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Driving Behavior Assessment and Anomaly Detection
for Intelligent Vehicles

Chule Yang, Alessandro RenzagfiaAnshul Paigwat, Christian Laugiet, Danwei Wang

Abstract— Ensuring safety of both traf ¢ participants and
passengers is an important challenge for rapidly growing au-
tonomous vehicle technology. To this purpose, intelligent vehicles
not only have to drive safe but must be able to safeguard
itself from other abnormally driving vehicles and avoid potential
collisions. Anomaly detection is one of the essential abilities
in behavior analysis, which can be used to infer the moving
intention of other vehicles and provide evidence for collision
risk assessment. In this paper, we propose a behavior analysis
method based on Hidden Markov Model (HMM) to assess the
driving behavior of vehicles on the road and detect anomalous
moments. The algorithm uses the real-time velocity and position
of the surrounding vehicles provided by the Conditional Monte

Non-ego
vehicle-2

Carlo Dense Occupancy Tracker (CMCDOT) framework. Next, Perceptual Environment

by associating with the road information, the movement of each 7

vehicle can be classi ed into several observation states, namely, 4

Approaching, Braking, Lane Changingand Lane Keeping Finally,

by chaining these observation states using a Markov model, the Detected ;

abnormality of driving behavior can be inferred into Normal, Non-ego g

Attention, and Risk. We perform experiments using CARLA vehicle-1 Detected

simulator environment to simulate abnormal driving behaviors, - Non-ego
and we provide results showing the successful detection of _— =~ vehicle-2

abnormal situations. Ego-Vehicle &8

==

I. INTRODUCTION

According to theGlobal status report on road safety 2018 Fig. 1: (Top) Simulation environment with CARLA simulator.
[1], traf ¢ accidents caused approximately 1.35 million deathd he white vehicle is the ego-vehicle and two non-ego vehicles
each year and up to 50 million injuries. With the rapid@r€ simulated to perform anomaly movements. (Bottom) Per-
development of robotics, data science and sensor technolo§§Ptual environment with CMCDOT framework. By analyzing
many intelligent vehicles have appeared in our daily livedhe real-time velocity and position of the vehicle, the state and
such as Uber, Tesla, Waymo, and so forth. However, even tRghavior of vehicles can be inferred.
smartest autonomous vehicles cannot guarantee road safety

and can cause lethal death or injuries [2]. Among them, the . nore attention should be paid to him. Thus, this paper
!nab|llty to d_etect and |dent|f_y risky driving behavior in time proposes an approach to analyze the driving behavior of non-
Is an essential cause of accidents. ego vehicles and assess the behavior risk on the road. First, we
Although many works have been done to detect the abnqize the Conditional Monte Carlo Dense Occupancy Tracker
mal scene by using surveillance videos [3], [4] or autonomou@:MCDOT) [10] to obtain the representative velocity and

robots [5], [6], it is still challenging to detect the anoma-,gition of detected vehicles on the road. Next, by analyzing
lous moments in highly dynamic trafc scenarios. ExXistingejr real-time motion and position, observation states of

works on trafc scenario mainly involves vehicle trajectoryeach vehicle can be classi ed. The abnormality of driving
prediction [7], vehicle behavior prediction (lane-change) [Blpepayior of each vehicle can then be inferred by chaining
and time to collision risk assessment [9]. Few works focug,e ghservation states through Hidden Markov Model (HMM).

on associating the anomalous driving maneuver with thep . ain contributions of this paper are as follows:
behavior risk in a traf ¢ scenario. The abnormal behavior of Four observation states are dened and classied by

the vehicle can indicate the potential danger of the driver so . . e . .
P g analyzing the motion and position information obtained

1 School of Electrical and Electronic Engineering, Nanyang Technolog- from CMCDOT.

ical University, 639798 Singapore; e-majlang0438@e.ntu.edu.sg, Driving behaviors are linked to observation states based
edngagr%\@nug?edrlljcj)?e Alpes, Inria, Chroma, F-38000 Grenoble on an HMM, to infer anomalous behaviors.
France: e-mail- al’essand’m.renzag"a{@imialfr’ ' We demonstrate the use of CARLA simulator [11] to

anshul.paigwar@inria.fr, christian.laugier@inria.fr generate abnormal driving behaviors and validate the



proposed algorithm. is compared, and the probability model of TTC and ETTC
The rest of this paper is structured as follows. Sedfipn yalues at braking at a series of vehicle speeds is given, which
reviews the related works. Secti@nl Il introduces the basierovides data for subsequent research in related elds. In
idea of our perception framework, the CMCDOT. Sectio[{lg], the three indices of the transient Speed of the following
V] gives an overview of the proposed method and descripeehicle, the transient speed difference between the leading and
the methodology in detail. Secti¢i] V shows the experimentépllowing vehicles, and the following vehicle's acceleration
procedures and results. Sectfon| VI concludes the paper atfef) are used to estimate the probability of collision risk

discusses future works. between vehicles. In fact, when these quantities are relatively
large, the vehicle does not have enough time to deal with the
Il. RELATED WORK emergency. [20] considers TTC and safety margins, as well

A. Trajectory Prediction as speed as a risk perception indicator to assess the impact of

Trajectory prediction is an essential function for au_lnformation containing risk levels. The Stop Distance Index

tonomous vehicles to gain a more comprehensive understan‘gpl) is obtair]e_d, and the risk level classi cation is performed
ing of the surrounding environments, to plan their own mov4SINg the collision risk index based on the SDI value.
ing actions, and to avoid collisions. Existing methods either
based on Recurrent Neural Network (RNN) or probabilistic
modeling. RNN-based methods usually leverage a Long Short-The CMCDOT [10] is a perception system able to provide
Term Memory (LSTM) network to predict a smooth trajectorya dense and generic representation of the environment [21],
for autonomous vehicles. Quite a few works study highwaj22] through probabilistic occupancy grids (see [fig. 2), based
scenarios by applying LSTM. [12] predicts future longitudinabn Bayesian fusion, Itering of sensor data and Bayesian
and lateral trajectories for vehicles by training in a largénference. In particular, by tracking spatial occupancy, it
dataset in various traf ¢ densities rather than a low number dhfers the dynamics of the scene via a hybrid representation
trajectories collected from a few drivers, while [13] predictof the environment, which is based on static and dynamic
vehicle maneuvers by learning a model that assigns probaecupancy, free spaces and unknown regions (se€]Fig. 3). This
bilities for different maneuver classes, and outputs maneuvdifferentiation enables the use of state-speci ¢ models, such
speci ¢ predictions for each maneuver class. Other researals classic occupancy grids for static components and sets of
using probabilistic modeling to deal with lane-change on thmoving particles for dynamic occupancy, as well as con dence
road [14], and meanwhile considering the possibility of astimation and management of areas with no information.
crash with adjacent vehicles to reduce false alarms. [15] takesAdditionally, an important feature of the CMCDOT, and
advantage of both physics- and maneuver-based methods amain subject of study of this paper, is the velocity estimation
combines them to take into account both short-term and longsr each cell of the grid. Most of the existing velocity estima-
term effects for more accurate trajectory prediction. tion methods consist in detecting and tracking dynamic objects
in the scene. Detection of moving objects requires to prede ne
shape of objects and involves tting of object models in point
The risk in this paper is the level of uncertainty thaiciouds to nd the location of objects in the environment. As
other vehicles introduce for ego-vehicles. For autonomoufie number and types of objects increases, the detection and
vehicles, the risk assessment needs to analyze the impggicking becomes a dif cult and costly problem to solve. The
of the movement of surrounding vehicles on their normajrid-based approach used in the CMCDOT framework [10]

maneuver, the likelihood of collisions, and the possibility ofnstead of detecting objects, directly computes estimations of
avoiding the danger. According to the cause of the risk, it is

divided into collision risk based on future trajectory and risk
based on unexpected behaviors [16]. The rst type of risk
assessment considers collisions to be the most critical risk %
and analyzes the risk based on the likelihood of collisions.
The second risk assessment focuses on the dangerous situation
caused by the driver's accidental operation. In the autonomous
vehicle scene, the rst case is more widely researched topic.
[17] proposes two complementary risk indicators (collision
time and minimum safety margin) in terms of time and space
to cover all risk scenarios that may occur with vehicle lane
changes on highways. This method reliably assesses the risk i . ]
of collision. In [18], the authors present a large-scale dafsld- 2: Data representations in CMCDOT formulation. The
analysis to compare Time to Collision (TTC) and the Enénvironment is divided mtq cells, to WhICh static, dynamlc,_
hanced Time to Collision (ETTC) indicator with acceleratioffMPty and unknown coef cients are associated. The dynamic

under a normal vehicle driving. The distribution of ETTC and@t IS expressed by weighted particles which sample the
TTC at the start of braking in normal following conditions VelOCity space.

Ill. PERCEPTION FRAMEWORK CMCDOT

B. Risk Assessment
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Fig. 4: Abnormal driving behavior detection pipeline.

real-time motion and position and calculate the behavioral
risk according to the distance, acceleration, and direction of

Fig. 3: (top) The environment around the vehicle as observe§OCity- After that, we normalize it to [0,1], and the resulting
using a 64 layered LiDAR. (Bottom) Representation of thétand_a_rdlzed behaworal risk means the_z d_egree of stability
environment as dense probabilistic occupancy grid output frofff drving behavior on the above three indicators. For each
CMCDOT framework. Colors represents different states Cﬁletected vehiclg, the corresponding risks are calculated as
each cell in the grid: occupied static (blue), occupied dynamf@”ows:

(green), empty (black), unknown area (red). e a  gle a

rf = P(rijg;ae) = A ot e a rf2[ L1 (1)

. . . The acceleration risk{® represents the relative acceleration
the position of every cell of the grid. By comparing thesqaetween the vehicl¢ and the ego-vehicle. The greater the

estlm.atl'onsf with the ones 'obtamed In_previous time StGpijctuation in speed, the larger the absolute value of the risk.
the distinction between static and dynamic cells can be easily

made, which in turn helps to estimate the velocity (speed and rjd = P(rjdjvj ) = Cos(_vii_; ; rjd 2 [0;1] 2
direction of motion) for each cell. vl

IV. METHODOLOGY The djrection rislxzfjd indicates the deglree to yvhich t'he vehicle
j deviates from the expected road directibiis a unit vector

F_The o_l\_/;]aralél\\//lvgrlsg\_i_v fadopted Lort T'S work .'St STOV\(T In4’ndicating the expected moving direction of the road. The
ig. [4. The -1 Tramework takes a point cloud anq, oor the risk value, the smaller the deviation from the
odometry data as input, generates an occupancy grid m bected direction

and estimates velocities for each cell. A 3D object detection
algorithm [23] is then used for detecting the positionf the  .p _ VL Xe X )y P2 11]
vehicles and the bounding boxes. The representative velocity vii'ixe xjjot ! '
v for each vehicle is obtained by taking the mean value of the o ) N ©)
cells within the bounding box of the vehicle. By tracking andl Ne Position riskr? denotes the relative position between the
analyzing the real-time motion and position between the noiyehiclej and the ego-vehicle. If the risk is greater than 0,
ego vehicle and the ego-vehicle for consecutive time-steph,means that the vehiclg is in front of the ego-vehicle.
observation states can then be obtained. Finally, the drivirfgtherwise, the vehiclg is located behind the ego-vehicle.
behavior of each non-ego vehicle is inferred through a HM

In order to validate our methodology comprehensively, we"
rely on CARLA simulator to generate a large number of AS illustrated in Fig[ b, the observation st&dds de ned as
scenarios with abnormal driving behavior by parameterizinieé movement status of vehicle that can be directly observed
the movements of the vehicles. Simulation setup and scenahy the ego-vehicle. In this study, the possible movements
description are explained in detail [ Sectioh V. are classied into four states, namelyipproaching(oo),

For each vehiclg detected in CMCDOT, we extract its Brake (o), Lane Changing (o), Lane Keeping(0s), O 2
overall velocityv;, acceleratiors; and positionx; . For the [0o; 01; 02; 03].

P(rfjxj;Xe;Vj) = cog

Observation Classi cation

ego-vehicle, the perceptual parameters are denoted, &g, Let ;; 2 [0;1] de ne thresholds for the respective
andx., respectively. acceleration risk, direction risk, and position risk.

] N . 1) Approaching: Approaching means that the position of
A. Motion and Position Analysis the detected vehicle is behind the ego-vehicle, accelerating or

To determine the movement state (observation state) of eachving a higher speed than the ego-vehicle, and the direction
non-ego vehicle, we rst need to track and analyze theiof movement remains almost unchanged.



Behavior ° @ e allowing for a realistic representation of real-world scenarios.
Layer The ego-vehicle and its sensors, as well as other moving
vehicles, as depicted in Fig} 3, are con gured in the simulation
to match with the actual system. We developed a parameter-
oo based approach which streamlines the process through which
the velocities, position and steering angle of non-ego vehicles

are speci ed.

Observation @ e @
Perception @ e @ A. Scenario Description

Layer

Layer Our simulation scenario focuses on the behavior of cars
in a multi-lane highway. For simpli cation, we bound our
simulation to a scenario with one ego vehicle and two non-
ego vehicles. Also, we x the lanes and behavior for each
simulated vehicles, as shown in Fjd. 6. Non-ego vehicle-1 is
in left lane moving forward with randomized acceleration and
deceleration parameters over time. Non-ego vehicle-2 is in the
right lane also moving forward but with randomized minor
glterations in steering angle. The ego vehicle is in the center
?)a%ne moving forward with a constant velocity.

Fig. 5: Graphical model of the proposed algorithmandx are
the velocity and position of each vehiclg,is the observation
state, andB is the inferred vehicle driving behavior.

vehicle is in front of the ego-vehicle, decelerating or havin
a lower speed than the ego-vehicle, and the direction
movement remains almost unchanged. B. Results

3) Lane Changinglane Changing means that the direction
of the velocity of the detected vehicle is deviating from the
expected direction (predetermined by the lane). S

4) Lane Keepinglane Keeping means that the direction o
the velocity the detected vehicle is consistent with the expect
direction (predetermined by the lane).

Thus,8the observation state can be obtained as follows:

The proposed method has been tested on the simulated
cenario presented in Fifj] 6 and the assessment results of
fhe non-ego vehicle-2 are shown in F[d. 7 and fip. 8. In
g&ese gures, the rst two charts show the real-time relative
position between the ego-vehicle and the detected vehicle
and their velocities. The third chart shows the observation
sequence of the detected vehicle, whayeo; ; 0,; 03 represent

op; if rf and r jd > andr jp Approaching, Brake, Lane Changing, and Lane Keeping. The
o= o ifri< andr ]d > andr ]p < @) last chart shows the inferred driving behavior of the detected
3 o ifr{ vehicle, wherehy;b;;b, represent Normal, Attention, and
" 03; otherwise Risk.

C. Driving Behavior Inference The inference result of non-ego vehicle-2 is shown in Fig.
. . - . [7. In the beginning, the non-ego vehicle-2 is located in front

The mferre_d abnorma!lty of driving behach_ of the of the ego-vehicle but is caught and overtaken by the ego-

detected vehicle determines how much attention the €90&hicle within the next 20 seconds. The second chart describes

vehicle needs to allocate to it. In this study, the behavior cgR . aal-time velocity (both longitudinal and lateral) of the

be inferred asNormal (Iyp), Attention (b)), and Risk (I), e - : :
o - ) go-vehicle and the non-ego vehicle-2. The ego-vehicle keeps
B 2 [bo; by; bp]. Thus, for each detected vehiglethe inferred a relatively steady speed in both longitudinal and lateral

behavior at tlmestar)r(wp can be obtained as follows: direction, while the non-ego vehicle-2 has a uctuation of

P (BjO1t 1) = |3]. (Bﬂ;Bt lg |3]. (B Holzt lg; velocity either on magnitude or direction. The speed variation
B, 128 on the longitudinal direction will cause the observed state to
be Approaching or Brake according to their relative position,
and the speed uctuation on the lateral direction will cause the
V. SIMULATION & RESULTS observed steady to be Lane Changing. As a result, the behavior
To validate our approach we rely on simulated scenarigsn be inferred ag\ttention when the motion of non-ego
generated with the CARLA urban driving simulator [11]. Thisvehicle-2 is uctuating. But if the uctuation is beyond a
is motivated by the fact that obtaining real data for abnormalertain level, it will be judged aRisk. As you can see the
driving can be unsafe. Furthermore, our detection pipelingmestamp at around 780 and 786, the sudden speed change of
is only based on two sensors: LIDAR and wheel odometethe non-ego vehicle-2 leads to the observed states to be Lane
LiDARs generate point clouds by measuring the time a beafhanging and Brake, which leads to the inference t&isk .
of light takes to return after hitting an obstacle in the path. In Similar to non-ego vehicle-2, the inference result of non-ego
comparison to other sensors (e.g. cameras) simulated LiDARhicle-1 is shown in Fid.|8. The non-ego vehicle-1 keeps a
sensor data are very similar to real data [24]. similar motion and relatively stable distance to the ego-vehicle,
CARLA simulation environment consists of complex urbarbut have some sudden changes in the direction and magnitude
layouts, buildings, and vehicles rendered in high qualityf velocity. The proposed algorithm successfully detect the

Behavior Transition Previous Belief



Fig. 6: Simulation environment and scenario in this study. In the upper part of this gure, the white car is the ego-vehicle, and
the red car on the right is the detected vehicle with some risk behaviors. The lower part of his gure shows the perceptua

results by CMCDOT.

Fig. 7: Experimental results of the non-ego vehicle-2. Sudden lane changes toward the ego-vehicle are detected and anomal
moments are inferred.

sudden Brake and sudden Lane Changing, and inferred to ACKNOWLEDGMENT
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