T. Virtanen, D. Mark, D. Plumbley, and . Ellis, Computational analysis of sound scenes and events, 2018.

J. P. Bello, C. Silva, O. Nov, R. L. Dubois, A. Arora et al., SONYC: A system for the monitoring, analysis and mitigation of urban noise pollution, Communications of the ACM, 2018.

J. P. Bello, C. Mydlarz, and J. Salamon, Sound analysis in smart cities, Computational Analysis of Sound Scenes and Events, pp.373-397, 2018.

R. Radhakrishnan, A. Divakaran, and A. Smaragdis, Audio analysis for surveillance applications, Proc. WASPAA. IEEE, pp.158-161, 2005.

E. Wold, T. Blum, D. Keislar, and J. Wheaten, Content-based classification, search, and retrieval of audio, IEEE multimedia, vol.3, issue.3, pp.27-36, 1996.

Q. Jin, P. Schulam, S. Rawat, S. Burger, D. Ding et al., Event-based video retrieval using audio, Proc. Interspeech, 2012.

R. Serizel, N. Turpault, H. Eghbal-zadeh, and A. Shah, Large-Scale Weakly Labeled Semi-Supervised Sound Event Detection in Domestic Environments, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01850270

C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis et al., Monitoring activities of daily living in smart homes: Understanding human behavior, IEEE Signal Processing Magazine, vol.33, issue.2, pp.81-94, 2016.

Y. Zigel, D. Litvak, and I. Gannot, A method for automatic fall detection of elderly people using floor vibrations and sound-proof of concept on human mimicking doll falls, IEEE Transactions on Biomedical Engineering, vol.56, issue.12, pp.2858-2867, 2009.

N. Turpault, R. Serizel, A. Shah, and J. Salamon, Sound event detection in domestic environments with weakly labeled data and soundscape synthesis, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02160855

J. Salamon, D. Macconnell, M. Cartwright, P. Li, and J. P. Bello, Scaper: A library for soundscape synthesis and augmentation, 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-PAA), pp.344-348, 2017.

R. Serizel and N. Turpault, Sound Event Detection from Partially Annotated Data: Trends and Challenges, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02114652

M. Mauch and S. Ewert, The audio degradation toolbox and its application to robustness evaluation, Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013), pp.83-88, 2013.

F. Font, G. Roma, and X. Serra, Freesound technical demo, Proceedings of the 21st ACM international conference on Multimedia, pp.411-412, 2013.

E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov et al., Freesound datasets: a platform for the creation of open audio datasets, Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR 2017), pp.486-493, 2017.

D. Snyder, G. Chen, and D. Povey, MU-SAN: A Music, Speech, and Noise Corpus, 2015.

J. Salamon and J. P. Bello, Feature learning with deep scattering for urban sound analysis, 2015 23rd European Signal Processing Conference (EUSIPCO), pp.724-728, 2015.

A. Mesaros, T. Heittola, and T. Virtanen, Metrics for polyphonic sound event detection, Applied Sciences, vol.6, issue.6, p.162, 2016.

A. Agnone and U. Altaf, Virtual adversarial training system for dcase 2019 task 4, 2019.

L. Cances, T. Pellegrini, and P. Guyot, Multi task learning and post processing optimization for sound event detection, CNRS, 2019.

C. Teck-kai-chan, Y. Siong-chin, and . Li, Non-negative matrix factorization-convolution neural network (nmf-cnn) for sound event detection, 2019.

L. Delphin, -. Poulat, and C. Plapous, Mean teacher with data augmentation for dcase 2019 task 4, 2019.

Y. Kiyokawa, S. Mishima, T. Toizumi, K. Sagi, R. Kondo et al., Sound event detection with resnet and self-mask module for dcase 2019 task 4, Data Science Research Laboratories, NEC Corporation, 2019.

W. Lim, S. Suh, S. Park, and Y. Jeong, Sound event detection in domestic environments using ensemble of convolutional recurrent neural networks, 2019.

L. Lin and X. Wang, Guided learning convolution system for dcase 2019 task 4, Chinese Academy of Sciences, Beijing, 2019.

Z. Shi, Hodgepodge: Sound event detection based on ensemble of semi-supervised learning methods, Tech. Rep., Fujitsu Research and Development Center, 2019.

J. Yan and Y. Song, Weakly labeled sound event detection with resdual crnn using semi-supervised method, 2019.

M. Zhenyuan-zhang-zhang, L. Yang, and . Liu, University of Electronic Science and Technology of China ence and Technology of China, School of Information and Communication Engineering, 2019.