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Abstract—We investigate the effect of speaker localization on
the performance of speech recognition systems in a multispeaker,
multichannel environment. Given the speaker location informa-
tion, speech separation is performed in three stages. In the
first stage, a simple delay-and-sum (DS) beamformer is used to
enhance the signal impinging from the speaker location which
is then used to estimate a time-frequency mask corresponding
to the localized speaker using a neural network. This mask
is used to compute the second order statistics and to derive
an adaptive beamformer in the third stage. We generated a
multichannel, multispeaker, reverberated, noisy dataset inspired
from the well studied WSJ0-2mix and study the performance of
the proposed pipeline in terms of the word error rate (WER).
An average WER of 29.4% was achieved using the ground
truth localization information and 42.4% using the localization
information estimated via GCC-PHAT. Though higher signal-
to-interference ratio (SIR) between the speakers was found to
positively impact the speech separation performance, equivalent
performances were obtained for mixtures with lower SIR values
when the speakers are well separated in space.

Index Terms—Multichannel speech separation, WSJ0-2mix
reverberated

I. INTRODUCTION

Speech captured by a distant microphone is corrupted by
reverberation and noise. In a typical home scenario, it is
often further distorted by interfering speakers. This problem,
referred to as the speech separation problem or the cocktail
party problem, has been studied for more than 20 years [1],
[2]. With the advent of neural networks, it has regained the
attention of the community.

In presence of multiple speakers different time-frequency
bins are dominated by different speakers and the goal is to
estimate a time-frequency mask for each speaker. The problem
has been addressed in both single-channel and multichannel
contexts. Single-channel approaches include clustering-based
methods such as deep clustering [3] and deep attractor net-
works [4] where a neural network is trained to cluster together
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the time-frequency bins dominated by the same speaker.
In another approach, the speakers are estimated iteratively
[5] using neural networks with permutation-invariant training
criteria [6].

In multichannel scenarios, the usual approach is to estimate
the second-order statistics (covariance matrices) of all speech
and noise sources and to derive a beamformer to separate
the speakers [7], [8]. The separation quality will therefore
depend on the covariance matrix estimates. Different methods
have been proposed to estimate the target speech and noise
covariance matrices. In [9], the phase differences between
the microphones encoding speaker location information are
exploited as input features to train a deep clustering based
neural network for speech separation. Explicit speaker loca-
tion estimates have also been employed. In [10] and [11],
the speaker is first localized and the microphone signal is
beamformed towards the speaker. The beamformed signal is
used to estimate a mask corresponding to the localized speaker
which is then used to estimate the covariance matrices. A
similar approach is proposed in [12] where the so-called
speech presence probability (SPP) is estimated using speaker
location information with a minimum Bayes risk detector. The
speech and noise statistics are then derived from the SPP.

Speech separation algorithms are often evaluated using
speech enhancement metrics such as the signal-to-distortion
ratio (SDR) and the perceptual estimation of speech quality
(PESQ) metric [9], [12] and, in limited cases, using automatic
speech recognition (ASR) metrics [11], [13], [14]. A related
study on analyzing the impact of localization errors on WER
was done in [14], but under limited acoustic conditions and
vocabulary size.

In this paper, we provide the following contributions. We
create a new multichannel, multispeaker, reverberated, noisy
dataset which extends the original WSJO-2mix single-channel,
non-reverberated, noiseless dataset [3] to the strong reverbera-
tion and noise conditions and the Kinect-like microphone array
geometry used in CHiME-5 [15]. This allows us to use the real
noise captured as part of the CHiME-5 dataset, thereby making
the simulated dataset quite realistic and challenging. On this
dataset, we perform speech separation using either the ground
truth location of the speakers or the location estimated by
the established generalized cross-correlation phase transform



(GCC-PHAT) algorithm [16], and we evaluate the resulting
ASR performance on the separated speech.

The rest of the paper is organized as follows. Section II
introduces the proposed framework for speech separation using
speaker localization information. Section III explains the pro-
cedure used to simulate the dataset. Section IV describes the
experimental procedure and the obtained results are discussed
in Section V. We conclude in Section VI.

II. SPEECH SEPARATION USING LOCALIZATION
INFORMATION

A. Signal model

The multichannel signal x(7) = [21(7),...,27(7)]T

captured at I microphones can be expressed as x(7) =
S ci(r). where c;(r) = [ei;(7),...,cpi(7)] s the
spatial image of source j, i.e., the signal emitted by the
source and captured at the microphones. Similar to [8], the
microphone index and the time index are denoted by ¢ and
T, respectively, and J is the total number of sources. This
general formulation is valid for both point sources as well
as diffuse noise. For point sources such as human speak-
ers, the spatial image can be expressed as a linear convo-
lution of the time invariant room impulse response (RIR)
a;(1) = la1;(7),...,a7;(7)]T and a single-channel source
signal s;(7): ¢;(1) = > _oa;(7)s;(" — 7). Under the
narrowband approximation, c; in the time-frequency domain
can be written as c;(t, f) = a;(f)s;(t, f), where t is the
STFT frame index.

Our objective is to estimate the spatial image of each source
given its (known or estimated) spatial location. An overview
of our speaker location guided speech separation system is
shown in Fig. 1. This system comprises three steps: delay-
and-sum (DS) beamforming, mask estimation, and adaptive
beamforming. We detail each of these steps in the three

subsections below.
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Fig. 1: Speech separation pipeline using rank-1 MWF as the
adaptive beamformer.

B. DS beamforming

Given the spatial location of source j in far-field, the
corresponding time difference of arrival between a pair of
microphones ¢ and ' can be obtained as:

dii’ COS(@ii/j)
Cc

TDOA(i, ', j) = (1)

where 0;;/; is the direction of arrival (DOA) of the source
with respect to the microphone pair (i,i’), d;;+ is the distance
between the two microphones, and c is the velocity of sound.

A steering vector with respect to a reference mi-
crophone (in the following, the observation at micro-

phone 1, ie., z1(t,f)) can be computed as d;(f) =
1, e*QJW(Qij*qu)vf/C, . e*QJ"’T(QIj*qu)Uf/C]T where vy is
the continuous frequency (in Hz) corresponding to the fre-
quency bin index f. The output of a simple DS beamformer
for source j can then be obtained as

&ips(t, f) = d; (/)% (t, f)- 0
where ¥ denotes Hermitian transposition.
The localized speaker j is more prominent in é&;ps(t, f)
than in x. We hence use ¢&; ps(t,f) to compute a time-
frequency mask corresponding to that speaker.

C. Time-frequency mask estimation

The magnitude spectrum of €; ps and its phase difference
with respect to the reference microphone are used as inputs
to a neural network that estimates the time-frequency mask
corresponding to the localized speaker.

Using the phase difference between €; ps and a reference
microphone as a feature may not seem intuitive at first and
requires further justification. Figure 2 shows the information
captured by this phase difference. Fig. 2a shows the phase
difference of the direct component (without reverberation) of
a source between two microphones placed at a distance of
0.226 m in the presence of noise. The phase difference is
perturbed in the time-frequency bins dominated by noise.

Fig. 2b shows the phase difference of the beamformed
signal with respect to the signal at the reference microphone.
The phase difference in the time-frequency bins dominated
by speech is now zero, and a clear speech-like pattern can
be observed in these bins. In the presence of reverberation,
the speech patterns are less clearly visible before or after DS
beamforming. Nevertheless, we argue that the phase difference
contains useful information regarding the source which can be
leveraged by a neural network in addition to the magnitude
spectrum of the DS beamformer output in order to estimate a
better time-frequency mask.

Since the phase difference is defined modulo 27 only, we
use its cosine and sine as features, as used in [17] for speaker
localization and in [9] for speech separation. We refer to these
features as cosine-sine interchannel phase difference (CSIPD)
features. These features are given as inputs along with the
magnitude spectrum of ¢;ps to train a neural network to
estimate a mask. We highlight the fact that the dimension of
the input features to train the mask estimation network does
not depend on the number of microphones since the dimension
of the CSIPD feature is the same after DS beamfoming, for
any number of microphones. In theory, we can use the same
network for any number of microphones in the array.

D. Adaptive beamforming

The mask M;(t, f) output by the neural network for a given
source j can be used to estimate the covariance matrix of that
source as

25(6) = > M;(t, fx(t, f)x" (¢, f) 3)
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Fig. 2: Phase difference in presence of noise before DS beamforming (2a) and after DS beamforming (2b)

Similarly, the noise covariance matrix Evj , which includes the
statistics corresponding to all other speakers and background
noise i.e., v;(t, f) = > 5 ¢j(t, f), can be estimated as

ZVj (.f) = Z(l _Mj(taf))x(taf)XH(taf)' 4
t

An adaptive beamformer, i.e., a beamformer depending
on the above statistics rather than the spatial location, is
applied to the mixture signal x(t, f) to recover the sources.
The output of the beamformer is w¥ (¢, f)x(t, f). Different
beamformers can be defined based on the chosen optimization
criterion [8], [18]. In this work we consider the generalized
eigenvalue (GEV) beamformer [19], the speech distortion
weighted multichannel Wiener filter (SDW-MWF) [20], and
the rank-1 constrained multichannel Wiener Filter (R1-MWF)

[21].

III. DATASET

The data for this work is based on a multichannel, re-
verberated, noisy version of the WSJO-2mix dataset I The
original WSJO-2mix dataset introduced in [3] was created by
mixing pairs of speakers from the WSJO corpus, and contains
20 k, 5 k, and 3 k training, development, and test mixtures,
respectively. Each mixture contains two different speakers
speaking for a variable duration. In this work, the “max”
version of the dataset is used where the length of mixed signals
is the maximum of the length of individual signals.

In our experiments we emulate the recording conditions of
the CHiME-5 corpus which was recorded using Microsoft
Kinect devices. For each pair of speech signals in WSJO-
2mix, we simulate room impulse responses (RIRs) using the
RIR Simulator [22] for two distinct spatial locations with a
minimum DOA difference of 5°. The room dimensions and the

IThe code to recreate the dataset can be found here: https:/github.com/
sunits/Reverberated_WSJ_2MIX
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reverberation time (RT60) are randomly chosen in the range of
[3—9] m and [0.3—1] s. The two speech signals are convolved
with these RIRs and mixed at a random signal-to-interference
ratio (SIRs) in the range of [0 — 10] dB.

Real multichannel noise captured as part of the CHIME-
5 dataset is then added with a random SNR in the range
of [0 — 10] dB. To obtain noise segments, the ground truth
speech activity detection (SAD) labels from Track 3 of the
DIHARD-II speaker diarization challenge [23] are used, as
these are more reliable than the SAD labels originally provided
in CHiME-5. The noise signals in the training, development,
and test sets are taken from different CHiME-5 sessions. The
noise is realistic and non-stationary in nature and makes the
speech separation task very challenging. A reverberated dataset
based on WSJ0-2mix was reported earlier in [24], but it does
not contain any noise.

IV. EXPERIMENTAL SETTINGS

DNN to estimate the mask: Mask estimation is done in
the time-frequency domain. The short time Fourier transform
(STFT) of the 4-channel signal was computed using a sine
window of length 100 ms and a shift of 50 ms resulting in a
frequency dimension of 801. The input to the mask estimation
network was of dimension 2403: it comprises the magnitude
spectrum of the DS signal, as well as the cosine and sine
of the phase differences as detailed in Section II-C, each
of which is of dimension 801. A 2-layer Bi-LSTM network
containing 801 hidden units was trained to estimate the mask
corresponding to the reverberated component of the localized
speaker. No dereverberation was performed. Adam was used
as the optimizer.

ASR system: For each separation method tested, the ASR
system was trained on the enhanced training set using accurate
senone alignments obtained from the underlying clean single-
speaker utterances. The acoustic model (AM) was a 15-
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Fig. 3: (3a) Spectrogram of the 2 speaker mixture. (3b) True mask of the localized speaker. (3¢) True mask of the non-localized

speaker and (3d) The estimated mask of the localized speaker

layer time-delayed neural network (TDNN) trained using the
lattice-free maximum mutual information criterion [25]. 40
dimensional Mel frequency cepstral coefficients along with
100-dimensional i-vectors were used as input features.

Computing WER metrics for the mixture: In every mixture
we perform ASR only for the speaker who spoke for the
longest duration. This was done so that the insertion errors
corresponding to the speaker who spoke for a shorter duration
do not effect the ASR performance. In a typical ASR system,
this is handled by a voice activity detector / endpointing system
which is not the focus of this work.

Estimating location using GCC-PHAT: Experiments were
conducted using both ground truth DOA values as well as
using the DOA values estimated by GCC-PHAT. In the case
of GCC-PHAT, peaks in the angular spectrum are assumed to
correspond to the DOAs of the sources. The top two peaks
are chosen and the peak which is closest to the true DOA is
taken as the estimated DOA. Since GCC-PHAT works using
2 microphones, only the first and the last microphone of the
array which are placed at a distance of 0.226 m are used.

V. RESULTS

Figure 3a shows the spectrogram of a signal containing 2
speakers. The final mask estimated using the neural network
(Fig 3d) can be observed to match that of the intended

speaker in Fig 3b while ignoring the bins corresponding to
the interfering speaker whose mask is shown in Fig 3c.

TABLE I. Baseline WER (%) achieved on single-speaker
or two-speaker mixtures before enhancement/separation. All
results reported in this paper are with reverberated speech.

1 speaker
12.2

1 speaker + noise
23.6

2 speakers + noise
58.2

Table I shows the baseline ASR performance before separa-
tion. It can be observed that background noise and overlapping
speech severely degrade performance.

TABLE II: ASR performance after speech separation using
different beamformers and its comparison using true vs esti-
mated DOA values.

GEV | RI-MWF | SDW
Using True DOA (%) 30.9 29.4 29.6
DOA with GCC-PHAT (%) | 43.2 42.4 42.4

Table II shows the ASR results obtained on noisy two-
speaker mixtures after speech separation. An average WER of
29.4% was obtained using the ground truth DOA, a relative
improvement of 49% with respect to the system without
source separation. This is close to the ASR performance
for a single speaker with noise (23.6%) as shown in Table
I, showing that DOA information can indeed help source



separation. The performance dropped to 42.4% when the DOA
was estimated using GCC-PHAT, indicating that erroneous
DOA estimates decrease the separation quality?. In all our
experiments R1-MWF beamformer outperformed the widely
used GEV beamformer.

TABLE III: Impact of SIR and DOA difference on ASR
performance. [x:y] should be read as in range x to y.

DOA diff vs SIR | < —5dB | [-5:0/dB | [0:5/ dB | > 5 dB
<10° 67.0 432 257 263
10: 30]° 583 326 247 205
30 : 50]° 60.0 32.0 234 22
> 50° 56.6 292 217 194

The impact of the DOA differences between the speakers
and SIR on the ASR performance are shown in Table III
Better performances were consistently observed for signals
with better SIR values and also for mixtures containing
speakers who are well separated in space (Ex: > 50°). It is
interesting to note that better speech separation performances
can be obtained for mixtures containing relatively lower SIR if
the speakers are well separated in space compared to mixtures
containing speakers who are spatially close to each other. For
example, a WER of 21.7% was obtained for speech mixtures
with SIR values between [0 : 5] dB and DOA difference of
> 50°, a relative improvement of 17.5% compared to mixtures
with SIR > 5 dB and DOA difference < 10°.

VI. CONCLUSION

We conducted the first analysis of the impact of speaker
localization accuracy on speech separation performance in
challenging two-speaker, reverberated, noisy scenarios, as
measured by the resulting ASR performance. To do so, we
created a new dataset by reverberating WSJO-2mix and mixing
it with real CHiME-5 noise, and made the corresponding
code publicly available. We found that the ASR performance
depends more on the SIR of the speakers, with lower WERs
for signals with higher SIR. The angular distance between
the DOAs of the speakers was also found to have an impact,
with better WERs for signals whose speakers exhibit a larger
difference in DOAs.
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