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Abstract— Ensuring safety of both traffic participants and
passengers is an important challenge for rapidly growing au-
tonomous vehicle technology. To this purpose, intelligent vehicles
not only have to drive safe but must be able to safeguard
itself from other abnormally driving vehicles and avoid potential
collisions. Anomaly detection is one of the essential abilities
in behavior analysis, which can be used to infer the moving
intention of other vehicles and provide evidence for collision
risk assessment. In this paper, we propose a behavior analysis
method based on Hidden Markov Model (HMM) to assess the
driving behavior of vehicles on the road and detect anomalous
moments. The algorithm uses the real-time velocity and position
of the surrounding vehicles provided by the Conditional Monte
Carlo Dense Occupancy Tracker (CMCDOT) framework. Next,
by associating with the road information, the movement of each
vehicle can be classified into several observation states, namely,
Approaching, Braking, Lane Changing, and Lane Keeping. Finally,
by chaining these observation states using a Markov model, the
abnormality of driving behavior can be inferred into Normal,
Attention, and Risk. We perform experiments using CARLA
simulator environment to simulate abnormal driving behaviors,
and we provide results showing the successful detection of
abnormal situations.

I. INTRODUCTION

According to the Global status report on road safety 2018
[1], traffic accidents caused approximately 1.35 million deaths
each year and up to 50 million injuries. With the rapid
development of robotics, data science and sensor technology,
many intelligent vehicles have appeared in our daily lives,
such as Uber, Tesla, Waymo, and so forth. However, even the
smartest autonomous vehicles cannot guarantee road safety
and can cause lethal death or injuries [2]. Among them, the
inability to detect and identify risky driving behavior in time
is an essential cause of accidents.

Although many works have been done to detect the abnor-
mal scene by using surveillance videos [3], [4] or autonomous
robots [5], [6], it is still challenging to detect the anoma-
lous moments in highly dynamic traffic scenarios. Existing
works on traffic scenario mainly involves vehicle trajectory
prediction [7], vehicle behavior prediction (lane-change) [8],
and time to collision risk assessment [9]. Few works focus
on associating the anomalous driving maneuver with the
behavior risk in a traffic scenario. The abnormal behavior of
the vehicle can indicate the potential danger of the driver so
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Fig. 1: (Top) Simulation environment with CARLA simulator.
The white vehicle is the ego-vehicle and two non-ego vehicles
are simulated to perform anomaly movements. (Bottom) Per-
ceptual environment with CMCDOT framework. By analyzing
the real-time velocity and position of the vehicle, the state and
behavior of vehicles can be inferred.

that more attention should be paid to him. Thus, this paper
proposes an approach to analyze the driving behavior of non-
ego vehicles and assess the behavior risk on the road. First, we
use the Conditional Monte Carlo Dense Occupancy Tracker
(CMCDOT) [10] to obtain the representative velocity and
position of detected vehicles on the road. Next, by analyzing
their real-time motion and position, observation states of
each vehicle can be classified. The abnormality of driving
behavior of each vehicle can then be inferred by chaining
the observation states through Hidden Markov Model (HMM).
The main contributions of this paper are as follows:
• Four observation states are defined and classified by

analyzing the motion and position information obtained
from CMCDOT.

• Driving behaviors are linked to observation states based
on an HMM, to infer anomalous behaviors.

• We demonstrate the use of CARLA simulator [11] to
generate abnormal driving behaviors and validate the



proposed algorithm.
The rest of this paper is structured as follows. Section II

reviews the related works. Section III introduces the basic
idea of our perception framework, the CMCDOT. Section
IV gives an overview of the proposed method and describe
the methodology in detail. Section V shows the experimental
procedures and results. Section VI concludes the paper and
discusses future works.

II. RELATED WORK

A. Trajectory Prediction

Trajectory prediction is an essential function for au-
tonomous vehicles to gain a more comprehensive understand-
ing of the surrounding environments, to plan their own mov-
ing actions, and to avoid collisions. Existing methods either
based on Recurrent Neural Network (RNN) or probabilistic
modeling. RNN-based methods usually leverage a Long Short-
Term Memory (LSTM) network to predict a smooth trajectory
for autonomous vehicles. Quite a few works study highway
scenarios by applying LSTM. [12] predicts future longitudinal
and lateral trajectories for vehicles by training in a large
dataset in various traffic densities rather than a low number of
trajectories collected from a few drivers, while [13] predicts
vehicle maneuvers by learning a model that assigns proba-
bilities for different maneuver classes, and outputs maneuver
specific predictions for each maneuver class. Other research
using probabilistic modeling to deal with lane-change on the
road [14], and meanwhile considering the possibility of a
crash with adjacent vehicles to reduce false alarms. [15] takes
advantage of both physics- and maneuver-based methods and
combines them to take into account both short-term and long-
term effects for more accurate trajectory prediction.

B. Risk Assessment

The risk in this paper is the level of uncertainty that
other vehicles introduce for ego-vehicles. For autonomous
vehicles, the risk assessment needs to analyze the impact
of the movement of surrounding vehicles on their normal
maneuver, the likelihood of collisions, and the possibility of
avoiding the danger. According to the cause of the risk, it is
divided into collision risk based on future trajectory and risk
based on unexpected behaviors [16]. The first type of risk
assessment considers collisions to be the most critical risk
and analyzes the risk based on the likelihood of collisions.
The second risk assessment focuses on the dangerous situation
caused by the driver’s accidental operation. In the autonomous
vehicle scene, the first case is more widely researched topic.
[17] proposes two complementary risk indicators (collision
time and minimum safety margin) in terms of time and space
to cover all risk scenarios that may occur with vehicle lane
changes on highways. This method reliably assesses the risk
of collision. In [18], the authors present a large-scale data
analysis to compare Time to Collision (TTC) and the En-
hanced Time to Collision (ETTC) indicator with acceleration
under a normal vehicle driving. The distribution of ETTC and
TTC at the start of braking in normal following conditions

is compared, and the probability model of TTC and ETTC
values at braking at a series of vehicle speeds is given, which
provides data for subsequent research in related fields. In
[19], the three indices of the transient speed of the following
vehicle, the transient speed difference between the leading and
following vehicles, and the following vehicle’s acceleration
(FA) are used to estimate the probability of collision risk
between vehicles. In fact, when these quantities are relatively
large, the vehicle does not have enough time to deal with the
emergency. [20] considers TTC and safety margins, as well
as speed as a risk perception indicator to assess the impact of
information containing risk levels. The Stop Distance Index
(SDI) is obtained, and the risk level classification is performed
using the collision risk index based on the SDI value.

III. PERCEPTION FRAMEWORK: CMCDOT

The CMCDOT [10] is a perception system able to provide
a dense and generic representation of the environment [21],
[22] through probabilistic occupancy grids (see Fig. 2), based
on Bayesian fusion, filtering of sensor data and Bayesian
inference. In particular, by tracking spatial occupancy, it
infers the dynamics of the scene via a hybrid representation
of the environment, which is based on static and dynamic
occupancy, free spaces and unknown regions (see Fig. 3). This
differentiation enables the use of state-specific models, such
as classic occupancy grids for static components and sets of
moving particles for dynamic occupancy, as well as confidence
estimation and management of areas with no information.

Additionally, an important feature of the CMCDOT, and
main subject of study of this paper, is the velocity estimation
for each cell of the grid. Most of the existing velocity estima-
tion methods consist in detecting and tracking dynamic objects
in the scene. Detection of moving objects requires to predefine
shape of objects and involves fitting of object models in point
clouds to find the location of objects in the environment. As
the number and types of objects increases, the detection and
tracking becomes a difficult and costly problem to solve. The
grid-based approach used in the CMCDOT framework [10]
instead of detecting objects, directly computes estimations of

Fig. 2: Data representations in CMCDOT formulation. The
environment is divided into cells, to which static, dynamic,
empty and unknown coefficients are associated. The dynamic
part is expressed by weighted particles which sample the
velocity space.



Fig. 3: (top) The environment around the vehicle as observed
using a 64 layered LiDAR. (Bottom) Representation of the
environment as dense probabilistic occupancy grid output from
CMCDOT framework. Colors represents different states of
each cell in the grid: occupied static (blue), occupied dynamic
(green), empty (black), unknown area (red).

the position of every cell of the grid. By comparing these
estimations with the ones obtained in previous time steps,
the distinction between static and dynamic cells can be easily
made, which in turn helps to estimate the velocity (speed and
direction of motion) for each cell.

IV. METHODOLOGY

The overall workflow adopted for this work is shown in
Fig. 4. The CMCDOT framework takes a point cloud and
odometry data as input, generates an occupancy grid map
and estimates velocities for each cell. A 3D object detection
algorithm [23] is then used for detecting the position x of the
vehicles and the bounding boxes. The representative velocity
v for each vehicle is obtained by taking the mean value of the
cells within the bounding box of the vehicle. By tracking and
analyzing the real-time motion and position between the non-
ego vehicle and the ego-vehicle for consecutive time-steps,
observation states can then be obtained. Finally, the driving
behavior of each non-ego vehicle is inferred through a HMM.

In order to validate our methodology comprehensively, we
rely on CARLA simulator to generate a large number of
scenarios with abnormal driving behavior by parameterizing
the movements of the vehicles. Simulation setup and scenario
description are explained in detail in section V.

For each vehicle j detected in CMCDOT, we extract its
overall velocity vj , acceleration aj and position xj . For the
ego-vehicle, the perceptual parameters are denoted as ve, ae,
and xe, respectively.

A. Motion and Position Analysis

To determine the movement state (observation state) of each
non-ego vehicle, we first need to track and analyze their

Fig. 4: Abnormal driving behavior detection pipeline.

real-time motion and position and calculate the behavioral
risk according to the distance, acceleration, and direction of
velocity. After that, we normalize it to [0,1], and the resulting
standardized behavioral risk means the degree of stability
of driving behavior on the above three indicators. For each
detected vehicle j, the corresponding risks are calculated as
follows:

raj = P (raj |aj , ae) =
eaj−ae − eae−aj

eaj−ae + eae−aj
, raj ∈ [−1, 1] (1)

The acceleration risk raj represents the relative acceleration
between the vehicle j and the ego-vehicle. The greater the
fluctuation in speed, the larger the absolute value of the risk.

rdj = P (rdj |vj , l) = cos(
vj
|vj |

, l), rdj ∈ [0, 1] (2)

The direction risk rdj indicates the degree to which the vehicle
j deviates from the expected road direction. l is a unit vector
indicating the expected moving direction of the road. The
larger the risk value, the smaller the deviation from the
expected direction.

rpj = P (rpj |xj , xe, vj) = cos(
vj
|vj |

,
xe − xj
|xe − xj |

), rpj ∈ [−1, 1]
(3)

The position risk rpj denotes the relative position between the
vehicle j and the ego-vehicle. If the risk is greater than 0,
it means that the vehicle j is in front of the ego-vehicle.
Otherwise, the vehicle j is located behind the ego-vehicle.

B. Observation Classification

As illustrated in Fig. 5, the observation state O is defined as
the movement status of vehicle that can be directly observed
by the ego-vehicle. In this study, the possible movements
are classified into four states, namely: Approaching(o0),
Brake(o1), Lane Changing(o2), Lane Keeping(o3), O ∈
[o0, o1, o2, o3].

Let α, β, γ ∈ [0, 1] define thresholds for the respective
acceleration risk, direction risk, and position risk.

1) Approaching: Approaching means that the position of
the detected vehicle is behind the ego-vehicle, accelerating or
having a higher speed than the ego-vehicle, and the direction
of movement remains almost unchanged.



Fig. 5: Graphical model of the proposed algorithm. v and x are
the velocity and position of each vehicle, O is the observation
state, and B is the inferred vehicle driving behavior.

2) Brake: Brake means that the position of the detected
vehicle is in front of the ego-vehicle, decelerating or having
a lower speed than the ego-vehicle, and the direction of
movement remains almost unchanged.

3) Lane Changing: Lane Changing means that the direction
of the velocity of the detected vehicle is deviating from the
expected direction (predetermined by the lane).

4) Lane Keeping: Lane Keeping means that the direction of
the velocity the detected vehicle is consistent with the expected
direction (predetermined by the lane).

Thus, the observation state can be obtained as follows:

O =


o0, if r

a
j ≥ α and rdj > β and rpj ≥ γ

o1, if r
a
j < −α and rdj > β and rpj < γ

o2, if r
d
j ≤ β

o3, otherwise

(4)

C. Driving Behavior Inference

The inferred abnormality of driving behavior B of the
detected vehicle determines how much attention the ego-
vehicle needs to allocate to it. In this study, the behavior can
be inferred as Normal(b0), Attention(b1), and Risk(b2),
B ∈ [b0, b1, b2]. Thus, for each detected vehicle j, the inferred
behavior at timestamp t can be obtained as follows:

Pj(Bt|O1:t−1) =
∑

Bt−1∈B
Pj(Bt|Bt−1)︸ ︷︷ ︸
Behavior Transition

·Pj(Bt−1|O1:t−1)︸ ︷︷ ︸
Previous Belief

,

(5)

V. SIMULATION & RESULTS

To validate our approach we rely on simulated scenarios
generated with the CARLA urban driving simulator [11]. This
is motivated by the fact that obtaining real data for abnormal
driving can be unsafe. Furthermore, our detection pipeline
is only based on two sensors: LiDAR and wheel odometer.
LiDARs generate point clouds by measuring the time a beam
of light takes to return after hitting an obstacle in the path. In
comparison to other sensors (e.g. cameras) simulated LiDAR
sensor data are very similar to real data [24].

CARLA simulation environment consists of complex urban
layouts, buildings, and vehicles rendered in high quality,

allowing for a realistic representation of real-world scenarios.
The ego-vehicle and its sensors, as well as other moving
vehicles, as depicted in Fig. 3, are configured in the simulation
to match with the actual system. We developed a parameter-
based approach which streamlines the process through which
the velocities, position and steering angle of non-ego vehicles
are specified.

A. Scenario Description

Our simulation scenario focuses on the behavior of cars
in a multi-lane highway. For simplification, we bound our
simulation to a scenario with one ego vehicle and two non-
ego vehicles. Also, we fix the lanes and behavior for each
simulated vehicles, as shown in Fig. 6. Non-ego vehicle-1 is
in left lane moving forward with randomized acceleration and
deceleration parameters over time. Non-ego vehicle-2 is in the
right lane also moving forward but with randomized minor
alterations in steering angle. The ego vehicle is in the center
lane moving forward with a constant velocity.

B. Results

The proposed method has been tested on the simulated
scenario presented in Fig. 6 and the assessment results of
the non-ego vehicle-2 are shown in Fig. 7 and Fig. 8. In
these figures, the first two charts show the real-time relative
position between the ego-vehicle and the detected vehicle
and their velocities. The third chart shows the observation
sequence of the detected vehicle, where o0, o1, o2, o3 represent
Approaching, Brake, Lane Changing, and Lane Keeping. The
last chart shows the inferred driving behavior of the detected
vehicle, where b0, b1, b2 represent Normal, Attention, and
Risk.

The inference result of non-ego vehicle-2 is shown in Fig.
7. In the beginning, the non-ego vehicle-2 is located in front
of the ego-vehicle but is caught and overtaken by the ego-
vehicle within the next 20 seconds. The second chart describes
the real-time velocity (both longitudinal and lateral) of the
ego-vehicle and the non-ego vehicle-2. The ego-vehicle keeps
a relatively steady speed in both longitudinal and lateral
direction, while the non-ego vehicle-2 has a fluctuation of
velocity either on magnitude or direction. The speed variation
on the longitudinal direction will cause the observed state to
be Approaching or Brake according to their relative position,
and the speed fluctuation on the lateral direction will cause the
observed steady to be Lane Changing. As a result, the behavior
can be inferred as Attention when the motion of non-ego
vehicle-2 is fluctuating. But if the fluctuation is beyond a
certain level, it will be judged as Risk. As you can see the
timestamp at around 780 and 786, the sudden speed change of
the non-ego vehicle-2 leads to the observed states to be Lane
Changing and Brake, which leads to the inference to be Risk.

Similar to non-ego vehicle-2, the inference result of non-ego
vehicle-1 is shown in Fig. 8. The non-ego vehicle-1 keeps a
similar motion and relatively stable distance to the ego-vehicle,
but have some sudden changes in the direction and magnitude
of velocity. The proposed algorithm successfully detect the



Fig. 6: Simulation environment and scenario in this study. In the upper part of this figure, the white car is the ego-vehicle, and
the red car on the right is the detected vehicle with some risk behaviors. The lower part of his figure shows the perceptual
results by CMCDOT.

Fig. 7: Experimental results of the non-ego vehicle-2. Sudden lane changes toward the ego-vehicle are detected and anomalous
moments are inferred.

sudden Brake and sudden Lane Changing, and inferred to
Risk after a period of Attention.

VI. CONCLUSIONS

In this paper, we proposed a systematic approach for vehi-
cle driving behavior assessment and detection of anomalous
moments. The proposed method takes advantage of CMC-
DOT framework to obtain real-time motion and velocity of
vehicles. Then, the ego-vehicle can observe the movements of
nearby vehicles and infer their driving behavior by tracking
and analyzing their motion and position. We used CARLA
simulator to generate several typical abnormal movements for
two vehicles. The results show that the proposed method can
successfully detect the risk moments. For future work, we
intent to use machine learning methods, such as learning from
demonstrations, to improve behavioral reasoning. We will also
add more road users, such as pedestrians or buses, to study
the impact of different semantic objects on decision making.
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