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ABSTRACT

We present a comparative analysis of the performance of state-of-
the-art sound event detection systems. In particular, we study the
robustness of the systems to noise and signal degradation, which is
known to impact model generalization. Our analysis is based on
the results of task 4 of the DCASE 2019 challenge, where submit-
ted systems were evaluated on, in addition to real-world recordings,
a series of synthetic soundscapes that allow us to carefully control
for different soundscape characteristics. Our results show that while
overall systems exhibit significant improvements compared to previ-
ous work, they still suffer from biases that could prevent them from
generalizing to real-world scenarios.

Index Terms— Sound event detection, synthetic data, weakly
labeled data, semi-supervised learning

1. INTRODUCTION

We are constantly surrounded by sounds and we rely heavily on
these sounds to obtain important information about what is happen-
ing around us [1]. Ambient sound analysis aims at automatically
extracting information from these sounds. It encompasses disci-
plines such as sound scene classification (in which context does this
happen?) or sound event detection and classification (SED) (what
happens during this recording?). This area of research has been at-
tracting a continuously growing attention during the past years as it
can have a great impact in many applications in noise monitoring
in smart cities [2, 3], surveillance [4], urban planning [2], multi-
media information retrieval [5, 6]; and domestic applications such
as smart homes, health monitoring systems and home security solu-
tions [7, 8, 9].

In Task 4 of the Detection and Classification of Acoustic Scenes
and Events (DCASE) 2019 challenge [10], an extension of the same
task from the previous year [7], we proposed to investigate the added
value of synthetic soundscapes with strong labels when training a
system to perform SED (with time boundaries) in domestic environ-
ments. That is, a system had to detect the presence of a sound event
as well as predict the onset and offset times of each occurrence of
the event. We generated strongly annotated synthetic soundscapes
using the Scaper library [11].

The ranking of the task was performed on real audio clips ex-
tracted from YouTube and Vimeo. However, the performance analy-
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sis and the study of the system’s behavior under scenarios when us-
ing real-world data collected from the internet is limited, because we
have no control over the characteristics of the soundscapes. There-
fore, we provided an additional evaluation set composed of synthetic
soundscapes. This dataset was inspired by our analysis of the per-
formance of systems submitted to DCASE 2018 task 4 [12]. Us-
ing synthetic soundscapes allowed us to design specific scenarios to
test the robustness of the submitted systems to corrupt signals, in
terms of discrimination between long sound events and short sound
events, or in terms on sound event segmentation (localizing a sound
event in time regardless of its class). This latter point, in particular,
is crucial for SED from weakly labeled data. However, it remains
under-investigated.

The synthetic soundscapes evaluation dataset included multiple
subsets comprised of the same set of synthetic soundscapes, each
with a different type of data degradation applied via the audio degra-
dation toolbox [13] or with for different foreground-to-background
signal-to-noise ratio (FBSNR), that is the ratio between the loudness
of the sound event (foreground) and the loudness of the background
noise. We also considered other subsets where the same sound event
would be localized at different time instants within a sound clip and
subsets using the long sound event classes as background noise. All
these scenarios are realistic and represent conditions where the sub-
mitted systems are likely to fail. However, gathering enough real
data that would cover each of these aspects is hardly feasible. Not
to mention that in some cases (e.g., varying FBSNR) it would re-
quire recording new data to ensure that only the tested parameter
is changing between experiments. Synthetic soundscapes then offer
a flexible and realistic alternative to performance preliminary tests
before considering further investigation on real data if need be.

In this paper, we present the results obtained by the participants
of DCASE 2019 task 4 on the evaluation composed of synthetic
soundscapes. This performance was neither presented nor analysed
within the challenge. We propose an analysis of the robustness of
the ten top-performing approaches (on the evaluation set composed
of synthetic soundscapes) to degradation of the recording quality and
to varying FBSNR and a study of the robustness of the segmentation
process implemented in the submitted systems.

2. DESED DATASET AND TASK SETUP

The DESED1 dataset is composed of 10-sec audio clips recorded in a
domestic environment [7, 10] or synthesized to simulate a domestic
environment. In this paper, we focus on the synthetic subset of the
DESED dataset.

1https://project.inria.fr/desed/



2.1. DESED synthetic soundscapes evaluation set

The DESED synthetic soundscapes evaluation set is comprised of
10-second audio clips generated with Scaper [11], a Python library
for soundscape synthesis and augmentation. Scaper operates by tak-
ing a set of foreground sounds and a set of background sounds and
automatically sequencing them into random soundscapes sampled
from a user-specified distribution controlling the number and type of
sound events, their duration, signal-to-noise ratio, and several other
key characteristics. This set is used for analysis purposes and its de-
sign is motivated by the analysis of DCASE 2018 task 4 results [12].
In particular, most submissions from DCASE 2018 task 4 performed
poorly in terms of event segmentation, that is they were not able to
localize sound events properly in time (regardless of the sound event
classes).

The foreground events are obtained from the Freesound Dataset
(FSD) [14, 15]. Each sound event clip was verified by a human
to ensure that the sound quality and the event-to-background ratio
were sufficient to be used as an isolated sound event. We also con-
trolled for whether the sound event onset and offset were present in
the clip. Each selected clip was then segmented when needed to re-
move silences before and after the sound event and between sound
events when the file contained multiple occurrences of the sound
event class. The number of unique isolated sound events per class
used to generate the subset of synthetic soundscapes is presented in
Turpault et al. [10].

Background sounds are extracted from YouTube videos under
a Creative Commons license and from the Freesound subset of the
MUSAN dataset [16]. These recordings were selected because they
contain a low amount of sound events from our 10 target foreground
sound event classes. However, there is no guarantee that these sound
event classes are completely absent from the background clips.

DESED synthetic soundscapes evaluation set is further divided
into several subsets (described below) for a total of 12,139 audio
clips synthesized from 314 isolated events. The synthetic sound-
scapes are annotated with strong labels that are automatically gener-
ated by Scaper [11].

2.1.1. Varying foreground-to-background SNR

A subset of 754 soundscapes is generated with Scaper scripts are
designed such that the distribution of sound events per class, the
number of sound events per clip (depending on the class) and the
sound event class co-occurrence are similar to that of the valida-
tion set which is composed of real recordings. The foreground event
signal-to-noise ratio (SNR) parameter was uniformly drawn between
6 dB and 30 dB. Four versions of this subset are generated varying
the value of the background SNR parameter:

• 0 dB (the FBSNR is between 6 dB and 30 dB);

• 6 dB (the FBSNR is between 0 dB and 24 dB);

• 15 dB (the FBSNR is between -9 dB and 15 dB);

• 30 dB (the FBSNR is between -24 dB and 0 dB).

In the remainder of the paper, these subsets will be referred to as
fbsnr 30dB, fbsnr 24dB, fbsnr 15dB and fbsnr 0dB, respectively.
This subset is designed to study the impact of the SNR on the SED
systems performance. Related results are discussed in Section 3.2.

2.1.2. Audio degradation

Six alternative versions of the subset fbsnr 30dB are generated
introducing artificial degradation with the Audio Degradation

Toolbox [13]. The signal degradations are generated to simulate
degradation faced in real environments. The following degra-
dations are used (with default parameters) : “smartPhonePlay-
back”, “smartPhoneRecording”, “unit applyClippingAlternative”,
“unit applyDynamicRangeCompression”, “unit applyLowpassFilter”
and “unit applyHighpassFilter”. In the remainder of the paper, these
subsets will be referred to as phone play, phone record, clipping,
compression, lowpass and highpass, respectively. This subset is
designed to study the robustness of the SED to audio degradation.
Related results are discussed in Section 3.1.

2.1.3. Varying onset time

A subset of 750 soundscapes is generated with uniform sound event
onset distribution and only one event per soundscape. The param-
eters are set such the FBSNR is between 6 dB and 24 dB. Three
variants of this subset are generated with the same isolated events,
only shifted in time. In the first version, all sound events have an
onset located between 250 ms and 750 ms, in the second version
the sound event onsets are located between 4.75 s and 5.25 s and in
the last version the sound event onsets are located between 9.25 s
and 9.75 s. In the remainder of the paper, these subsets will be re-
ferred to as 500ms, 5500ms and 9500ms, respectively. This subset
is designed to study of the sensibility of the SED segmentation to
the sound event location in time. In particular, we wanted to control
if SED systems were learning a bias in terms of time localization
depending on the event length (e.g., long sound events would most
often start at the beginning of the sound clip). Related results are
discussed in Section 4.

2.1.4. Long sound events vs. short sound events

A subset with 522 soundscapes is generated where the background is
selected from one of the five long sound event classes (Blender, Elec-
tric shaver/toothbrush, Frying, Running water and Vacuum cleaner).
The foreground sound events are selected from the five short sound
event classes (Alarm/bell/ringing, Cat, Dishes, Dog and Speech).
Three variants of this subset are generated with the same sound event
scripts and varying values of the background SNR parameter. In a
first subset, the resulting FBSNR is 0 dB, the FBSNR is 15 dB in the
second and 30 dB in the last subset. In the remainder of the paper,
these subsets will be referred to as ls 0dB, ls 15dB and ls 30 dB,
respectively. This subset is designed to study the impact of a sound
event being in the background or the foreground on SED perfor-
mance [17]. Related results are discussed in Section 3.2.

2.2. Evaluation metrics

Submissions were evaluated with event-based measures for which
the system output is compared to the reference labels event by
event [18]. The correspondence between sound event boundaries are
estimated with a 200 ms tolerance collar on onsets and a tolerance
collar on offsets that is a maximum of 200 ms and 20 % of the
duration of the sound event. When sound event classes are taken
into account, the overall F1-score is the unweighted average of the
class-wise F1-scores (macro-average). The metrics are computed
using the sed eval library [18].

3. ROBUSTNESS TO NOISE AND DEGRADATIONS

In this section, we focus on the impact of signal degradation on the
SED and the FBSNR performance. Each participant was allowed to



Fig. 1: SED performance depending on the FBSNR.

submit up to four different systems. Only the F1-score for the top-
performing system (on fbsnr 24dB) for each participant is presented
here. We limit the analysis to the 10 top-performing systems. Of the
top 10 performing systems, 9 were based on CNN and 7 included
recurrent layers, the most common input features were log-mel en-
ergies and the most common post-processing approach was median
filtering. For further details about each system see the submission
reports [19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

3.1. Simulated degradations

The F-1 score obtained on the degraded subsets is presented in Ta-
ble 1. The performance on fbsnr 24dB subset are presented here for
comparison purpose. The system are ordered alphabetically.

Some systems seem to have over-fitted the synthetic sound-
scapes subset of the training set and as a result, their performance
decreased for most of the degradations. Otherwise, the trend is simi-
lar for most of the systems. The submitted systems seem to be rather
robust to smartphone-related degradations and compression which
can be related to the fact that they have been trained on audio data
extracted for YouTube and that has most probably been recorded
with smartphones. On the other hand, all systems seem to be very
sensitive to low-pass and high-pass filtering which tends to indicate
that systems are not robust to changes in the frequency range of the
input representation between training and test.

3.2. Foreground-to-background Signal-to-noise ratio

In Figure 1, we present the F1-score performance for the 10 top-
performing systems mentioned above under varying FBSNR (see
Section 2.1.1). The trend for all systems is similar, so no submis-
sion stands out in terms of robustness to noise. Interestingly, on fb-
snr 15dB where FBSNR should be distributed almost evenly around
0 dB, F1-score performance are still acceptable for most systems and
remain in the range of what was obtained on real recording clips [10].
Unsurprisingly, on fbsnr 0dB, the FBSNR is always negative and
the performance for all systems collapses.

We then propose to analyze the systems’ performance when the
background is actually one event from the long sound event classes
and the foreground sound events are selected in the short sound event
classes (see Section 2.1.4). In Figure 2, we present the F1-score per-
formance for the 3 top performing systems (on this particular task)
together with the performance averaged over all systems.

Fig. 2: SED performance depending on the FBSNR when the sound-
scape is composed of a long event and multiple short events.

Fig. 3: Segmentation performance for the long sound event classes
depending on the event localization in time.

In all cases, when the FBSNR is low, all systems consistently
obtain better performance on long sound event classes. Whereas
when the FBSNR is high, all systems obtain better performance on
short sound event classes. When the FBSNR is 0 dB most of the sys-
tems perform similarly on short sound event classes and long sound
event classes. This tends to show that the bias toward long event
classes observed in DCASE 2018 [7, 12] is less important this year.
The trend is confirmed by the performance on short or long sound
event classes that are within the same range in the most favorable
cases (0 dB FBSNR for the long sound event classes, 30 dB for the
short sound event classes). However, the system submitted by Lin et
al. [25] does not follow this trend and mostly performs better on long
events. This could be due to the guided learning methods that biases
the mean teacher model. The teacher labels are converted to 0/1 pre-
dictions instead of probabilities which may increase the number of
with a positive labels and introduce a bias towards long events.

4. SEGMENTATION

In this section, we focus on the analysis of the systems’ performance
in terms of segmentation, that is, the ability of the submitted system
to localize a sound event in time (regardless of the sound event class).
Sound event segmentation then relies on finding the time instant for



System Event-based F1-score
fbsnr 24dB phone play phone record clipping compression highpass lowpass

Agnone, PDL [19] 39.1% 15.4% 9.2% 14.6% 29.6% 8.5% 0.9%
Cances, IRIT [20] 47.1% 25.7% 35.8% 42.6% 44.3% 19.2% 1.2%
Chan, NU [21] 41.2% 25.9% 17.5% 22.8% 33.4% 19.3% 1.2%
Delphin-Poulat, OL [22] 53.6% 32.9% 23.7% 29.5% 48.2% 23.3% 4.8%
Kiyokawa, NEC [23] 36.8% 33.9% 21.9% 35.6% 40.2% 22.1% 4.2%
Lim, ETRI [24] 38.9% 26.9% 30.3% 39.7% 48.1% 15.4% 0.7%
Lin, ICT [25] 43.7% 22.4% 9.3% 19.8% 35.3% 17.6% 0.5%
Shi, FRDC [26] 46.4% 35.0% 36.4% 48.3% 54.1% 17.4% 4.0%
Yan, USTC [27] 36.5% 22.1% 21.5% 18.3% 32.7% 16.6% 1.0%
Zhang, UESTC [28] 43.7% 21.8% 15.3% 24.6% 41.4% 14.1% 1.7%
Average score (all participants) 33.9% 22.0 % 16.4% 21.6% 31.4% 15.8% 1.7%

Table 1: F1-score performance on the degraded synthetic soundscapes

both the sound event onset and offset. In particular, we consider
the scenario described in Section 2.1.3 in which three versions of
a sound clip are generated with the same background and the same
sound event starting either at the beginning, in the middle or at the
end of the sound clip. The F1-score performance is presented for the
3 top-performing systems (on this particular task) together with the
performance of the baseline system [10].

For short sound event classes, the F1-score performance is sim-
ilar wherever the sound event is located within the segment. we will
focus on long sound event classes. In Figure 3, we present the F1-
score in terms of segmentation, onset and offset detection for long
sound event classes (but regardless of the sound event class).

For the long sound event classes, the sound event position within
the clip seems to have a large impact as performance dramatically
decreases when the sound event is located towards the end of the
audio clip. One possible explanation could be that in the training
set, long sound events have onsets and offsets are mostly located at
the beginning of the audio clips. However, as shown in Figure 4,
the onset distribution over time is similar for long and short sound
event classes. However, the offsets of long sound event classes are
often located toward the end of the sound clip. Therefore, if any bias
was introduced by the training it should probably have led to a better
offset detection for long sound event classes toward the end of the
sound clips. This is confirmed by the fact that all systems are able to
detect quite accurately the offsets of long sound event classes when
the sound event onset is located toward the middle of the sound clip.
However, in this case the sound event offsets are located toward the
end of the sound clip in most of the time (see Figure 5).

One alternative explanation is that the submitted systems are
simply not able to detect a long sound event class toward the end
of the sound clip. For example, median filtering with variable length
that are used in most of the submissions (more than 0.5 s for long
sound event classes in some cases [25, 22]) would make it unlikely
to detect a long sound event class at the end of the sound clip. This
hypothesis tends to be confirmed by the fact that the baseline that
is using fixed length median filtering as post-processing performs
similarly wherever the sound event is located.

5. CONCLUSION

In this paper, we present an analysis of the performance of the state-
of-the-art SED systems. All submissions to DCASE 2019 task 4
were evaluated on a subset composed of synthetic soundscapes. The
analysis shows that training SED on sound clips extracted from in-
ternet video makes the systems robust towards degradation related to

(a) Long sound event classes.

Fig. 4: Time distribution of the onsets and the offsets in the synthetic
soundscapes subset of DESED training set.

(a) 500ms subset distribution. (b) 5500ms subset distribution.

Fig. 5: Time distribution of the offsets for long event classes in the
subsets 500ms and 5500ms of DESED Evaluation set.

recording and playing sound on a smartphone. Additionally, we em-
phasize that even though performance has drastically improved since
DCASE 2018 task 4, SED systems still rely on biases (in particu-
lar for segmentation) that would probably prevent from generalizing
to real case conditions. A first step towards solving this problem
was taken in DCASE 2019 where the evaluation set included a real
recording from an unseen source (Vimeo). A solution regarding the
segmentation problem would be to design the evaluation set such
that it includes the limit cases exhibited in the paper together with
providing the isolated sound events to the participants (instead of
the soundscapes) such that they could design more diverse training
examples that would allow for removing so of the bias introduced
during the design and learning phases of their systems.
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