed below.

We enhanced the RIOT build system to enable a maintainer to
simultaneously build and flash (through the serial or USB port)
the bootloader and the initial firmware in the first slot. The initial
firmware includes a software module for firmware updates, config-
ured with the necessary trust anchor of the maintainer.

Trust anchor. Ourmodel is based on a single trust anchor, namely
of the authorized maintainer.This trust anchor is used to verify the
authenticity of the signed firmware image. If an attacker manages
to trick the maintainer into handing out the private key associated
with the trust anchor, the attacker can load malicious firmware
images onto the IoT device. An attacker could make the compro-
mised maintainer sign malicious firmware images. Alternatively,
the compromised maintainer could relinquish authorization to the
attacker. There is no mitigation when the only trust anchor used
is compromised. In this prototype, therefore, we rely on the main-
tainers’ ability to keep their private keys secure. Extensions using
a public key infrastructure, potentially with a hierarchy of keys, is
possible but out of scope for this paper.

Producing and uploading an authorized firmware update. We en-
hanced the build system so that a maintainer – a software devel-
oper – can simultaneously build a new firmware image and pro-
duce the corresponding metadata, signed with the private key of
the maintainer. The firmware and signed metadata can then be up-
loaded to the IoT software update server, using an HTTP-based
API.The update server is aweb server, which can speak bothHTTP
and CoAP. It interfaces with the maintainer of the firmware and
with the IoT device.

Firmware update module. The firmware update module’s main
tasks are to retrieve the firmware image and manifest from the
update server, to parse and verify the manifests, and to store the
firmware image on flash memory.

The module implements the required buffering between the net-
work packet size and the device flash page size. When a flash page
buffer is full, the module writes the buffer to the next flash page
in the (non-active) firmware image slot. After the entire firmware
image has been written to flash, the module computes a hash and
checks that this hash is identical to the hash announced in the
transferred firmware’s metadata. The received metadata is cryp-
tographically verified with the help of the trust anchor (the pub-
lic key stored on the device). If the digital signature is verified,
and if other security checks pass (for example, the firmware se-
quence number is confirmed to be newer), the module also writes
the metadata to the flash (otherwise, the metadata is blanked) and
launches a reboot. The bootloader then reads the metadata from
the two available firmware slots and chooses to boot the newest
valid firmware, based on the metadata. Note that, due to blanked
metadata, an interruption (e.g. due to power loss) cannot cause the
system to boot of an invalid, corrupted or incompletely received
image.

Scheduling firmware updates. Using the firmware update mod-
ule, updates can be (i) either triggered periodically or on demand,

4

Figure 2: Embedded Flash Memory Layout.

Firmware IPv6 Standardized Device
Update Support Manifest Mgmt

Baseline × ✓ × ×
Basic-OTA ✓ × × ×
IPv6-OTA ✓ ✓ × ×
SUIT-OTA ✓ ✓ ✓ ×
LwM2M-OTA ✓ ✓ ✓ ✓

Table 1: Analyzed Configurations.

(ii) pushed to the device or pulled from the device [?], so as to fit
other operational constraints. On the device we use the real-time,
preemptive multi-threading capabilities of RIOT, such that the sys-
tem is not blocked by the computational-intensive task of digital
signature verification. In practice, signature validation runs in a
separate thread, with low priority, enabling other threads with top
priority to execute as needed. However, note that we do not tar-
get more advanced fine tuning for the schedule of firmware up-
dates (e.g. to guarantee the continuity of some service provided
by the device, or to optimize network load). Instead, we focus pri-
marily on the fundamental embedded system characteristics and
constraints imposed by standard-compliant firmware update on-
board constrained IoT devices.

Lifecycle management. By changing the trust anchor stored in
the next firmware’s update module, authorization to update the
firmware can be delegated to another maintainer, who can take
over the production and the roll out of authorized updates.

Crypto agility is straightforward because the update module in
the new firmware image can implement and use upgraded crypto-
graphic primitives. This flexibility is provided because we imple-
ment the cryptographic primitives in the software.

Key roll-over is also made possible with the ability to update the
trust anchor.

4.3 Configurability of the Prototype
The prototype we designed can be configured in multiple ways, as
summarized in Table 1.

We created the following configurations:

Baseline. The Baseline configuration covers a typical sensor sce-
nario, and is introduced here only as a reference, to evaluate the rel-
ative cost of over-the-air (OTA) firmware updates. Therefore, this
configuration does not provide firmware update functionality. The

Baseline configuration uses 6LoWPAN over IEEE 802.15.4 as a net-
work stack. A CoAP server is installed on the IoT device to respond
to requests for sensor data and to actions that trigger an actuator.

Basic-OTA. This configuration enables over-the-air firmware up-
dates pushed directly from the update server to the IoT device, over
the MAC layer, without a standard network layer. Therefore, this
Basic-OTA configuration requires that the IoT device and the up-
date server can communicate directly over theMAC layer (in other
words, they have to be on the same local network/bus). The Basic-
OTA configuration uses minimalistic firmware metadata (in a pro-
prietary format), namely:

A sequence number.
The firmware start address and size.
A digest of the firmware image.
A digital signature of the metadata.

IPv6-OTA. This configuration enables the Basic-OTA configura-
tion by using an IPv6-compliant network stack. The IPv6 network
layer implementation is provided by the RIOTGeneric (GNRC) net-
work stack. CoAP blockwise transfer (block1) is used because UDP
limits the size of the firmware image to be transferred to 65,507
bytes and, more importantly, we want to avoid the inefficiency
caused by IP fragmentation.

SUIT-OTA. This configuration implements firmware updates fol-
lowing the IETF SUIT manifest [45]. Compared to IPv6-OTA and
Basic-OTA, SUIT-compliant firmware metadata offers more fea-
tures and additional security guarantees (see Section 6).

The SUIT manifests used in our prototype contain the following
information:

The firmware version number.
An 8-byte nonce.
A sequence number (whereby we use the current time).
A single condition: limiting the validity of the manifest to
our device.
The format of the firmware.
The size of firmware.
A storage identifier.
A single URI to allow the device to download the firmware.
A SHA256 digest.
A digital signature on the manifest.

Upon receiving a manifest, the IoT device checks the signature,
and, if verified correctly, pulls the firmware from the URI indicated
in the SUIT manifest. To pull the firmware image, we again use
CoAP blockwise transfer (block2). It would be possible to attach
the firmware to the manifest, but using this two-step approach
gives us extra flexibility.

LwM2M-OTA. This configuration adds support for LwM2M v1.0
(without the use of the bootstrapping functionality). The device
registers to a LwM2M server and provides the necessary API end-
points complying with the LwM2M specification and the core ob-
jects, such as the LwM2M Device and the LwM2M Firmware Up-
date objects. The firmware is updated by pushing a SUIT manifest
to the Package resource found in the LwM2M Firmware Update
object followed by the workflow corresponding to the SUIT-OTA
configuration.

5

60%

38%
2%

Network transfer
Signature verif.
Miscellaneous

Figure 3: Time spent per subtask in a firmware update.

In the analyzed configurations above, we have not used TLS/DTLS
between the IoT device and the update server (or device manage-
ment server for LwM2M). Implementing TLS/DTLS is certainly
useful when considering the larger device management function-
ality in addition to the firmware update. An analysis of IoT device
management functionality is, however, outside the scope of this
paper.

4.4 Relative Impact of Crypto
In such a system, cryptography significantly impacts memory and
power budgets. To get an idea of how much, we measured the rel-
ative memory budget and time spent due to crypto for the Basic-
OTA configuration of our prototype (using the HACL crypto li-
brary [66]). First, we observe in Fig. 3 that, compared to the time
(and thus energy) needed for signature verification and network
transport, negligible time (less than 2%) is spent on network packet
handling and parsing, as well as on firmware metadata parsing
and validation (excluding signature verification). Note that this
remains true with other configurations of our prototype as well,
using a more elaborate network stack (CoAP) or more elaborate
metadata (SUIT). Next, we observe in Fig. 4 that crypto represents
50% of the memory budget. Going back to Fig. 3, it seems at first
sight that time spent during a firmware update is dominated by net-
work transfer (60%) then signature verification (38%) as shown in
Fig. 3. However, we observe that, since half of the firmware image
size is contributed by cryptographic functions, this means 30% of
the time is spent on transferring updated crypto over the network
(half the network transfer time). In effect, we conclude that han-
dling cryptography dominates, accounting in fact for 68% of the
total time spent on the firmware update process. We conclude that
choosing an appropriate cryptographic algorithms and library, of-
fering a good compromise on size/speed, is crucial. In the following
section, we discuss this topic in greater detail.

5 CRYPTOGRAPHIC LIBRARIES
Our prototype makes use of cryptographic primitives for verify-
ing digital signatures. Thus, a crucial parameter is the choice of a
signature algorithm, and its implementation.

In the context of this paper, we considered algorithms that pro-
vide a cryptographic strength of roughly 128-bit. Concretely, we
consideredmainly signatures based on ed25519 and signatures based
on the NIST P256r1 curve.

51%
30%

13% 6%

Crypto
Kernel
Network stack
OTA module

Figure 4: Flash memory budget per system component
(Basic-OTA configuration, 35kB flash in total).

Based on the choice of algorithms, a particular implementation
must then be chosen. We briefly survey a number of relevant li-
braries, many of which are highly configurable, and evaluate them
in Section 7.2.
subsubsectionLibraries that provide ed25519 signatures
HACL* [66] is a cryptographic library that is written in the F* pro-
gramming language and is compiled to C. The goal of HACL* is to
have a verified cryptographic library. In this paper, we evaluate
the version from the HACL-C repository [29] (commit d65ee4).

TweetNaCl [17] is a small portable and auditable C library im-
plementing all 25 functions of NaCl. It is simple to use and does not
offer configurable options. It provides one combination of cryp-
tographic primitives selected for high security. In this paper, we
evaluate version TweetNaCl-2014-04-27.

μNaCl [25] is a patch on top of TweetNaCl. μNaCl provides as-
sembly code optimized for somemicrocontroller architectures, and
aims to significantly speed up the x25519 key exchange. In this pa-
per, we evaluate version μNaCl-2015-08-13.

C25519 [6] is a library that implements ed25519 for embed-
ded implementations. The memory consumption and code size of
C25519 is small. In this paper, we evaluate C25519-2017-10-05.

Monocypher [62] is a small auditable library implementing the
ed25519 signature scheme among other cryptographic primitives.
It aims to keep the code base small while not sacrificing too much
speed. In this paper, we evaluate version Monocypher-2.0.5.

WolfSSL [9] is an embedded TLS/DTLS library. The wolfCrypt
module is used here to measure raw crypto performance. In this
paper, we evaluate a version of WolfSSL adapted for integration in
the RIOT operating system (based on commit 412eecd).

5.0.1 Libraries that provide P256r1 signatures.
TinyCrypt [8] is a cryptographic library that provides signatures
based on the NIST P256r1 curve [41]. The design goals of Tiny-
Crypt are to minimize the code size and cryptographic dependen-
cies. In this paper, we evaluate version TinyCrypt-0.2.8.

Mbed TLS [13] is an embedded TLS/DTLS library. In this paper,
we evaluate version mbedTLS-2.12.0.

Note: Although WolfSSL and Mbed TLS are TLS/DTLS stacks,
we only use the implementations of the cryptographic algorithms
in the prototype; not in the TLS/DTLS protocol itself.

5.0.2 Other digital signature libraries.
There are also alternative digital signature schemes that provide

6

Scheme Library Flash Stack Speed
M0+ M4

ed25519

HACL* ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆

TweetNaCl ⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆

uNaCl ⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆

C25519 ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆

Monocypher ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆ ⋆

WolfSSL ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆

P256r1 TinyCrypt ⋆⋆ ⋆ ⋆ ⋆

Mbed TLS ⋆⋆⋆⋆⋆ ⋆ ⋆ ⋆⋆⋆

Other qDSA ⋆⋆⋆⋆⋆ ⋆ ⋆ ⋆⋆⋆⋆

Libhydrogen ⋆ ⋆ ⋆ ⋆

Table 2: Crypto library performance summary
(Fewer stars ⋆ is better.)

the same (128-bit) level of security. For instance, recent work on
hyperelliptic curves includes qDSA [53], a signature scheme that
yields fast signatures and verifications for constrained IoT devices.
An implementation of qDSA is available as a RIOT package [52],
which provides a reference C implementation and assembly code
optimizations for both AVR and Arm Cortex M0 microcontrollers.

Otherwork is based on variantswith theGimli permutation [18].
For instance, libhydrogen [7] implements such a signature scheme
and enables fast, small cryptographic signatures.

5.0.3 Summary.
Theperformance of the digital signature librarieswe surveyed above
are evaluated and compared in detail in Section 7.2. A high-level
summary of the (significant) differences we observed comparing
these libraries in terms of speed andmemory requirements in RAM
and Flash can be found in Table 2. Based on this summary, we
chose to configure and evaluate our prototype firmware update
using ed25519 signatures provided by the C25519 library, which
offers a good speed/size compromise.

6 SECURITY ASSESSMENT
Typical threats against a firmware update solution are discussed
in the SUIT information model [44] and can be categorized into (i)
privilege escalation, (ii) device malfunction, (iii) resource exhaus-
tion, (iv) reverse engineering, and (v) social engineering.

Based on these threats, we assess and compare the security of
our prototype in the IPv6-OTA, SUIT-OTA, and LwM2M-OTA con-
figurations, which are defined in Section 4.3. The summary of our
assessment is shown in Table 3.

6.1 Tampered firmware
An attacker may try to update the IoT device with a modified and
intentionally flawed firmware image. To counter this threat, the
IPv6-OTA, SUIT-OTA, and LwM2M-OTA configurations use digi-
tal signatures to ensure integrity of both the firmware and its meta-
data. Additionally, the device can verify that an authorized main-
tainer signed the firmware image.

6.2 Firmware replay
An attackermay try to replay a valid, but old (known-to-be-flawed)
firmware. This threat is mitigated by using a sequence number. All

IPv6- SUIT- LwM2M-
OTA OTA OTA

A. Tampered firmware ✓ ✓ ✓
B. Firmware replay ✓ ✓ ✓
C. Offline device × × ✓
D. Firmware mismatch × ✓ ✓
E. Wrong memory location ✓ ✓ ✓
F. Unexpected precursor × ✓ ✓
G. Reverse engineering × × ×
H. Resource exhaustion × × ✓

Table 3: Security Assessment Summary.

three configurations use a sequence number, which is increased
with every new firmware update.

6.3 Offline device attack
An attacker may cut communication between the IoT device and
the update server for an extended period of time. Then, he or she
may try to update the IoT devicewith a (known-to-be-flawed) firmware
image, which has in the meanwhile been deprecated. IPv6-OTA
does not provide any mitigation against this threat.

Following the SUIT specification, a best-before timestamp can
be used to expire an update. However, this requires the IoT de-
vice to have an approximate knowledge of the current date/time,
which may not be available on constrained IoT devices. Therefore,
our SUIT-OTA configuration does not mitigate this threat either.
Only the LwM2M-OTA configuration may protect against this at-
tack since LwM2M offers an easy way to provision the device with
time information.

6.4 Firmware mismatch
An attacker may try replaying a firmware update that is authen-
tic, but for an incompatible device. While IPv6-OTA does not pro-
vide mitigation against this threat, the SUIT-OTA and the LwM2M-
OTA configurations include device-specific conditions, which can
be verified before installing a firmware image, thereby preventing
the device from using an incompatible firmware image.

6.5 Flash memory location mismatch
An attacker may attempt to trick the IoT device into flashing the
new firmware to the wrong location inmemory. Tomitigate this at-
tack, IPv6-OTA, SUIT-OTA, and LwM2M-OTA specify the intended
memory location of the firmware update.

6.6 Unexpected precursor image
An attacker may try to exploit a vulnerability that results from
a mismatch between previously installed software and the new
firmware.While IPv6-OTAdoes notmitigate this threat, SUIT-OTA
and LwM2M-OTA enable specifying the precursor software that
must be installed before the update can be applied (enabling mod-
ular/incremental updates).

7

6.7 Reverse engineering
Thefirmware image in transmission can be captured by an attacker
for vulnerability analysis. Neither the IPv6-OTA configuration nor
our SUIT-OTA configuration protect against eavesdropping end-
to-end (from the maintainer to the IoT device). Note that the SUIT
specification also defines the ability to encrypt the firmware image;
however, our prototype does not make use of this feature. The use
of (D)TLS in the SUIT-OTA or LwM2M-OTA configurations can
also protect the firmware image against eavesdropping in-flight,
while transmitted over the network, but doesn’t offer end-to-end
security without the extra protection offered by using SUIT.

6.8 Resource exhaustion
Receiving, verifying, and storing a new firmware is an operation
that typically uses up a significant amount of resources on a con-
strained IoT device. As discussed in Section 7.2, signature verifica-
tion can take several seconds. By repeatedly attempting fraudulent
firmware updates, an attacker may deplete the device’s battery or,
more generally, make it unavailable for long periods of time. For ex-
ample, an attacker who manages to transmit valid manifests with-
out a valid signature to an IoT device at regular intervals can drain
the battery.

The IPv6-OTA configuration does not mitigate this threat, but
the SUIT-OTA configuration lowers the impact by verifying the
manifest before downloading the firmware image. However, an at-
tacker could still push invalid manifests at any rate, causing the
IoT device to perform signature verifications. Using LwM2M, an
additional layer of defense can be added by only processing man-
ifest that are conveyed via the device management infrastructure.
In this way, the IoT device trusts the LwM2M server to only for-
ward manifests that pass the following security checks:

The URL in the manifest points to a firmware update server
under the control of the LwM2M infrastructure.
The manifest signature has been verified correctly.
Other conditions in the manifest (such as the best-before
timestamp) have been processed successfully.

If the devicemanagement server is compromised, the security char-
acteristics of the LwM2M-OTA configuration fall back to those of
the SUIT-OTA configuration.

7 EXPERIMENTAL PERFORMANCE
EVALUATION

The quantitative analysis of our prototype is split into two parts.
First, we analyze the firmware update solution. Second, we eval-
uate the performance of various crypto libraries for use with our
firmware update solution.

IoT hardware. For the performance analysis, we use commer-
cially available hardware based on ArmCortexMmicrocontrollers.
We use the following hardware from three different vendors:

Atmel SAMR21, which features a Cortex M0+ MCU with 32
kB of RAM and 256 kB of flash.
STM32F103REY, which features a Cortex M3 MCU with 64
kB of RAM and 512 kB of flash.
Nordic nrf52840, which features a Cortex M4 with 256 kB
of RAM and 1 MB of flash.

Figure 5: Hardware Prototype (using SAMR21).

TheSTM32F103REY and the nrf52840 are clocked at 64Mhz, while
the SAMR21 runs at 48Mhz. Fig. 5 shows a hardware prototype we
used (version using the Atmel SAMR21). In the following measure-
ments, the code is compiled using GCC 7.2.0 for Arm optimized for
code size. To retain generality, we focus only on the software nec-
essary to enable secure firmware updates over the network, i.e. we
ignore application-specific code andmemory such as the driver for
the LCD screen shown in Fig. 5.

Metrics. To evaluate cost in our comparative evaluation, we use
both (i) memory measurements (RAM and flash size) and (ii) CPU
performance measurements. These metrics are decisive in terms of
hardware costs and in terms of energy costs [24].

On the one hand, a slower CPU speed and larger RAM size in-
crease energy consumption. On the other hand, a faster CPU with
more RAM and flash memory typically increases the price of the
MCU5. In practice, memory sizes available for off-the-shelf micro-
controllers are typically of size 2n (for example, 32 kB RAM and
256 kB flash, or 16 kB RAM and 128 kB flash). Therefore, hardware
design constraints are substantially impacted when such thresh-
olds are crossed.

7.1 Evaluating the Cost of the OTA Update
Functionality

To evaluate the cost of the firmware update functionality, we mea-
sured and compared the RAMand flashmemory overhead incurred
by this functionality in our prototype for the various configura-
tions we defined in Section 4.3. The flash memory footprints (total

5The price of an MCU is determined by many factors, including economies of scale.
Therefore, it may even be the case that an MCU with a better hardware layout is
cheaper than a more constrained MCU.

8

Component Bootloader Baseline Basic-OTA IPv6-OTA SUIT-OTA LwM2M-OTA
Core 2 760 13 976 10 913 13 241 14 388 14 175
Network 0 26 892 2 732 26 892 27 230 27 208
CoAP 0 1 876 1 910 1 910 2 286 2 676
Crypto 0 308 5 798 5 886 6 472 6 472
COSE + CBOR 0 0 0 0 3 181 3 181
SUIT 0 0 0 0 1 575 1 551
OTA 0 0 2 007 2 007 3 998 3 475
LwM2M 0 0 0 0 0 2 166

Sub-total per image 2 760 43 052 23 360 49 936 59 130 60 904
Total flash footprint 2 760 43 052 49 544 102 696 121 084 124 632

Table 4: Flash requirements (in bytes) per component and configuration, on Cortex M0+.

Component Bootloader Baseline Basic-OTA IPv6-OTA SUIT-OTA LwM2M-OTA
Core 800 2 410 1 317 2 410 3 914 3 919
Network 0 11 010 7 224 11 010 11 010 11 026
CoAP 0 1 536 2 560 2 560 1 024 1 024
Crypto 0 28 28 28 60 60
COSE + CBOR 0 0 0 0 512 512
SUIT 0 0 0 0 296 272
OTA 0 0 632 632 2 984 3 000
LwM2M 0 0 0 0 0 1 487

Total 800 14 984 11 760 16 640 19 800 21 300

Table 5: RAM requirements (bytes of statically allocated stack) per component and configuration, on Cortex M0+.

and broken down per component) are shown in Table 4, while Ta-
ble 5 shows the RAM requirements calculated for the stack6 mea-
sured on an Atmel SAMR21 (using a Cortex M0+, the most con-
strained MCU we used in our experiments). In these two tables,
we also list the bootloader as a separate item because it is present
on the device alongside the firmware images, as shown in Table 2.

We distinguish between different components in the system as
follows:

The core component combines the minimal basic operating
system functionality, including drivers. The newlib-nano li-
brary is also included.
The crypto component includes cryptographic algorithms,
such as digest algorithms, the digital signature algorithm,
the ECC and bignum library, and the pseudo random num-
ber generators.
The network component includes the protocol stack from
the radio driver up to the transport layer protocol UDP.
The modules that enable a firmware update to be received
and stored in flash memory are combined in the OTA com-
ponent.
CoAP refers to the CoAP protocol stack.
COSE+CBOR contains the libraries for COSE parsing and
CBOR parsing.
SUIT relates to the code parsing a SUIT manifest.

6Wemeasure the RAM utilization using static analysis; that is, based on the compiler-
generated call graphs. This technique is simple and a good approximation. It does,
however, produce inaccuracywhen the code contains assembly language and function
pointers. Dynamic analysis, on the other hand, is not perfect either because it does
not easily indicate the maximum stack size. Note that memory allocations on the heap
are not considered in our measurement.

Finally, LwM2M contains the code for device registration,
and functionality required for the LwM2M protocol to per-
formfirmware updates (particularly the LwM2MDevice and
Firmware Update objects).

7.1.1 The Cost of OTA.
The cost of basic OTA functionality can be measured by compar-
ing the memory requirements of the Baseline configuration with
that of the IPv6-OTA configuration. On a per-image basis, the flash
overhead comes from the need for additional modules to perform
necessary crypto (5 kB) and to handle OTA (2 kB). However, the
prototype needs two image slots with metadata and a bootloader.
We are, therefore, comparing the Baseline flash footprint against
twice the flash footprint of IPv6-OTA added with the bootloader
footprint (see Table 4). In total, the relative overhead in flash mem-
ory footprint is 137% (59 kB more). Note that this overhead means
that the flash memory budget crosses over from below 64 kB to
below 128 kB. The largest part of the overhead comes from the
doubled image slots.The footprint of the rest (bootloader andmeta-
data) is small: approximately 3 kB of flash for the bootloader and
a single flash page for the metadata of each image. Due to flash
memory alignment constraints, the size of the metadata is effec-
tively rounded up to a full flash page stored in the memory of the
IoT device.

9

On the other hand, RAM requirements increase by 3 kB, and
could most probably be kept under the 16 kB threshold with ad-
ditional optimization. The memory footprint overhead can be re-
duced if standard-compliance is dropped at the network level. For
instance, the Basic-OTA functionality stays below 64 kB flash.

7.1.2 The Cost of Standard-Compliance for OTA.
The use of standards-compliant specifications, such as 6LoWPAN,
SUIT, and LwM2M, increases the memory footprint due to the ex-
tra functionality provided; for example, serialization, metadata pro-
cessing, and object handling. This is expected.

However, we observe that the relative overhead per image, com-
pared to the Baseline scenario, is small. This is because a lot of fea-
tures are reused in the network module. Furthermore, it is not un-
likely that, OTA functionality aside, application code already lever-
ages CBOR, COSE, and other crypto functionality. In such cases,
the extra memory overhead per image falls to approximately 10%.
This type of software reuse is a clear advantage of using standard
building blocks.

Compared to the 124 bytes of metadata transferred over the
network with the Basic-OTA configuration, 226 bytes of metadata
need to be transferred with the SUIT-OTA configuration (counting
full COSE data).

Due to the flash memory alignment constraints on the IoT de-
vice, this overhead has no effect on the flash memory footprint
because 226 bytes typically fit on a single flash page (for example,
256 bytes fit on a single flash page on the SAMR21, the most con-
strained MCU we used in our measurements).

Finally, we observe that none of the configurations we experi-
mented with exceeds the thresholds of 32 kB of RAM and 128 kB of
flash memory. Although our prototype could be further optimized,
it fits the nature of constrained IoT devices used in the market to-
day.

Extending our measurements to the SUIT manifest case, the
code has to be extended with components required by the SUIT
specification. A SUIT module and the necessary serialization and
cryptographic functions increase the flash size by 10 KB compared
to the simple OTA scenario. While the COSE and the CBOR mod-
ules are here specifically required for SUIT compliance, in a real-
world scenario these modules could also be used for sensor data
encoding and application data encryption.

Using LwM2M compatible handlers for this increases the flash
size by another 2 kB because of the need to implement the manda-
tory LwM2M handlers and the registration protocol. These com-
ponents must be implemented by every device that is LwM2M-
compliant and should not be considered as overhead purely related
to having over-the-air update functionality.

7.2 Evaluating the Cost of Cryptography
In this section, we evaluate the cost of cryptographic signatures
on various constrained IoT devices, with the crypto libraries we
surveyed in Section 5. We measure the memory required (flash
footprint and stack usage in RAM) and the speed for digital sig-
nature verification. We summarized our high-level observations
in Table 2 and gave points in the form of ⋆, where fewer points

Scheme Library Cortex M0+ Cortex M3 Cortex M4

ed25519

HACL* 16962 18842 18828
TweetNaCl 5564 5564 5568
uNaCl 5572 5528 5536
C25519 4646 4838 4822

Monocypher 12632 10334 10358
WolfSSL 5692 5914 5910

P256r1 TinyCrypt 5048 4888 4900
Mbed TLS 16660 15356 15378

Other qDSA 15407 12080 12070
libhydrogen 2222 2176 2172

Table 6: Flash size for crypto libraries (in bytes) for signature
verification.

is better. There are tradeoffs between code size, RAM utilization,
and speed. For the flash size and the stack size, we take the maxi-
mum of the three measured architectures (M0+, M3, and M4). For
the verification time, we consider M0+ and M4 only because M3 is
somewhere between the two.

Table 6 shows flash memory measurements, and Table 7 shows
RAM (statically allocated stack) memory measurements. Table 8
shows the speed of signature verification.

Among the libraries that provide ed25519 signature and veri-
fication, we observe major differences in terms of performance.
C25519 is optimized for a low memory footprint on embedded sys-
tems and performs best in terms of flash and stack requirements.While
not being specifically optimized for embedded systems,Monocypher
performs the fastest ed25519 signature operations on all of the
hardware we tested, but requires two to five times more stack and
flash memory compared to C25519. HACL*, TweetNaCl, and uN-
aCl also require consistently more memory than C25519, and are
slower than C25519 on Cortex M0+. We note that the HACL* and
TweetNaCl libraries are also not yet fully optimized for constrained
IoT. On Cortex M4 and Cortex M3, TweetNaCl and HACL* are nev-
ertheless faster than C25519. Looking at overall performance,Wolf-
SSL has an average flash size.The stack requirements are relatively
low compared to the other ed25519 implementations, but speed is
a bit lacking compared to other libraries. All in all, based on our
measurements of ed25519 libraries, C25519 seems like a good com-
promise.

The P256r1-based ECDSA signature scheme, as implemented
by TinyCrypt, outperforms most ed25519 implementations by a
large margin in terms of speed and stack usage. On the other hand,
the flash requirements are comparable to that of the C25519 li-
brary. Mbed TLS requires a bigger flash size largely because of the
big number library, which requires 5.7 kB. Mbed TLS outperforms
TinyCrypt in terms of speed on the Cortex M0+ platform, but is
slower on the other platforms with signature verification. Stack us-
age is, however, significantly higher than for TinyCrypt but lower
than most ed25519 implementations.

Even faster onCortexM0+, qDSA outperforms all other libraries
by an order of magnitude or more. The implementation is opti-
mized with assembly code for use on a Cortex M0+ and for 8-bit
AVR but not yet for Cortex M3/M4 where it uses a slower C imple-
mentation. This explains why qDSA is slower on Cortex M3/M4.
While the qDSA implementation takes a relatively large amount

10

Scheme Library Cortex M0+ Cortex M3 Cortex M4

ed25519

HACL* 3184 3272 3272
TweetNaCl 3764 3800 3768
uNaCl 3772 3792 3760
C25519 976 1048 1012

Monocypher 5188 5088 5088
WolfSSL 1296 1328 1328

P256r1 TinyCrypt 604 680 664
Mbed TLS 792 800 800

Other qDSA 488 792 972
libhydrogen 488 472 440

Table 7: Stack size of crypto libraries (in bytes) for signature
verification.

Scheme Library Cortex M0+ Cortex M3 Cortex M4

ed25519

HACL* 7067 1526 1279
TweetNaCl 7983 1988 1452
uNaCl 8086 1804 1495
C25519 4178 3326 1938

Monocypher 529 72 45
WolfSSL 3652 2686 1698

P256r1 TinyCrypt 1149 440 348
Mbed TLS 1558 1132 838

Other qDSA 134 1920 1291
libhydrogen 1061 220 237

Table 8: Signature verification time (in milliseconds).

of flash space, a closer look shows that at least 8 kB are required
for a SHA-3 digest algorithm, which is required by qDSA.This cost
could be amortized when other parts of the system also use the
SHA-3 algorithm.

The Gimli-permutation-based Libhydrogen performs very well
in both size and speed on all platforms. While it is not the fastest
crypto library, the flash usage and stack requirements are the low-
est among the tested libraries.

8 DISCUSSION: GOING FORWARD
A few observations can be made based on our work.

State-of-the-art crypto is doable on IoT devices, but
it takes a toll. Widely-used security algorithms are rea-
sonably fast and fit the memory budget on constrained IoT
devices. However, crypto consumes a significant chunk of
the resources available on such devices. Given an algorithm,
memory usage and speed can vary by an order of magni-
tude, depending on the implementation’s tradeoffs. New al-
gorithms, such as qDSA, provide promising alternatives, even
faster and smaller. In any case, hardware crypto accelera-
tion should also be considered. The implications of switch-
ing to post-quantum crypto algorithms, like hash-based sig-
natures, on constrained IoT devices have to be studied.
Making the firmware update reliable is key. With the
system we described, the maintainer is expected to test the
new firmware properly before rolling it out. At a minimum,
the new firmware must be able to update itself one more

time over-the-air. Guarantees beyond thisminimum require-
ment – such as the use of watchdog timers and the ability to
use a ”factory reset” – fall into the realm of traditional em-
bedded software management and increase the flash mem-
ory requirements. Without taking these considerations into
account, failures, like those reported with the Taiwanese
YouBike service [34] and the Japanese X-ray telescope satel-
lite Hitomi [42], are likely to occur again.
Use delegation capabilities with care. As the system al-
lows the maintainer to transfer its authority to another en-
tity, the maintainer is entrusted with the responsibility of
not transferring authority to malicious entities. If the main-
tainer is the owner of the device, trust is not an issue; other-
wise, maintenance of IoT software is typically of a contrac-
tual nature, and the caveats of such trust are well-trodden
territory. An improvement of the system could use protected
memory and/or a dedicated crypto hardware module to val-
idate authority transfer.
Shielding against resource exhaustion and best-before
vulnerabilities. The extent to which an IoT device is pro-
tected against resource exhaustion attacks depends on the
resources of the firmware update server in the LwM2M-OTA
configuration. The aspect of dimensioning the server’s re-
sources to counter potential DoS attacks is covered by ex-
tensive prior work in the domain. In the end, due to extreme
lack in resources, constrained IoT devices remain intrinsi-
cally vulnerable.
Real-world requirementsmakefirmware updates com-
plex. In this paper we focused our efforts on the most ba-
sic scenario outlined in [43] and we did not consider refine-
ments, such as firmware encryption, updating devices with
multiple microcontrollers, complications due to policy han-
dling, differential updates, or more efficient distribution us-
ing multicast. Encryption, for example, raises the question
about key management. In a world where software com-
ponents are developed, maintained, and updated by differ-
ent developers, additional challenges arise.While the advan-
tages are known fromweb development, there are questions
about how to trace component versions and their compos-
ability with other software libraries, how to sandbox compo-
nents in constrained IoT devices, how to accomplish faster
time to market in regulated industries where software de-
velopment requirements and testing are much harder than
on the internet, and so on.
We expect a number of these topics to be investigated in the
IETF SUIT working group.
IoT software updates are not just for critical infras-
tructure. Interdependence between networks has dramat-
ically increased over the past few decades. Enabling and se-
curing firmware updates is necessary for IoT devices that
are (i) inside the infrastructure perimeter (for example, in-
dustrial sensors), and (ii) outside the infrastructure perime-
ter (for example, consumer smart appliances). For instance,
a recent study [59] shows how the power grid is indirectly
vulnerable to DDoS attacks from hacked consumer appli-
ances in smart homes. Using simulations, the study shows

11

how a botnet controlling a relatively small number of con-
nected water heaters and air conditioners could maliciously
disrupt power demand and take downmost of a large power
grid serving an area as large as Canada (tens of millions of
people).
Firmware update security is more than network se-
curity. Software-based attacks, such as buffer overflow at-
tacks, known from the desktop and mobile world, are also
very likely to increase in the IoT world. More work on mem-
ory isolation and compartmentalization is required because
the most popular IoT operating systems offer only few isola-
tion mechanisms to developers. Hardware-based attacks re-
quire attention to be paid to side channel analysis but also to
exposed components, such as off-chip flash or debug ports
that are left unprotected. Note that the system we described
does not protect against tampering of this nature.
Software supply chain vulnerabilities become importantwhen
software bundle components are handled by different devel-
opers. Recent attacks have laced legitimate software with
backdoors and/ormalware, such as the Ccleaner software [28].
In our prototype, the authorized maintainer centralizes the
responsibility of assessing the legitimacy of firmware up-
dates. In some cases, it may become difficult for the main-
tainer to assess this legitimacy, and a decentralized version
of the assessment may become necessary [46].
Something is better thannothing.The prototype described
in this paper demonstrates how a basic firmware update
mechanism with state-of-the-art security can be introduced
to constrained IoT devices. This added functionality brings
a welcome improvement to the world of unmaintained IoT
devices that offer no story for updating buggy software.

9 CONCLUSION
Including a firmware update mechanism in IoT devices is a must-
have feature.This need is exacerbated by the current context, where
cyber-criminality is on the rise, while full-blown, state-driven cy-
berwars are being fought on a large scale.

In this paper, we have surveyed open standards, which provide
generic building blocks for secure firmware updates on constrained
IoT devices. We have built a basic prototype, bundling such stan-
dard building blocks and avoiding proprietary components asmuch
as possible. We assessed the security characteristics of the result-
ing system, and we showed how it brings state-of-the-art secu-
rity to IoT devices. The cost of enabling the firmware update solu-
tion in our prototype is bearable, in terms of the required memory
and computation, with the currently available IoT hardware. We
demonstrate that it is possible to implement a generic, standards-
compliant firmware update solution on IoT devices without ex-
ceeding the typical thresholds of 32kB of RAM and 128kB of flash
memory.

REFERENCES
[1] [n. d.]. SUIT-compliant IoT Firmware Update Prototype. https://github.com/

bergzand/RIOT/tree/app/suit-ota/examples/suit_updater
[2] [n. d.]. The MCUboot Bootloader. https://github.com/runtimeco/mcuboot
[3] [n. d.]. The Update Framework. https://github.com/theupdateframework/tuf
[4] [n. d.]. Zephyr Project. https://www.zephyrproject.org

[5] 2016. WIRED Magazine: The Botnet That Broke the Internet Isn’t Going Away.
https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/.

[6] 2017. Curve25519 and Ed25519 for low-memory systems. https://www.dlbeer.
co.nz/oss/c25519.html

[7] 2018. Libhydrogen. https://github.com/jedisct1/libhydrogen/
[8] 2018. TinyCrypt Cryptographic Library. https://github.com/01org/tinycrypt
[9] 2018. WolfSSL Embedded SSL/TLS Library. https://www.wolfssl.com/
[10] Francisco Javier Acosta Padilla et al. 2016. The Future of IoT Software Must be

Updated. In IAB Workshop on Internet of Things Software Update (IoTSU).
[11] Amazon. [n. d.]. FreeRTOS. https://www.freertos.org/.
[12] Arm. [n. d.]. Mbed OS. https://mbed.org/technology/os/
[13] Arm. [n. d.]. Mbed TLS. https://tls.mbed.org
[14] N Asokan et al. 2018. ASSURED: Architecture for secure software update of

realistic embedded devices. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (2018).

[15] Emmanuel Baccelli et al. 2018. Scripting Over-The-Air: Towards Containers on
Low-end Devices in the Internet of Things. In IEEE PerCom.

[16] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C Schmidt, and Matthias
Wählisch. 2018. RIOT: an Open Source Operating System for Low-end Embed-
ded Devices in the IoT. IEEE Internet of Things Journal (2018).

[17] Daniel J Bernstein et al. 2014. TweetNaCl: A crypto library in 100 tweets. In
International Conference on Cryptology and Information Security in Latin America.
Springer, 64–83.

[18] Daniel J Bernstein et al. 2017. Gimli: a cross-platform permutation. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems. Springer,
299–320.

[19] Carsten Bormann et al. 2014. RFC 7228: Terminology for constrained node net-
works. IETF Request For Comments. http://www.ietf.org/rfc/rfc7228.txt

[20] Carsten Bormann and Paul E. Hoffman. 2013. Concise Binary Object Represen-
tation (CBOR). RFC 7049. https://doi.org/10.17487/RFC7049

[21] Broadband Forum. [n. d.]. TR-069, CPEWANManagement Protocol Version 1.4.
https://www.broadband-forum.org/technical/download/TR-069.pdf.

[22] Broadband Forum. [n. d.]. User Services Platform. https://usp.technology/.
[23] Stephen Brown and Cormac J Sreenan. 2013. Software updating in wireless sen-

sor networks: A survey and lacunae. Journal of Sensor and Actuator Networks 2,
4 (2013), 717–760.

[24] Robert Davis, Nick Merriam, and Nigel Tracey. 2000. How embedded applica-
tions using an RTOS can stay within on-chip memory limits. In 12th EuroMicro
Conference on Real-Time Systems. Citeseer, 71–77.

[25] Michael Düll et al. 2015. High-speed Curve25519 on 8-bit, 16-bit, and 32-bit
microcontrollers. Designs, Codes and Cryptography 77, 2-3 (2015), 493–514.

[26] AdamDunkels et al. 2006. Run-time Dynamic Linking for ReprogrammingWire-
less Sensor Networks. In ACM EWSN.

[27] Dustin Frisch, Sven Reißmann, andChristian Pape. 2017. AnOver theAir Update
Mechanism for ESP8266 Microcontrollers. (10 2017).

[28] Andy Greenberg. 2017. Software has a Serious Supply-Chain Se-
curity Problem. Wired (Sep 2017). https://www.wired.com/story/
ccleaner-malware-supply-chain-software-security

[29] HACL*. [n. d.]. Verified C code crypto library. https://github.com/mitls/hacl-c
[30] Oliver Hahm et al. 2016. Operating Systems for Low-End Devices in the Internet

of Things: a Survey. IEEE Internet of Things Journal (2016).
[31] JonathanWHui and David Culler. 2004. The dynamic behavior of a data dissem-

ination protocol for network programming at scale. In ACM Sensys.
[32] IETF. [n. d.]. Trusted Execution Environment Provisioning (TEE) Working

Group. https://datatracker.ietf.org/wg/teep/about.
[33] Jaein Jeong and David Culler. [n. d.]. Incremental network programming for

wireless sensors. In IEEE SECON, 2004.
[34] Liu Jian-band et al. 2016. YouBike service down in Taiwan. Focus

Taiwan (Aug 2016). http://focustaiwan.tw/news/asoc/201608310010.aspx
http://focustaiwan.tw/news/asoc/201608310010.aspx.

[35] S. Josefsson and I. Liusvaara. 2017. Edwards-Curve Digital Signature Algorithm
(EdDSA). RFC 8032. http://www.ietf.org/rfc/rfc8032.txt

[36] Sye Loong Keoh, Sandeep S Kumar, and Hannes Tschofenig. 2014. Securing the
internet of things: A standardization perspective. IEEE Internet of Things Journal
1, 3 (2014), 265–275.

[37] Trishank Kuppusamy et al. 2018. Uptane: Security and customizability of soft-
ware updates for vehicles. IEEE Vehicular Technology Magazine (2018).

[38] Micrium/Silicon Labs. [n. d.]. µC/OS. https://www.micrium.com.
[39] Philip Levis and David Culler. 2002. Maté: A tiny virtual machine for sensor

networks. In ACM Sigplan Notices, Vol. 37. ACM, 85–95.
[40] Amit Levy et al. 2017. Multiprogramming a 64kb computer safely and efficiently.

In ACM SOSP.
[41] D McGrew, K Igoe, and Margaret Salter. 2011. Fundamental elliptic curve cryp-

tography algorithms. Technical Report.
[42] Rud Merriam. 2016. Software Update Destroys $286 Million Japanese Satel-

lite. https://hackaday.com/2016/05/02/software-update-destroys-286-million-
japanese-satellite/. Hackaday (May 2016).

12

https://github.com/bergzand/RIOT/tree/app/suit-ota/examples/suit_updater
https://github.com/bergzand/RIOT/tree/app/suit-ota/examples/suit_updater
https://github.com/runtimeco/mcuboot
https://github.com/theupdateframework/tuf
https://www.zephyrproject.org
https://www.dlbeer.co.nz/oss/c25519.html
https://www.dlbeer.co.nz/oss/c25519.html
https://github.com/jedisct1/libhydrogen/
https://github.com/01org/tinycrypt
https://www.wolfssl.com/
https://mbed.org/technology/os/
https://tls.mbed.org
http://www.ietf.org/rfc/rfc7228.txt
https://doi.org/10.17487/RFC7049
https://www.wired.com/story/ccleaner-malware-supply-chain-software-security
https://www.wired.com/story/ccleaner-malware-supply-chain-software-security
https://github.com/mitls/hacl-c
http://focustaiwan.tw/news/asoc/201608310010.aspx
http://www.ietf.org/rfc/rfc8032.txt

[43] Brendan Moran et al. 2019. A Firmware Update Architecture for Internet of
Things Devices. Internet-Draft. IETF. https://datatracker.ietf.org/doc/html/
draft-ietf-suit-architecture-02 Work in Progress.

[44] Brendan Moran et al. 2019. Firmware Updates for Internet of Things Devices - An
Information Model for Manifests. Internet-Draft. IETF. https://datatracker.ietf.
org/doc/html/draft-ietf-suit-information-model-02 Work in Progress.

[45] Brendan Moran and Hannes Tschofenig. 2018. A CBOR-based Firmware
Manifest Serialisation Format. Internet-Draft draft-moran-suit-manifest-03.
Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-moran-suit-manifest-03 Work in Progress.

[46] Kirill Nikitin et al. 2017. CHAINIAC: Proactive software-update transparency
via collectively signed skipchains and verified builds. In USENIX Security. 1271–
1287.

[47] NIST. [n. d.]. Post-Quantum Cryptography Project. https://csrc.nist.gov/
projects/post-quantum-cryptography

[48] National Institute of Standards and Technology. 2013. Digital Signature Standard.
In Federal Information Processing Standards FIPS 186-4. NIST.

[49] OMA. 2018. LwM2M Technical Specification, Approved Version 1.0.2. (Feb
2018). http://www.openmobilealliance.org/release/LightweightM2M/V1_0_
2-20180209-A/

[50] OMA SpecWorks. 2018. Lightweight Machine to Machine Technical Specifica-
tion: Core, Approved Version 1.1. (July 2018). http://www.openmobilealliance.
org/release/LightweightM2M/V1_1-20180710-A/

[51] OMA SpecWorks. 2018. Lightweight Machine to Machine Technical Specifi-
cation: Transport Bindings, Approved Version 1.1. (July 2018). http://www.
openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/

[52] qDSA. [n. d.]. Package on RIOT. https://github.com/RIOT-OS/qDSA
[53] Joost Renes and Benjamin Smith. 2017. qDSA: Small and Secure Digital Signa-

tures with Curve-based Diffie–Hellman Key Pairs. In International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
273–302.

[54] Eyal Ronen, Adi Shamir, Achi-OrWeingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In Security and Privacy (SP), 2017 IEEE

Symposium on. IEEE, 195–212.
[55] Peter Ruckebusch, Eli De Poorter, Carolina Fortuna, and Ingrid Moerman. 2016.

Gitar: Generic extension for internet-of-things architectures enabling dynamic
updates of network and application modules. Ad Hoc Networks 36 (2016), 127–
151.

[56] Jim Schaad. 2017. CBOR Object Signing and Encryption (COSE). RFC 8152.
https://doi.org/10.17487/RFC8152

[57] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The Constrained Ap-
plication Protocol (CoAP). RFC 7252. https://doi.org/10.17487/RFC7252

[58] Zhengguo Sheng, Shusen Yang, Yifan Yu, Athanasios V Vasilakos, Julie A Mc-
Cann, and Kin K Leung. 2013. A survey on the ietf protocol suite for the internet
of things: Standards, challenges, and opportunities. Wireless Communications,
IEEE 20, 6 (2013), 91–98.

[59] Saleh Soltan, Prateek Mittal, and H Vincent Poor. 2018. BlackIoT: IoT Botnet
of high wattage devices can disrupt the power grid. In Proc. USENIX Security,
Vol. 18.

[60] Milosh Stolikj et al. 2013. Efficient reprogramming of wireless sensor networks
using incremental updates. In IEEE PERCOM.

[61] Hannes Tschofenig and Thomas Fossati. 2016. Transport Layer Security (TLS)
/ Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things.
RFC 7925. https://doi.org/10.17487/RFC7925

[62] Loup Vaillant et al. [n. d.]. Monocypher. https://monocypher.org/.
[63] M. Veillette et al. 2018. CoAP Management Interface (CoMI). IETF Internet

Draft, https://tools.ietf.org/html/draft-ietf-core-comi-03.
[64] Xiaorui Zhu, Xianping Tao, Tao Gu, and Jian Lu. 2017. ReLog: A systematic

approach for supporting efficient reprogramming in wireless sensor networks.
J. Parallel and Distrib. Comput. 102 (2017), 132–148.

[65] Torsten Zimmermann, Jens Hiller, Jens Helge Reelfs, Pascal Hein, and Klaus
Wehrle. 2018. SPLIT: Smart Protocol Loading for the IoT. (2018).

[66] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. 2017. HACL*: A verified modern cryptographic library.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 1789–1806.

13

https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-02
https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-02
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-02
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-02
https://datatracker.ietf.org/doc/html/draft-moran-suit-manifest-03
https://datatracker.ietf.org/doc/html/draft-moran-suit-manifest-03
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
http://www.openmobilealliance.org/release/LightweightM2M/ V1_0_2-20180209-A/
http://www.openmobilealliance.org/release/LightweightM2M/ V1_0_2-20180209-A/
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/
https://github.com/RIOT-OS/qDSA
https://doi.org/10.17487/RFC8152
https://doi.org/10.17487/RFC7252
https://doi.org/10.17487/RFC7925

	Abstract
	1 Introduction
	2 Prior Work on Software Updates for Constrained IoT Devices
	3 Open Standards for Secure Constrained IoT Firmware Updates
	4 Prototype Design
	4.1 Scenario Setup
	4.2 Components and Functional Overview
	4.3 Configurability of the Prototype
	4.4 Relative Impact of Crypto

	5 Cryptographic Libraries
	6 Security Assessment
	6.1 Tampered firmware
	6.2 Firmware replay
	6.3 Offline device attack
	6.4 Firmware mismatch
	6.5 Flash memory location mismatch
	6.6 Unexpected precursor image
	6.7 Reverse engineering
	6.8 Resource exhaustion

	7 Experimental Performance Evaluation
	7.1 Evaluating the Cost of the OTA Update Functionality
	7.2 Evaluating the Cost of Cryptography

	8 Discussion: Going Forward
	9 Conclusion
	References

