
HAL Id: hal-02356290
https://inria.hal.science/hal-02356290v1

Preprint submitted on 29 Nov 2019 (v1), last revised 21 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study

Juliana Alves Pereira, Mathieu Acher, Hugo Martin, Jean-Marc Jézéquel

To cite this version:
Juliana Alves Pereira, Mathieu Acher, Hugo Martin, Jean-Marc Jézéquel. Sampling Effect on Perfor-
mance Prediction of Configurable Systems: A Case Study. 2019. �hal-02356290v1�

https://inria.hal.science/hal-02356290v1
https://hal.archives-ouvertes.fr

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study

JULIANA ALVES PEREIRA, Univ Rennes, Inria, CNRS, IRISA
MATHIEU ACHER, Univ Rennes, Inria, CNRS, IRISA
HUGO MARTIN, Univ Rennes, Inria, CNRS, IRISA
JEAN-MARC JÉZÉQUEL, Univ Rennes, Inria, CNRS, IRISA
Numerous software systems are highly configurable and provide a myriad of
configuration options that users can tune to fit their functional and perfor-
mance requirements (e.g., execution time). Measuring all configurations of a
system is the most obvious way to understand the effect of options and their
interactions, but is too costly or infeasible in practice. Numerous works thus
propose to measure only a few configurations (a sample) to learn and predict
the performance of any combination of options’ values. A challenging issue
is to sample a small and representative set of configurations that leads to a
good accuracy of performance prediction models. A recent study devised a
new algorithm, called distance-based sampling, that obtains state-of-the-art
accurate performance predictions on different subject systems. In this paper,
we replicate this study through an in-depth analysis of x264, a popular and
configurable video encoder. We systematically measure 1,152 configurations
of x264 with 17 input videos and two quantitative properties (encoding time
and encoding size). Our goal is to understand whether there is a dominant
sampling strategy over the very same subject system (x264), i.e., whatever
the workload and targeted performance properties. The findings from this
study show that random sampling leads to more accurate performance mod-
els. However, without considering random, there is no single “dominant"
sampling, instead different strategies perform best on different inputs and
non-functional properties, further challenging practitioners and researchers.

Additional Key Words and Phrases: Software Product Lines, Configurable
Systems, Machine Learning, Performance Prediction

1 INTRODUCTION
Configurable software systems offer a multitude of configuration
options that can be combined to tailor the systems’ functional behav-
ior and performance (e.g., execution time, memory consumption).
Options often have a significant influence on performance proper-
ties that are hard to know and model a priori. There are numerous
possible options values, logical constraints between options, and
subtle interactions among options [14, 24, 45, 50, 51] that can have
an effect while quantitative properties such as execution time are
themselves challenging to comprehend.

Measuring all configurations of a configurable system is the most
obvious path to e.g., find a well-suited configuration, but is too
costly or infeasible in practice. Machine-learning techniques address
this issue by measuring only a subset of configurations (known as
sample) and then using these configurations’ measurements to build
a performance model capable of predicting the performance of other
configurations (i.e., configurations not measured before). Several
works thus follow a "sampling, measuring, learning" process [2,
14, 19–22, 26, 39, 41, 42, 45, 50, 51, 59, 62, 63]. A crucial step is

Authors’ addresses: Juliana Alves Pereira, Univ Rennes, Inria, CNRS, IRISA, Rennes,
France, juliana.alves-pereira@irisa.fr; Mathieu Acher, Univ Rennes, Inria, CNRS, IRISA,
Rennes, France, mathieu.acher@irisa.fr; Hugo Martin, Univ Rennes, Inria, CNRS, IRISA,
Rennes, France, hugo.martin@irisa.fr; Jean-Marc Jézéquel, Univ Rennes, Inria, CNRS,
IRISA, Rennes, France, jean-marc.jezequel@irisa.fr.

the way the sampling is realized, since it can drastically affect the
performance model accuracy [24, 45]. Ideally, the sample should be
small to reduce the cost of measurements and representative of the
configuration space to reduce prediction errors. The sampling phase
involves a number of difficult activities: (1) picking configurations
that are valid and conform to constraints among options – one needs
to resolve a satisfiability problem; (2) instrumenting the executions
and observations of software for a variety of configurations – it
might have a high computational cost especially when measuring
performance aspects of software; (3) guaranteeing a coverage of the
configuration space to obtain a representative sample set. An ideal
coverage includes all influential configuration options by covering
different kinds of interactions relevant to performance. Otherwise,
the learning may hardly generalize to the whole configuration space.
With the promise to select a small and representative sample

set of valid configurations, several sampling strategies have been
devised in the last years [45]. For example, random sampling aims
to cover the configuration space uniformly while coverage-oriented
sampling selects the sample set according to a coverage criterion
(e.g., t-wise sampling to cover all combinations of t selected options).
Recently, Kaltenecker et al. [24] analyzed 10 popular real-world
software systems and found that their novel proposed sampling
strategy, called diversified distance-based sampling, dominates five
other sampling strategies by decreasing the cost of labelling software
configurations while minimizing the prediction errors.

In this paper, we conduct a replication of this preliminary study
by exclusively considering the x264 case, a configurable video en-
coder. Though we only consider one particular configurable system,
we make vary its workloads (with the use of 17 input videos) and
measured two performance properties (encoding time and encoding
size) over 1,152 configurations. Interestingly, Kaltenecker et al. [24]
also analyzed the same 1,152 configurations of x264, but a fixed
input video was used and only the time was considered. The goal
of our experiments is to determine whether sampling strategies
considered in [24] over different subject systems are as effective
on the same configurable system, but with different factors pos-
sibly influencing the distribution of the configuration space. An
hypothesis is that practitioners of a configurable system can rely on
a one-size-fits-all sampling strategy that is cost-effective whatever
the factors influencing the distribution of its configuration space.
On the contrary, another hypothesis is that practitioners should
change their sampling strategy each time an input (here: videos) or
a performance property are targeted.
We investigate to what extent sampling strategies are sensitive

to different workloads of the x264 configurable system and different

, Vol. 1, No. 1, Article . Publication date: November 2019.

2 • Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel

performance properties: What are the most effective sampling strate-
gies? Is random sampling a strong baseline? Is there a dominant
sampling strategy that practitioners can always rely on? To this
end, we systematically report the influence of sampling strategies
on the accuracy of performance predictions and on the robustness
of prediction accuracy.
Our contributions are as follows:
• We rank six sampling strategies based on a unified bench-
mark over seventeen different inputs and two non-functional
properties. We find that uniform random sampling dominates
all the others sampling strategies w.r.t. prediction accuracy
for a majority of cases;

• We show that the ranking of non-random sampling strate-
gies is quite unstable, being heavily sensitive to input video
and targeted performance property. We gather preliminary
insights about the effectiveness of some sampling strategies
on some videos and performances;

• We compare our results to the previous study of x264 [24],
that was based on the use of a single input video and measure-
ments of encoding time. Through our experimental results,
we find that there is not a single “dominant" approach as in
Kaltenecker et al. [24];

• We have made the data and code from our replication study
publicly available at https://github.com/FAMILIAR-project/
x264-inputsensitivity.

With respect to the categorized research methods by Stol et al. [56],
our paper mainly contributes to a knowledge-seeking study. Specif-
ically, we perform a field experiment of x264, a highly-configurable
system and mature project. We gain insights about performance’
properties using a large corpus of configurations and input videos.

Audience. Researchers and practitioners in configurable systems
and performance engineering shall benefit from our sampling exper-
iments and insights. We discuss impacts of our results for practition-
ers (How to choose a sampling strategy?) and for the research com-
munity (e.g., on the design and assessment of sampling strategies).

2 BACKGROUND AND RELATED WORK
In this section, we introduce basic concepts of configurable soft-
ware systems and motivate the use of learning techniques in this
field. Furthermore, we briefly describe six state-of-the-art sampling
strategies used in our experiments.

2.1 Learning Software Configuration Spaces
x264 is a command-line tool to encode video streams into theH.264/MPEG-
4 AVC format. Users can configure x264 through the selection of
numerous options, some having an effect on the time needed to
encode a video, on the quality or the size of the output video, etc.
A configuration of x264 is an assignment of values to options. In
our study and as in [24], we only consider Boolean options that can
be selected or deselected. As in most configurable systems, not all
combinations of options are valid due to constraints among options.
For instance, ref_1, ref_5, and ref_9 are mutually exclusive and
at least one of these options should be selected.

Executing andmeasuring every valid configuration to know about
its performance or identify the performance-optimal one is often
unfeasible or costly. To overcome this problem, machine learning

techniques rely on a small and representative sample of configura-
tions (see Figure 1). Each configuration of the sample is executed
and labelled with a performance measurement (e.g., encoding time).
The sample is then used for training a learning algorithm (i.e., a
regressor) that builds a performance model capable of predicting
the performance of unmeasured configurations. The performance
model may lead to prediction errors. The overall goal is to obtain
high accuracy roughly computed as the difference between actual
performances and predicted performances (more details are given
hereafter). How to efficiently sample, measure, and learn is subject
to intensive research [45]. In case important (interactions among)
options are not included in the training set, the learning phase can
hardly generalize to the whole population of configurations. Hence,
sampling is a crucial step of the overall learning process with an
effect on the accuracy of the prediction model.

2.2 Sampling Strategies
Several sampling strategies have been proposed in the literature
about software product lines and configurable systems [45, 61, 65].
Sampling for testing. Some works consider sampling for the spe-

cific case of testing configurations. There is not necessarily a learn-
ing phase and the goal of sampling is mostly to find and cover as
many faults as possible. For instance, Medeiros et al. compared 10
sampling algorithms to detects different faults in configurable sys-
tems [34]. Arcuri et al. theoretically demonstrate that a uniform
random sampling strategy may outperform coverage-based sam-
pling [4] (see hereafter). Halin et al. demonstrated that uniform
random sampling forms a strong baseline for faults and failure ef-
ficiency on the JHipster case [16]. Varshosaz et al. [65] conducted
a survey of sampling for testing configurable systems. Though the
purpose differs, some of these sampling strategies are also relevant
and considered in the context of performance prediction.

Sampling for learning. Pereira et al. [45] review several sampling
strategies specifically used for learning configuration spaces. We
now present an overview of six sampling strategies also considered
in [24] and used in our study. All strategies have the merit of being
agnostic of the domain (no specific knowledge or prior analysis are
needed) and are directly applicable to any configurable system.

Random. sampling aims to cover the configuration space uni-
formly. Throughout the paper, we refer to random as uniform ran-
dom sampling. The challenge is to select one configuration amongst
all the valid ones in such a way each configuration receives an equal
probability to be included in the sample. An obvious solution is to
enumerate all valid configurations and randomly pick a sample from
the whole population. However, enumerative approaches quickly do
not scale with a large number of configurations. Oh et al. [42] rely
on binary decision diagrams to compactly represent a configuration
space, which may not scale for very large systems [35]. Another line
of research is to rely on satisfiability (SAT) solvers. For instance, Uni-
Gen [7, 8] uses a hashing-based functions to synthesize samples in
a nearly uniform manner with strong theoretical guarantees. These
theoretical properties come at a cost: the hashing-based approach
requires adding large clauses to formulas. Plazar et al. [46] showed
that state-of-the-art algorithms are either not able to produce any
sample or unable to generate uniform samples for the SAT instances

, Vol. 1, No. 1, Article . Publication date: November 2019.

https://github.com/FAMILIAR-project/x264-inputsensitivity
https://github.com/FAMILIAR-project/x264-inputsensitivity

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study • 3

Sampling
configurations

x264 --no-cabac --no-fast-pskip --ref 9
-o video0.264 video0.y4m

Measuring
configurations

Learning

Performance
prediction

model

video1

video0

video16

…

(configuration sample aka training set)

prediction errors
(MRE)

random distance-
based

coverage-
based

Input
videos

(workload)

What is the influence of a sampling
strategy, over different workloads and
performance properties of x264, on the

accuracy of performance predictions and on
the robustness of prediction accuracy?

(on the same
hardware)

(x264 version is the same for all experiments)

…

Fig. 1. Design study: sampling effect on performance predictions of x264 configurations

considered. Overall, a true uniform random sampling may be hard
to realize, especially for large configurable systems. At the scale
of the x264 study [24], though, uniform sampling is possible (the
whole population is 1,152 configurations). The specific question we
explore here is whether random is effective for learning (in case it
is applicable as in x264).

When random sampling is not applicable, several alternate tech-
niques have been proposed typically by sacrificing some uniformity
for a substantial increase in performance.

Solver-based. Many works rely on off-the-shelf constraint solver,
such as SAT4J [30] or Z3 [11], for sampling. For instance, a random
seed can be set to the Z3 solver and internally influences the variable
selection heuristics, which can have an effect on the exploration
of valid configurations. Henard et al. noticed that solvers’ internal
order yields non-uniform (and predictable) exploration of the con-
figuration space [17]. Hence, these strategies do not guarantee true
randomness as in uniform random sampling. Often the sample set
consists of a locally clustered set of configurations.

Randomized solver-based. To weaken the locality drawback of
solver-based sampling, Henard et al. change the order of variables
and constraints at each solver run. This strategy, called randomized
solver-based sampling in [24], increases diversity of configurations.
Though it cannot give any guarantees about randomness, the diver-
sity may help to capture important interactions between options
for performance prediction.

Coverage-based. sampling aims to optimize the sample with re-
gards to a coverage criterion. Many criteria can be considered such
as statement coverage that requires the analysis of the source code.
In this paper and as in [24], we rely on t-wise sampling [10, 23, 29].
This sampling strategy selects configurations to cover all combina-
tions of t selected options. For instance, pair-wise (t=2) sampling
covers all pairwise combinations of options being selected. There
are different methods to compute t-wise sampling. As in [24], we
rely on the implementation of Siegmund et al. [52].

Distance-based. Kaltenecker et al. [24] propose distance-based
sampling. The idea is to cover the configuration space by selecting

configurations according to a given probability distribution (typi-
cally a uniform distribution) and a distance metric. The underlying
benefit is that distance-based sampling can better scale compared
to an enumerative-based random sampling, while the generated
samples are closed to those obtained with a uniform random.

Diversified distance-based. sampling is a variant of distance-based
sampling [24]. The principle is to increase diversity of the sample
set by iteratively adding configurations that contain the least fre-
quently selected options. The intended benefit is to avoid missing
the inclusion of some (important) options in the process.

2.3 Sampling Effect on x264
This paper aims to replicate the study of Kaltenecker et al. [24].
While Kaltenecker et al. analyse a wide variety of systems from
different domains, we focus on the analysis of a single configurable
system. Compared to that paper, our study enables a deeper analysis
of sampling strategies over the possible influences of inputs and
performance properties. Specifically, we analyze a set of seventeen
input videos and two non-functional properties. As in [24], we col-
lect results of 100 independent experiments to increase statistical
confidence and external validity. We aim at exploring whether the
results obtained in [24] may be generalized over different variations
of a single configurable system. Interestingly, numerous papers have
specifically considered the x264 configurable system for assessing
their proposals [14, 20, 21, 42, 45, 50, 58, 62, 63], but a fixed perfor-
mance property or input video is usually considered. Jamshidi et
al. [20] explore the impacts of versions, workloads, and hardware
of several configurable systems, including x264. However, the effect
of sampling strategies was not considered. In [21], sampling strate-
gies for transfer learning were investigated; we are not considering
such scenarios in our study. Overall, given a configurable system
like x264, practitioners face the problem of choosing the right tech-
niques for "sampling, measuring, learning". Specifically, we aim to
understand what sampling strategy to use and whether there exists
a sampling to rule any configuration space of x264.

The use of different input videos obviously changes the raw and
absolute performance values, but it can also change the overall

, Vol. 1, No. 1, Article . Publication date: November 2019.

4 • Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Video size (bytes) 1e7

0

5

10

15

20

25

30

35

40
Fr

eq
ue

nc
y

(a) flower_sif.y4m x2642

0.8 1.0 1.2 1.4 1.6 1.8
Video size (bytes) 1e7

0

20

40

60

80

100

Fr
eq

ue
nc

y

(b) 720p50_parkrun_ter.y4m x26415
Fig. 2. The size distribution of 1,152 configurations of x264 over two input
videos

distribution of configuration measurements. Figure 2 gives two dis-
tributions over two input videos for the performance property size
for the whole population of valid configurations. Pearson correla-
tion between the performance measurements of x2642 and x26415
is -0.35 while Spearman correlation is -0.021, suggesting a very
weak correlation. The differences among distributions question the
existence of a one-size-fits-all sampling capable of generating a rep-
resentative sample set whatever the input videos or performance
properties. Another hypothesis is that the way the sampling is done
can pay off for some distributions but not for all.

Given the vast variety of possible input videos and performance
properties that may be considered, the performance variability of
configurations grows even more. Our aim is to investigate how such
factors affect the overall prediction accuracy of different sampling
strategies: Is there a dominant sampling strategy for performance
prediction of the same configurable system?

3 DESIGN STUDY
In this section, we introduce our research questions, the considered
subject system, and the experiment setup.

3.1 ResearchQuestions
We conducted a series of experiments to evaluate six sampling
strategies and to compare our results to the original results in [24].
We aim at answering the following two research questions:

• (RQ1)What is the influence of using different sampling strate-
gies on the accuracy of performance predictions over different
inputs and non-functional properties?

• (RQ2)What is the influence of randomness of using different
sampling strategies on the robustness of prediction accuracy?

It is not new the assumption that the prediction accuracy of ma-
chine learning extensively depends on the sampling strategy. The
originality of the research question is to what extent are perfor-
mance prediction models of the same configurable system (here:
x264) sensitive to other factors, such as different inputs and non-
functional properties. To address RQ1, we analyze the sensitivity of
the prediction accuracy of sampling strategies to these factors. Since
most of the considered sampling strategies use randomness, which
may considerably affect the prediction accuracy, RQ2 quantitatively
compares whether the variances (over 100 runs) on prediction accu-
racy between different sampling strategies and sample sizes differ
significantly. We show that the sampling prediction accuracy and
robustness hardly depends on the definition of performance (i.e.,
encoding time or encoding size). As in [24], we have excluded t-wise
sampling from RQ2, as it is also deterministic in our setting and
does not lead to variations.

3.2 Subject System
We conduct an in-depth study of x264, a popular and highly con-
figurable video encoder implemented in C. We choose x264 instead
of the other case studies documented in [24] because x264 demon-
strated more promising accuracy results to the newest proposed
sampling approach (i.e., diversified distance-based sampling). With
this study, we aim at investigating, for instance, whether diversified
distance-based sampling also dominates across different variations
of x264 (i.e., inputs, performance properties). As benchmark, we
encoded 17 different input videos from AVI to the H.264 codec and
measured two quantitative properties (encoding time and encoding
size).

• Encoding time (in short time): how many seconds x264 takes
to encode a video.

• Encoding size of the output video (in short size): compression
size (in bytes) of an output video in the H.264 format.

All measurements have been performed over the same version
of x264 and on a grid computing infrastructure called IGRIDA1.
Importantly, we used the same hardware characteristics for all per-
formance measurements. In Table 1, we provide an overview of the
encoded input videos. This number of inputs allows us to draw con-
clusions about the practicality of sampling strategies for diversified
conditions of x264.

To control measurement bias while measuring execution time, we
have repeated the measurements several times. We report in Table 1
how many times #times we have repeated the time measurements
of 1,152 configurations for each video input . Since measurements
are costly, we set the repetition to up 30 times given 1-hour re-
striction from where we got the #times in Table 1. We repeated
the measurements at least three times and at most 23 times and
retained the average execution time for each configuration. The
stability column reports how pairs of configuration measurements
for a given video are correlated (Pearson correlation, on average).
It allows us to control that measurements are indeed stable. For

1http://igrida.gforge.inria.fr/

, Vol. 1, No. 1, Article . Publication date: November 2019.

http://igrida.gforge.inria.fr/

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study • 5

video #times stability

x2640 bridge_far_cif.y4m 5 0.997824
x2641 ice_cif.y4m 5 0.968627
x2642 flower_sif.y4m 5 0.971209
x2643 claire_qcif.y4m 5 0.898657
x2644 sintel_trailer_2k_480p24.y4m 9 0.995809
x2645 football_cif.y4m 5 0.984586
x2646 crowd_run_1080p50.y4m 3 0.999077
x2647 blue_sky_1080p25.y4m 8 0.996295
x2648 FourPeople_1280x720_60.y4m 11 0.995452
x2649 sunflower_1080p25.y4m 4 0.998713
x26410 deadline_cif.y4m 23 0.994600
x26411 bridge_close_cif.y4m 5 0.997647
x26412 husky_cif.y4m 5 0.984500
x26413 tennis_sif.y4m 5 0.961498
x26414 riverbed_1080p25.y4m 3 0.997521
x26415 720p50_parkrun_ter.y4m 8 0.997049
x26416 soccer_4cif.y4m 16 0.996276

Table 1. Overview of encoded input videos including the number of times
we measured the encoding time in order to ensure we have a stable set
of measurements (according to correlation results), independent of the
machine.

example, measurements have been repeated 5 times for video 0
(bridge_far_cif.y4m) and the 5 measurements are highly correlated.
Video 3 (claire_qcif.y4m) can be considered as an outlier (it may be
due to the randomness of x264 given this specific input) because the
correlation measure is below 0.9. However the correlation remains
very high and close to 1. We provide the variability model and the
measurements of each video input for encoding time and encoding
size on our supplementary website.

3.3 Experiment Setup
In our experiments, the independent variables are the choice of
the input videos, the predicted non-functional-property, the sample
strategies and the sample sizes.
For comparison, we used the same experiment design them in

Kaltenecker et al. [24]. To evaluate the accuracy of different sam-
pling strategies over different inputs and non-functional-properties,
we conducted experiments using three different sample sizes. To
be able to use the same sample sizes for all sampling strategies, we
consider the sizes from t-wise sampling with t=1, t=2, and t=3. As
described in Section 2.2, t-wise sampling covers all combinations
of t configuration options being selected. We learn a performance
model based on the sample sets along with the corresponding per-
formance measurements defined by the different sampling strate-
gies. Although several machine-learning techniques have been pro-
posed in the literature with this purpose [45], such as linear regres-
sion [9, 19, 20, 24–26, 32, 38, 49, 51, 53, 66], classification and regres-
sion trees (CART) [1, 15, 20, 27, 38–41, 47, 50, 55, 58, 59, 62, 63, 67–
70], and random forest [2, 5, 48, 60, 62]. In this paper, we use step-
wise multiple linear regression [51] as in [24]. According to Kalte-
necker et al. [24], multiple linear regression is often as accurate as
CART and random forests.

To calculate the prediction error rate, we use the resulting per-
formance models to predict the performance of the entire dataset
of valid configurations C , t ⊂ C . we calculate the error rate of a
prediction model in terms of the mean relative error (MRE - Equa-
tion 1). MRE is used to estimate the accuracy between the exact
measurements and the predicted one.

MRE =
1
|C |

∑
c ∈C

|measuredc − predictedc |

measuredc
(1)

Where C is the set of all valid configurations used as the validation
set, andmeasuredc and predictedc indicate the measured and pre-
dicted values of performance for configuration c with c ∈ C , respec-
tively. The exact value ofmeasuredc is measured at runtime while
running the configuration c , and the predicted values of predictedc
is computed based on the model built with a sample of configura-
tions t (see Section 2.2). To address RQ1, we computed the mean
error rate for each input video and sample size. A lower error rate
indicates a higher accuracy. Then, we use a Kruskal-Wallis test [28]
and pair-wise one-sided Mann-Whitney U tests [33] to identify
whether the error rate of two sampling strategies differs signifi-
cantly (p < 0.05) [3]. In addition, we compute the effect size Â12 [64]
(small(>0.56), medium(>0.64), and large(>0.71)) to easily compare
the error rates of two sampling strategies.
To address RQ2, we compute the variance across the error rates

over 100 runs. A lower variance indicates higher robustness. First,
we use Levene’s test [31] to identify whether the variances of two
sampling strategies differ significantly from each other. Then, for
these sampling strategies, we perform a one-sided F-tests [54] to
compare pair-wisely the variance between sampling strategies.

All sampling and learning experiments have been performed on
the same machine with Intel Core i7 CPU 2,2 GHz and 4GB RAM.
To reduce fluctuations in the values of dependent variables caused
by randomness (e.g., the random generation of input samples), we
evaluated each combination of the independent variables 100 times.
That is, for each input video, non-functional property, sampling
strategy and sampling size, we instantiated our experimental set-
tings and measured the values of all dependent variables 100 times
with random seeds from 1 to 100.

4 RESULTS
We compare six sampling strategies: t-wise, solver-based, random-
ized solver-based, distance-based, diversified distance-based, and
random. Next, We present the results regarding prediction accuracy
(RQ1, Section 4.1) and robustness (RQ2, Section 4.2).

4.1 Results RQ1—Prediction Accuracy
In Tables 2 and 4, we show the MRE for the different sampling
strategies and sample sizes for both encoding time and encoding
size, respectively. In the bottom row, we provide the MRE mean over
all input videos. As in Kaltenecker et al. [24], for each sample-set
size we highlight the lowest, statistically significant MRE in bold.

4.1.1 Input Sensitivity: Encoding Time. Random sampling performs
best to all other sampling strategies or similar to the best one for
t=1, t=2 and t=3 (except for a few input videos – x2641, x2643,
x2647, x2648, x2649, x26410, x26411 for t=1). We observe that for

, Vol. 1, No. 1, Article . Publication date: November 2019.

6 • Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel

Video Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

x2640 18.2 % 13.9 % 13.4 % 24.0 % 27.0 % 27.5 % 22.3 % 19.9 % 24.3 % 16.5 % 12.7 % 10.6 % 16.3 % 8.8 % 8.2 % 16.7 % 9.2 % 8.2 %

x2641 15.4 % 13.2 % 12.1 % 26.9 % 23.7 % 24.9 % 21.4 % 21.5 % 23.2 % 17.3 % 14.2 % 9.5 % 17.4 % 9.8 % 8.7 % 16.1 % 9.2 % 8.7 %

x2642 29.3 % 10.3 % 9.7 % 21.4 % 19.4 % 16.4 % 19.1 % 19.6 % 19.4 % 17.4 % 11.4 % 9.8 % 17.6 % 9.6 % 9.3 % 15.3 % 9.5 % 9.3 %

x2643 21.4 % 13.7 % 10.1 % 25.2 % 25.3 % 26.4 % 16.4 % 22.3 % 24.8 % 13.6 % 10.7 % 10.2 % 12.8 % 9.8 % 9.7 % 14.5 % 9.8 % 9.2 %

x2644 21.8 % 12.3 % 14.4 % 23.9 % 21.2 % 22.0 % 18.3 % 21.1 % 22.5 % 14.2 % 11.7 % 9.7 % 13.9 % 10.1 % 8.9 % 13.9 % 9.4 % 8.8 %

x2645 26.1 % 14.1 % 13.2 % 28.8 % 23.2 % 24.1 % 21.8 % 22.5 % 23.3 % 16.4 % 13.4 % 11.4 % 16.8 % 10.7 % 9.5 % 15.7 % 10.0 % 9.3 %

x2646 25.9 % 18.1 % 8.6 % 23.6 % 28.5 % 29.1 % 18.2 % 21.6 % 24.9 % 13.7 % 9.9 % 9.0 % 13.2 % 8.8 % 7.8 % 12.6 % 8.0 % 7.3 %

x2647 23.3 % 14.2 % 12.0 % 20.2 % 25.3 % 26.1 % 15.3 % 23.0 % 23.8 % 12.2 % 9.2 % 7.2 % 10.8 % 8.5 % 7.2 % 11.4 % 8.2 % 7.3 %

x2648 20.8 % 13.1 % 11.5 % 20.3 % 22.7 % 23.6 % 16.7 % 23.4 % 23.4 % 12.6 % 10.4 % 9.6 % 11.1 % 9.3 % 8.3 % 12.0 % 8.7 % 7.6 %

x2649 23.4 % 13.2 % 5.6 % 22.1 % 28.6 % 29.7 % 16.8 % 24.2 % 25.3 % 11.4 % 6.5 % 6.5 % 9.2 % 5.8 % 5.4 % 10.9 % 6.6 % 5.4 %

x26410 21.9 % 12.3 % 9.3 % 22.6 % 23.2 % 24.0 % 17.9 % 22.4 % 24.3 % 14.0 % 10.2 % 9.7 % 13.5 % 9.4 % 8.9 % 14.0 % 9.0 % 8.8 %

x26411 21.1 % 12.6 % 10.3 % 25.7 % 23.5 % 23.8 % 20.0 % 21.1 % 24.7 % 13.3 % 10.8 % 10.4 % 13.0 % 10.1 % 9.7 % 13.9 % 9.4 % 9.1 %

x26412 25.4 % 13.4 % 10.4 % 26.2 % 21.2 % 21.6 % 19.8 % 20.6 % 20.9 % 16.2 % 13.7 % 10.9 % 16.3 % 11.4 % 9.1 % 15.0 % 9.7 % 8.5 %

x26413 16.4 % 10.5 % 10.0 % 20.6 % 18.8 % 19.1 % 18.3 % 19.4 % 19.8 % 16.0 % 13.9 % 10.0 % 16.2 % 10.5 % 9.6 % 15.5 % 9.7 % 9.0 %

x26414 20.7 % 16.9 % 15.8 % 34.3 % 39.5 % 40.6 % 28.5 % 29.7 % 32.4 % 18.1 % 11.1 % 9.6 % 18.4 % 7.8 % 7.3 % 17.4 % 7.5 % 7.2 %

x26415 26.2 % 12.7 % 11.1 % 23.2 % 26.5 % 27.2 % 20.3 % 22.7 % 25.1 % 15.1 % 11.9 % 10.7 % 14.8 % 10.6 % 9.5 % 13.9 % 9.1 % 8.9 %

x26416 22.9 % 12.3 % 8.4 % 22.1 % 24.5 % 25.2 % 18.0 % 22.2 % 23.6 % 13.4 % 9.4 % 8.9 % 12.6 % 8.5 % 7.8 % 12.5 % 8.1 % 7.4 %

Mean 22.4 % 13.3 % 10.9 % 24.2 % 24.8 % 25.4 % 19.4 % 22.2 % 23.9 % 14.8 % 11.3 % 9.6 % 14.3 % 9.4 % 8.5 % 14.2 % 8.9 % 8.2 %

Table 2. Error rates of t-wise, (randomized) solver-based, (diversified) distance-based, and random sampling for the prediction of time for 17 input videos
of x264. The bottom row contains the MRE mean across all input videos. The best results per input video and sample size are highlighted in bold if the
Mann-Whitney U test reported a significant difference (p < 0.05).

Mann-Whitney U test [p value (Â12)]

Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
0 0 0 0Coverage-based (0.99) (1.00) (0.98) (1.00)

10−08 10−49Solver-based (0.55) (0.65)
10−120 10−99Randomized solver-based (0.73) (0.71)

0 10−119 10−115 0 0 0 10−248 0 0Distance-based (0.92) (0.73) (0.73) (0.92) (0.99) (1.00) (0.83) (0.98) (1.00)
0 0 0 0 0 0 10−283 0 0 10−05 10−166 10−109Diversified distance-based (0.93) (0.95) (0.94) (0.93) (1.00) (1.00) (0.86) (1.00) (1.00) (0.54) (0.77) (0.72)
0 0 0 0 0 0 10−285 0 0 10−11 10−262 10−161 10−03 10−42 10−24Random (0.93) (0.97) (0.96) (0.93) (1.00) (1.00) (0.86) (1.00) (1.00) (0.57) (0.84) (0.77) (0.53) (0.63) (0.60)

Table 3. p values from a one-sided pair-wise Mann-Whitney U test for the property encoding time, where we tested pair-wisely whether the error rate of the
sampling strategy from the row is significantly lower than the error rate of the sampling strategy from the column, for different sample sizes. The effect size is
included for every significant result (p < 0.05), where we consider the effect as small, medium, and large when Â12 is over 0.56, 0.64, and 0.71, respectively.

t=1 diversified distance-based sampling outperforms random sam-
pling for seven input videos (x2640, x2643, x2647, x2648, x2649,
x26410, x26411). Overall, diversified distance-based sampling pro-
duces partially good results (close to random sampling). Diversified
distance-based sampling outperforms the pure distance based sam-
pling, however their error rates are very similar for t=1.

Solver-based sampling results in inaccurate performance models
for all input videos and sample-set sizes. t-wise sampling performs
overall better than solver-based sampling; randomized solver-based
sampling performs best when only a very limited number of samples
are considered (i.e., t=1).
Table 3 reports the p value (Â12) of the Mann-Whitney U test.

This table shows whether the sampling strategy of the row has
a significantly lower error rate than the sampling strategy of the
column. To this end, we first performed Kruskal-Wallis tests for
all sample sizes (t=1, t=2, and t=3). Then, whether we identified p
values less than 0.05, indicating that, at least, two strategies differ
significantly for each sample size [24], we performed one-sided

Mann-WhitneyU tests pair-wisely and, if significant (p < 0.05), we
report the effect sizes in Table 3.

The first row shows that t-wise sampling has significantly lower
error rates than solver-based sampling and randomized solver-based
sampling for t=2 and t=3, with large effect sizes. In the second
and third rows, we observe that solver-based sampling performs
significantly better than randomized solver-based sampling for t=3
with medium effect sizes; and randomized solver-based leads to
lower error rates than t-wise sampling for t=1, with a large effect
size. In the last three rows, we see that (diversified) distance-based
sampling and random sampling lead to lower error rates than t-
wise sampling, solver-based sampling, and randomized solver-based
sampling for t=1, t=2 and t=3, with large effect sizes.
The pure distance-based sampling leads to higher error rates

than diversified distance-based sampling and random sampling, for
all sample sizes. However, comparing diversified distance-based
sampling to random sampling, we see in the last row that random
sampling has significantly lower error rates with small effect sizes
for all sample sizes. The small effect sizes indicate that diversified

, Vol. 1, No. 1, Article . Publication date: November 2019.

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study • 7

Video Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

x2640 12.3 % 11.6 % 11.1 % 12.3 % 11.4 % 11.3 % 25.1 % 12.7 % 13.3 % 25.3 % 12.5 % 10.6 % 23.3 % 10.6 % 9.2 % 13.1 % 9.8 % 9.1 %

x2641 4.0 % 3.9 % 3.8 % 3.1 % 3.8 % 3.8 % 1.7 % 3.8 % 3.8 % 4.0 % 4.0 % 3.8 % 3.9 % 3.8 % 3.8 % 3.9 % 3.8 % 3.8 %

x2642 14.9 % 14.3 % 4.8 % 5.1 % 4.7 % 4.7 % 15.9 % 4.7 % 4.6 % 14.3 % 14.0 % 10.2 % 13.8 % 12.0 % 4.7 % 7.6 % 4.7 % 4.6 %

x2643 8.6 % 8.3 % 7.8 % 8.1 % 7.3 % 7.4 % 11.2 % 7.6 % 7.4 % 9.9 % 9.3 % 8.0 % 9.6 % 8.3 % 7.5 % 7.7 % 7.4 % 7.3 %

x2644 18.4 % 16.7 % 6.6 % 4.5 % 6.8 % 6.8 % 14.1 % 6.7 % 6.7 % 17.5 % 16.7 % 7.0 % 16.9 % 6.9 % 6.9 % 7.8 % 6.9 % 6.9 %

x2645 11.3 % 11.0 % 10.8 % 4.9 % 6.6 % 5.7 % 12.3 % 9.4 % 4.8 % 11.8 % 11.5 % 10.9 % 11.6 % 10.6 % 10.0 % 9.4 % 6.4 % 5.2 %

x2646 24.6 % 5.3 % 5.2 % 5.4 % 5.4 % 5.3 % 25.6 % 5.3 % 5.3 % 17.6 % 16.8 % 5.5 % 16.1 % 5.4 % 5.4 % 6.3 % 5.3 % 5.3 %

x2647 9.4 % 9.0 % 8.7 % 8.1 % 8.4 % 8.3 % 8.4 % 8.2 % 8.2 % 9.4 % 9.4 % 8.9 % 9.3 % 8.6 % 8.5 % 9.1 % 8.4 % 8.3 %

x2648 10.4 % 9.7 % 8.9 % 8.7 % 8.0 % 8.1 % 11.2 % 7.6 % 8.0 % 12.4 % 12.0 % 9.5 % 12.0 % 9.9 % 8.5 % 8.5 % 8.3 % 8.2 %

x2649 11.6 % 10.5 % 9.5 % 7.6 % 8.6 % 8.5 % 6.9 % 8.4 % 8.4 % 11.3 % 11.6 % 9.6 % 10.8 % 9.7 % 8.7 % 8.8 % 8.5 % 8.4 %

x26410 5.2 % 5.2 % 4.9 % 5.2 % 5.0 % 4.8 % 5.0 % 4.6 % 4.6 % 6.0 % 5.8 % 5.0 % 5.7 % 5.1 % 4.7 % 4.9 % 4.6 % 4.6 %

x26411 12.4 % 11.8 % 11.1 % 11.1 % 10.8 % 11.0 % 8.8 % 9.9 % 11.4 % 12.8 % 11.8 % 9.0 % 12.0 % 10.2 % 8.6 % 10.9 % 9.4 % 8.8 %

x26412 25.7 % 3.6 % 3.6 % 5.3 % 3.5 % 3.6 % 28.9 % 3.6 % 3.5 % 16.5 % 14.6 % 3.5 % 15.4 % 3.5 % 3.4 % 4.8 % 3.5 % 3.4 %

x26413 4.7 % 4.7 % 4.6 % 4.5 % 4.7 % 4.7 % 5.4 % 4.8 % 4.7 % 5.1 % 5.0 % 4.8 % 5.0 % 4.7 % 4.7 % 5.0 % 4.7 % 4.6 %

x26414 10.2 % 9.6 % 9.4 % 5.1 % 7.4 % 8.8 % 3.6 % 9.6 % 9.5 % 10.6 % 10.6 % 10.0 % 9.8 % 9.6 % 9.6 % 9.3 % 9.0 % 9.5 %

x26415 4.1 % 4.0 % 4.0 % 7.5 % 4.5 % 4.3 % 40.9 % 4.3 % 4.2 % 21.7 % 8.3 % 4.1 % 19.1 % 4.1 % 4.1 % 5.4 % 4.2 % 4.1 %

x26416 8.3 % 8.1 % 7.9 % 7.7 % 7.8 % 7.6 % 9.2 % 7.7 % 7.6 % 8.8 % 8.7 % 8.2 % 8.7 % 7.9 % 7.7 % 8.3 % 7.7 % 7.6 %

Mean 11.5 % 8.7 % 7.2 % 6.7 % 6.8 % 6.7 % 13.8 % 7.0 % 6.8 % 12.6 % 10.7 % 7.6 % 12.0 % 7.7 % 6.8 % 7.7 % 6.6 % 6.5 %

Table 4. Error rates of t-wise, (randomized) solver-based, (diversified) distance-based, and random sampling for the prediction of size for 17 input videos
of x264. The bottom row contains the MRE mean across all input videos. The best results per input video and sample size are highlighted in bold if the
Mann-Whitney U test reported a significant difference (p < 0.05).

Mann-Whitney U test [p value (Â12)]

Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

0.01 10−33 10−176 10−78 10−08Coverage-based (0.52) (0.62) (0.78) (0.68) (0.55)
10−232 10−268 10−43 10−152 10−247 0 10−145 10−219 10−86 10−95Solver-based (0.82) (0.85) (0.64) (0.76) (0.83) (0.92) (0.75) (0.81) (0.69) (0.70)

10−272 10−61 10−05 10−13 0 10−184 0.01 10−94 10−06Randomized solver-based (0.85) (0.66) (0.54) (0.57) (0.93) (0.79) (0.52) (0.70) (0.54)
Distance-based

10−76 10−70 10−10 10−293 10−191Diversified distance-based (0.68) (0.68) (0.56) (0.86) (0.79)
10−180 0 10−183 10−28 10−58 10−83 10−22 10−37 10−228 0 0 10−179 10−193 10−71Random (0.78) (0.92) (0.79) (0.61) (0.66) (0.69) (0.60) (0.63) (0.82) (0.96) (0.88) (0.78) (0.79) (0.68)

Table 5. p values from a one-sided pair-wise Mann-Whitney U test for the property encoding size, where we tested pair-wisely whether the error rate of the
sampling strategy from the row is significantly lower than the error rate of the sampling strategy from the column, for different sample sizes. The effect size is
included for every significant result (p < 0.05), where we consider the effect as small, medium, and large when Â12 is over 0.56, 0.64, and 0.71, respectively.

distance-based sampling can reach nearly the same error rates as
random sampling.

For the property encoding time, uniform random sampling
yields the most accurate performance models. Diversified
distance-based sampling produces good results when a very
limited number of samples are considered (i.e., t=1) and
almost reaches the accuracy of random when the sample
sizes increase.

4.1.2 Input Sensitivity: Encoding Size. Random sampling and ran-
domized solver-based sampling perform best to all other sampling
strategies or similar to the best sampling for all input videos for
sample sizes t=2 and t=3 (except for x25414). For these sample sizes,
most of the error rates of solver-based and diversified distance-based
come close to random and randomized solver-based (e.g., x2641 and
x2646). For t=1, solver-based sampling leads to lower error rates for
most of the inputs.

It is important to notice that the results in Table 4 are quite unsta-
ble compared to the results in Table 2. For example, random is the

best sampling strategy for the input video x26412, while a random-
ized solver-based sampling win for the input video x2641, and t-wise
sampling win for the input video x26415. Also, the accuracy heav-
ily depends on the sampling size. For example, for the input video
x26414, for t=1 randomized solver-based sampling yields the most
accurate performance models; while for t=2 and t=3 solver-based
outperforms the other sampling strategies.

In Table 5, we apply one-sided Mann-Whitney U tests pair-wisely
to compare pairs of sampling strategies. The first row shows that
t-wise sampling has a significantly lower error rate than distance-
based sampling for t=1, t=2, and t=3 with small, large and medium
effect sizes, respectively; t-wise sampling has also significantly lower
error rates than diversified distance-based for t=1.
In the second row, we see that solver-based sampling leads to

lower error rates than all other sampling strategies for t=1 with
medium and large effect sizes. Solver-based, randomized solver-
based, and diversified distance-based lead to lower error rates than
t-wise for t=2 and t=3; and distance-based for t=1, t=2 and t=3.
Overall, distance-based sampling leads to higher or similar error
rates than other sampling strategies. Finally, we can notice that

, Vol. 1, No. 1, Article . Publication date: November 2019.

8 • Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel

F-test (p value)

Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
Solver-based
Randomized solver-based 10−252 10−125 10−20 10−13
Distance-based 10−238 10−272 10−38 10−09
Diversified distance-based 10−259 10−238 10−89 0.05 10−100 10−179 10−14 10−04 10−10
Random 10−170 10−195 10−46 10−71 10−118

Table 6. p values from a one-sided pair-wise F-test for time: we tested pair-wisely whether the variances of the error rate of the sampling from the row is
significantly lower than the one from the column, for different sample sizes.

F-test (p value)

Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Solver-based 10−94

Randomized solver-based 10−38 10−69 10−40 10−290 10−45 10−13

Distance-based 10−75 10−09

Diversified distance-based 10−89 10−27 10−136 10−14 10−34 0.04 10−202 10−144

Random 10−126 10−75 10−252 10−31 10−107 10−09 10−302 10−263 10−05 10−15 10−25

Table 7. p values from a one-sided pair-wise F-test for size: we tested pair-wisely whether the variances of the error rate of the sampling from the row is
significantly lower than the one from the column, for different sample sizes.

on average random leads to significantly lower error rates than all
other strategies (except for solver-based sampling for t=1).

For the property encoding size, random sampling and ran-
domized solver-based sampling outperform all other sam-
pling strategies for most of the input videos with sample
sizes t=2 and t=3; and solver-based sampling outperforms
for sample sizes t=1. Overall, random, randomized solver-
based, solver-based, and diversified distance-based present
good and similar accuracy for t=2 and t=3. Differently from
our previous results (for time), there is not a clear winner.

4.2 Results RQ2—Robustness
We repeated each experiment 100 times for each sampling strategy
and sample size, from which we obtained the distribution of mean
error rates. We use the Levene’s test to check whether there are
significantly different variances between sampling strategies. In
cases where we found significant variances, we performed pair-
wisely one-sided F-tests. We show the results in Tables 6 and 7.

4.2.1 Encoding Time. In the second and third rows of Table 6, we
can see that randomized solver-based sampling and distance-based
sampling have a significantly lower variance than solver-based
sampling for t=1 and t=2; the same also applies for random with
t=1. In the two last rows, we observe that diversified distance-based
and random have a lower variance than solver-based for t=1; both
sampling have also lower variance than randomized solver-based
and distance-based, for t=2 and t=3. Diversified distance-based has
a significantly lower variance than random sampling for all sample
sizes. Finally, random has a lower variance than t-wise for t=1; and
randomized solver-based and distance-based for t=2 and t=3.

For the property encoding time, diversified distance-based
sampling is more robust than the other sampling strategies.

4.2.2 Encoding Size. In the first row of Table 7, we can see that
solver-based sampling has a significantly lower variance than distance-
based sampling for t=2. In the second row, we can see that random-
ized solver-based sampling has a significantly lower variance than
solver-based sampling on all sample sizes. Randomized solver-based
sampling has also a significantly lower variance than distance-based
sampling for t=2 and t=3; and diversified distance-based sampling
for t=2. When it comes to the diversified distance-based sampling,
it leads to a significantly lower variance than the other sampling
strategies, except for randomized solver-based (t=2) and random. In
the last row, we observe that random has the lowest variance.

For the property encoding size, uniform random sampling
is more robust than the other sampling strategies.

5 DISCUSSION
The surprising effectiveness of coverage-based sampling.Why
t-wise sampling is more effective for the input video x26415? For
x26415, the performance distribution is rather unique compared to
the others (see Figure 2b, page 4). To investigate why t-wise is more
effective on this distribution, we analyzed the set of selected features
by t-wise. We aim at understanding which features are frequently
included in the sampling and how its frequencies differ from ran-
dom. We recall that t-wise sampling is not subject to randomness
and is the same for any video and for encoding time or size. We
observed that the t-wise sampling prioritizes the feature no_mbtree
to false, i.e., no_mbtree is most of the time deactivated (it is not the

, Vol. 1, No. 1, Article . Publication date: November 2019.

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study • 9

Video Coverage-based Solver-based Randomized solver-based Distance-based Diversified distance-based Random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

sintel_trailer (x2644) 21.8 % 12.3 % 14.4 % 23.9 % 21.2 % 22.0 % 18.3 % 21.1 % 22.5 % 14.2 % 11.7 % 9.7 % 13.9 % 10.1 % 8.9 % 13.9 % 9.4 % 8.8 %
sintel_trailer (x264[24]) 20.9 % 11.9 % 10.9 % 26.2 % 40.4 % 42.2 % 18.5 % 22.2 % 33.2 % 14.7 % 10.0 % 9.4 % 12.6 % 8.8 % 9.0 % 13.5 % 9.2 % 9.1 %

Table 8. Error rates of t-wise, (randomized) solver-based, (diversified) distance-based, and random sampling for the prediction of encoding time for the Sintel
trailer input video (734 MB). The best results are highlighted in bold if the Mann-Whitney U test reported a significant difference (p < 0.05).

case in random that has a good balance). To better understand the
importance of no_mbtree for x26415, we use (1) a random forest
for computing so-called feature importance [6, 12, 36, 44] and (2)
polynomial regressions for computing coefficients of options and
pair-wise interactions among options [13, 49, 67]. We found that
no_mbtree has a feature importance of 0.97 (out of 1) for encoding
size (see our supplementary website). We also found that the fea-
ture no_mbtree has a strong negative effect on video x26415. As for
solver-based sampling, t-wise sampling relies on clustered zones
(see Section 2.2) that luckily cover the most influential options. The
clustering zones must contain features with high significance on
performance which may explain high accuracy results. Specifically,
the sample-set of t-wise is locally clustered around the configura-
tions with no_mbtree to false, which is a very effective strategy for
x26415. However, for other input videos, the coverage criterion is
not well-suited.
The surprising effectiveness of solver-based sampling. For

the property encoding size, we observe good accuracy predictions
for three sampling strategies: random, randomized solver-based, and
solver-based. Why solver-based sampling strategies are sometimes
more effective than random for size? We further analyzed the set of
frequently selected features by these strategies for both experiments
of time and size. We observe that the randomized solver-based and
solver-based strategies were very effective to capture “clustered"
effects of important options for size. In particular, randomized solver-
based tend to follow a similar strategy as t-wise: no_mbtree option
is most of the time false in the sample set. For t=1, no_mbtree option
is even always set to false. The employed solver-based sampling
strategy relies on a random seed which defines clustering zones (see
Section 2.2) that luckily cover the most influential options. We did
observe strong deviations of options’ frequencies in the samples
of solver-based sampling strategy compared to random (see our
supplementary website). For the prediction of encoding time, the
clustering mostly contain features with low significance which may
explain the worst accuracy results.
There are several solvers available and each solver has its owns

particularities, i.e., the way they pick and thus cluster configurations
can drastically change. The assumption that a certain sampling is
the best one by comparing it to a solver-based sampling is not
reliable since solver-based strategies may cluster by accident the
(un-)important options to a specific performance property. Our
study calls to propose sampling strategies with predictable and
documented properties of the frequencies of options in the sample
(e.g., uniform random sampling or distance-based sampling).

Is there a “dominant" sampling strategy when the system
performance ismeasured over the variation of hardware and
the version of the target system?We compare our results with

the results obtained in Kaltenecker et al. [24] to encode the same
(x2644) input video Sintel trailer (734 MB). Their measurements
were performed on different hardware (Intel Core Q6600 with 4 GB
RAM (Ubuntu 14.04)) and over a different version of x264. Diversity
distance-based sampling yields the best performance in their set-
tings. In our case, random sampling outperforms diversity distance-
based sampling (see Table 8). Thus, we can hypothesize that sam-
pling strategies are also sensitive to different hardware characteristics
and software versions (in addition to targeted performance proper-
ties and input videos). Further experiments on different hardware
and versions are needed though to confirm this hypothesis. There
are several questions that arise from this: To what extent are sam-
pling strategies sensitive to different hardware characteristics and
software versions? Are the interactions and influence of configura-
tion options on performance consistent across different software
versions? Do we experience the same for different performance
properties?

Answering RQ1 (accuracy) Is there a “dominant" sampling
strategy for the x264 configurable system whatever inputs and tar-
geted quantitative properties? For the property encoding time, there
is a dominant sampling strategy (i.e., random sampling), and thus
the sampling can be reused whatever the input video is. For the
property encoding size, although the results are similar around some
sampling strategies, they differ in a noticeable way from encoding
time and suggest a higher input sensitivity. Overall, random is the
state-of-the-art sampling strategy but is not a dominant sampling
strategy in all cases, i.e., the ranking of dominance changes signifi-
cantly given different inputs, properties and sample sizes. A possible
hypothesis is that individual options and their interactions can be
more or less influential depending on input videos, thus explaining
the variations’ effect of sampling over the accuracy. Our results pose
a new challenge for researchers: Identifying what sampling strategy
is the best given the possible factors influencing the configurations’
performances of a system.

AnsweringRQ2 (robustness).We have quantitatively analyzed
the effect of a sampling strategy over the prediction variance. Over-
all, random (for size) and diversified distance-based (for time and
size) have higher robustness. We make the observation that uniform
random sampling is not necessarily the best choice when robust-
ness should be considered (but it is for accuracy). In practical terms,
practitioners may have to find the right balance between the two
objectives. As a sweet-spot between accuracy and robustness, di-
versified distance-based sampling (for time), and either random or
randomized solver-based sampling (for size) are the best candidates.
We miss however an actionable metric that could take both accuracy
and robustness into account.

Our recommendations for practitioners are as follows:

, Vol. 1, No. 1, Article . Publication date: November 2019.

10 • Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel

• uniform random sampling is a very strong baseline what-
ever the inputs and performance properties. In the absence
of specific-knowledge, practitioners should rely on this domi-
nant strategy for reaching high accuracy;

• in case uniform random sampling is computationally infeasi-
ble, distance-based sampling strategies are interesting alter-
natives;

• the use of other sampling strategies does not pay off in terms
of prediction accuracy. When robustness is considered as
important, uniform random sampling is not the best choice
and here we recommend diversified distance-based sampling.

The impacts of our results on configuration and perfor-
mance engineering research are as follows:

• as uniform random sampling is effective for learning per-
formance prediction models, additional research effort is
worth doing to make it scalable for large instances. Recent
results [18, 37, 43, 46] show some improvements, but the
question is still open for very large systems (e.g., Linux);

• some sampling strategies are surprisingly effective for spe-
cific inputs and performance properties. Our insights suggest
the existence of specific sampling strategies that could prior-
itize specific important (interactions between) options. An
open issue is to discover them for any input or performance
property;

• performance measurements with similar distributions may be
grouped together to enable the search for dominants sampling
strategies;

• beating random is possible but highly challenging in all situ-
ations;

• it is unclear how factors such as the version or the hard-
ware influence the sensitivity of the sampling effectiveness
(and how such influence differs from inputs and performance
properties);

• we warn researchers that the effectiveness of sampling strate-
gies for a given configurable system can be biased by the
workload and the performance property used.

6 THREATS TO VALIDITY
Despite the effort spent on the replication of the experiments in [24],
we describe below some internal and external threats to the validity
of this study.

Internal Validity. A threat to the internal validity of this study is
the selection of the learning algorithm and its parameter settings
which may affect the performance of the sampling strategy. We used
the state-of-the-art step-wise multiple linear regression algorithm
from [51] which has shown promising results in this field [24, 45].
However, we acknowledge that the use of another algorithm may
lead to different results. Still, conducting experiments with other
algorithms and tuning parameters is an important next step, which
is part of our future work.
As another internal threat to validity, our results can be subject

to measurement bias. While the property encoding size is stable,
the measurement of the property encoding time deserves careful
attention. To mitigate any measurement bias, we measured the
time from all different input videos multiple times and used the

average in our learning procedure. Also, we control external factors
like the hardware and workload of the machine by using a grid
computing infrastructure called IGRIDA2. We take care of using
the same hardware and mitigate network-related factors. Using a
public grid instead of a private cloud allows us to have control of
the resources we used for measuring time. To additionally quantify
the influence of measurement bias on our results, we also analyzed
their Pearson correlation coefficients to prove we have a stable set
of measurements.

To assess the accuracy of the sampling strategies and the effect of
different input videos, we used MRE since most of the state-of-the-
art works use this metric [45]. As in [24], we compute MRE based on
the whole population of all valid configurations, i.e., we include the
sample t (used as training) to the testing set. However, according
to several authors [15, 39, 40, 45][50, 57–59] the prediction error
rate on new data is the most important measurement, i.e., the error
rate should not be computed over the training set t used to build
the model. As future work, we plan to explore the effectiveness
between four well-established resampling methods [45]: hold-out,
cross-validation, bootstrapping, and dynamic sector validation.

External Validity. A threat to external validity is related to the
used case study and the discussion of the results. Because we rely on
a specific system and two performance properties, the results may
be subject to this system and properties. However, we focused on a
single system to be able at making robust and reliable statements
about whether a specific sampling strategy can be used for different
inputs and performance measurements. We conducted a discussion
with all authors of the paper to avoid any confusing interpretation
or misunderstanding of the results. Once we are able to demonstrate
evidences to x264, we can then perform such an analysis also over
other systems and properties to generalize our findings.
We set our dataset to up seventeen input videos and two prop-

erties due to budget restrictions. As with all studies, there is an
inherent risk to not generalize our findings for other input videos
and performance properties (e.g., energy consumption). While the
seventeen videos cover a wide range of different input particulari-
ties and provided consistent results across the experiments, this is a
preliminary study in this direction and future work should consider
additional inputs based on an in-depth qualitative study of video
characteristics.

7 CONCLUSION
Finding a small sample that represents the important characteristics
of the set of all valid configurations of a configurable system is a chal-
lenging task. Numerous sampling strategies have been proposed [45]
and a recent study [24] have designed an experiment to compare
six sampling strategies. However, this study did not investigate
whether the strategies developed so far generalize across different
inputs and performance properties of the same configurable system.
To this end, we replicated this study to investigate the individual
effects of 17 input videos on the prediction accuracy of two perfor-
mance properties. Our results demonstrated that uniform random
sampling dominates for most input videos and both performance
properties, time and size. There are some cases for which random
2http://igrida.gforge.inria.fr/

, Vol. 1, No. 1, Article . Publication date: November 2019.

http://igrida.gforge.inria.fr/

Sampling Effect on Performance Prediction of
Configurable Systems: A Case Study • 11

sampling can be beaten with specific sampling. However, for the
other sampling strategies, the prediction accuracy (i.e., the ranking
of sampling strategies) can dramatically change based on the input
video and sampling size. It has practical implications since users of
configurable systems feed different inputs and deal with different
definitions of performance. Thus, we warn researchers about the
sensitivity of a sampling strategy over workloads and performance
properties of a configurable system. This work provides a new view
of random sampling based on his unquestionable dominance across
different inputs and performance properties. Distance-based sam-
pling strategies are other relevant alternatives. Our replication of
the original experiment design is a promising starting point for
future studies of other configurable systems, consideration of other
influential factors (versions, hardware), and the use of specific (e.g.,
white-box) sampling strategies.

ACKNOWLEDGMENTS
This research was funded by the ANR-17-CE25-0010-01 VaryVary
project. We thank Arnaud Blouin, Luc Lesoil, and Gilles Perrouin
for their comments on an early draft of this paper.

REFERENCES
[1] Mathieu Acher, Paul Temple, Jean-Marc Jezequel, José A Galindo, Jabier Martinez,

and Tewfik Ziadi. 2018. VaryLaTeX: Learning Paper Variants That Meet Con-
straints. In Proceedings of the 12th International Workshop on Variability Modelling
of Software-Intensive Systems. ACM, 83–88.

[2] Benoit Amand, Maxime Cordy, Patrick Heymans, Mathieu Acher, Paul Temple,
and Jean-Marc Jézéquel. 2019. Towards Learning-Aided Configuration in 3D
Printing: Feasibility Study and Application to Defect Prediction. In Proceedings
of the 13th International Workshop on Variability Modelling of Software-Intensive
Systems. ACM, 7.

[3] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In Proceedings
of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New
York, NY, USA, 1–10.

[4] Andrea Arcuri and Lionel Briand. 2012. Formal Analysis of the Probability of
Interaction Fault Detection Using Random Testing. IEEE Transactions on Software
Engineering 38, 5 (Sept 2012), 1088–1099.

[5] Liang Bao, Xin Liu, Ziheng Xu, and Baoyin Fang. 2018. AutoConfig: automatic
configuration tuning for distributed message systems. ACM, 29–40.

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and

Moshe Y. Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation. In
Tools and Algorithms for the Construction and Analysis of Systems TACAS’15 2015,
London, UK, April 11-18, 2015. Proceedings. 304–319.

[8] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2013. A scalable
and nearly uniform generator of SAT witnesses. In International Conference on
Computer Aided Verification. Springer, 608–623.

[9] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. 2005. Performance prediction
of component-based applications. Journal of Systems and Software 74, 1 (2005),
35–43.

[10] Myra B Cohen, Matthew B Dwyer, and Shi, Jiangfan. 2008. Constructing Interac-
tion Test Suites for Highly-Configurable Systems in the Presence of Constraints:
A Greedy Approach. IEEE TSE 34, 5 (2008), 633–650.

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[12] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. 2018. All Models are
Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an
Entire Class of Prediction Models Simultaneously. arXiv:arXiv:1801.01489

[13] Alexander Grebhahn, Carmen Rodrigo, Norbert Siegmund, Francisco J Gaspar,
and Sven Apel. 2017. Performance-influence models of multigrid methods: A case
study on triangular grids. Concurrency and Computation: Practice and Experience
29, 17 (2017), e4057.

[14] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In Int’ Conference on Automated Software Engineering (ASE). IEEE, 301–
311.

[15] Jianmei Guo, Jia Hui Liang, Kai Shi, Dingyu Yang, Jingsong Zhang, Krzysztof
Czarnecki, Vijay Ganesh, andHuiqun Yu. 2017. SMTIBEA: a hybridmulti-objective
optimization algorithm for configuring large constrained software product lines.
Software & Systems Modeling (22 Jul 2017). https://doi.org/10.1007/s10270-017-
0610-0

[16] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2018. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. Empirical Software Engineering
(17 Jul 2018). https://doi.org/10.1007/s10664-018-9635-4

[17] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. 2014. Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-Wise Test Configurations for Software
Product Lines. IEEE Trans. Software Eng. (2014).

[18] Ruben Heradio, David Fernández-Amorós, Christoph Mayr-Dorn, and Alexander
Egyed. 2019. Supporting the statistical analysis of variabilitymodels. In Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. 843–853.

[19] Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian Kästner, and David
Garlan. 2019. Machine Learning Meets Quantitative Planning: Enabling Self-
Adaptation in Autonomous Robots. arXiv preprint arXiv:1903.03920 (2019).

[20] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: an exploratory analysis. IEEE Press, 497–508. http:
//dl.acm.org/citation.cfm?id=3155625

[21] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.
Learning to sample: exploiting similarities across environments to learn perfor-
mance models for configurable systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 71–82.

[22] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad
Kawthekar. 2017. Transfer Learning for Improving Model Predictions in Highly
Configurable Software. In 12th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2017, Buenos
Aires, Argentina, May 22-23, 2017. 31–41.

[23] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2012. An al-
gorithm for generating t-wise covering arrays from large feature models. In
Proceedings of the 16th International Software Product Line Conference on - SPLC
’12 -volume 1, Vol. 1. ACM, 46.

[24] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo, and
Sven Apel. 2019. Distance-Based Sampling of Software Configuration Spaces.
In Proceedings of the IEEE/ACM International Conference on Software Engineering
(ICSE). ACM.

[25] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Sven Apel. 2017.
On the relation of external and internal feature interactions: A case study. arXiv
preprint arXiv:1712.07440 (2017).

[26] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn,
and Sven Apel. 2019. Tradeoffs in modeling performance of highly configurable
software systems. Software & Systems Modeling 18, 3 (01 Jun 2019), 2265–2283.
https://doi.org/10.1007/s10270-018-0662-9

[27] Thomas Krismayer, Rick Rabiser, and Paul Grünbacher. 2017. Mining constraints
for event-based monitoring in systems of systems. IEEE Press, 826–831.

[28] William H Kruskal and W Allen Wallis. 1952. Use of ranks in one-criterion
variance analysis. Journal of the American statistical Association 47, 260 (1952),
583–621.

[29] D.R. Kuhn, D.R. Wallace, and A.M. Gallo. 2004. Software fault interactions and
implications for software testing. IEEE Transactions on Software Engineering 30, 6
(jun 2004), 418–421.

[30] Daniel Le Berre and Anne Parrain. 2010. The SAT4J library, Release 2.2, System
Description. Journal on Satisfiability, Boolean Modeling and Computation 7 (2010),
59–64. https://hal.archives-ouvertes.fr/hal-00868136

[31] Howard Levene. 1961. Robust tests for equality of variances. Contributions to
probability and statistics. Essays in honor of Harold Hotelling (1961), 279–292.

[32] Max Lillack, Johannes Müller, and Ulrich W Eisenecker. 2013. Improved predic-
tion of non-functional properties in software product lines with domain context.
Software Engineering 2013 (2013).

[33] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of two
randomvariables is stochastically larger than the other. The annals ofmathematical
statistics (1947), 50–60.

[34] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A comparison of 10 sampling algorithms for configurable systems. In
Proceedings of the 38th International Conference on Software Engineering - ICSE ’16.
ACM Press, Austin, Texas, USA, 643–654.

[35] Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and Donald Cowan.
2008. Efficient compilation techniques for large scale featuremodels. In Proceedings
of the 7th international conference on Generative programming and component
engineering. ACM, 13–22.

, Vol. 1, No. 1, Article . Publication date: November 2019.

http://arxiv.org/abs/arXiv:1801.01489
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10664-018-9635-4
http://dl.acm.org/citation.cfm?id=3155625
http://dl.acm.org/citation.cfm?id=3155625
https://doi.org/10.1007/s10270-018-0662-9
https://hal.archives-ouvertes.fr/hal-00868136

12 • Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel

[36] Christoph Molnar. 2019. Interpretable Machine Learning.
https://christophm.github.io/interpretable-ml-book/.

[37] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don S. Batory.
2019. Uniform random sampling product configurations of feature models that
have numerical features. In Proceedings of the 23rd International Systems and
Software Product Line Conference, SPLC 2019, Volume A, Paris, France, September
9-13, 2019. 39:1–39:13. https://doi.org/10.1145/3336294.3336297

[38] I Made Murwantara, Behzad Bordbar, and Leandro L. Minku. 2014. Measuring
Energy Consumption for Web Service Product Configuration. In Proceedings
of the 16th International Conference on Information Integration and Web-based
Applications & Services (iiWAS ’14). ACM, New York, NY, USA, 224–228. https:
//doi.org/10.1145/2684200.2684314

[39] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad
learners to find good configurations. In Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. 257–267. https://doi.org/10.1145/3106237.3106238

[40] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2018. Faster discov-
ery of faster system configurations with spectral learning. Automated Software
Engineering (2018), 1–31.

[41] Vivek Nair, Zhe Yu, TimMenzies, Norbert Siegmund, and Sven Apel. 2018. Finding
faster configurations using flash. IEEE Transactions on Software Engineering (2018).

[42] Jeho Oh, Don S. Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding
near-optimal configurations in product lines by random sampling. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017. 61–71.

[43] Jeho Oh, Paul Gazzillo, and Don S. Batory. 2019. t-wise coverage by uniform
sampling. In Proceedings of the 23rd International Systems and Software Product
Line Conference, SPLC 2019, Volume A, Paris, France. 15:1–15:4.

[44] Terence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard. 2018.
Beware Default Random Forest Importances. last access: july 2019.

[45] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2019. Learning Software Configuration
Spaces: A Systematic Literature Review. arXiv:arXiv:1906.03018

[46] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime
Cordy. 2019. Uniform Sampling of SAT Solutions for Configurable Systems: Are
We There Yet?. In ICST 2019 - 12th International Conference on Software Testing,
Verification, and Validation. Xian, China, 1–12. https://hal.inria.fr/hal-01991857

[47] Adam Porter, Cemal Yilmaz, Atif M Memon, Douglas C Schmidt, and Bala Natara-
jan. 2007. Skoll: A process and infrastructure for distributed continuous quality
assurance. IEEE Transactions on Software Engineering 33, 8 (2007), 510–525.

[48] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. 2016. Towards
predicting feature defects in software product lines. In Proceedings of the 7th
International Workshop on Feature-Oriented Software Development. ACM, 58–62.

[49] Faiza Samreen, Yehia Elkhatib, Matthew Rowe, and Gordon S Blair. 2016. Daleel:
Simplifying cloud instance selection using machine learning. In NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium. IEEE, 557–563.

[50] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarnecki.
2015. Cost-Efficient Sampling for Performance Prediction of Configurable Systems
(T). IEEE, 342–352.

[51] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kastner. 2015.
Performance-influence Models for Highly Configurable Systems. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). 284–294.

[52] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don S.
Batory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance via
automated feature-interaction detection. In ICSE. 167–177.

[53] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,
and Gunter Saake. 2008. Measuring non-functional properties in software prod-
uct line for product derivation. In 2008 15th Asia-Pacific Software Engineering
Conference. IEEE, 187–194.

[54] George W Snedecor and Witiiam G Cochran. 1989. Statistical methods, 8thEdn.
Ames: Iowa State Univ. Press Iowa (1989).

[55] Charles Song, Adam Porter, and Jeffrey S Foster. 2013. iTree: efficiently discover-
ing high-coverage configurations using interaction trees. IEEE Transactions on
Software Engineering 40, 3 (2013), 251–265.

[56] Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of Software Engineering
Research. ACM Trans. Softw. Eng. Methodol. 27, 3, Article 11 (Sept. 2018), 51 pages.
https://doi.org/10.1145/3241743

[57] Paul Temple, Mathieu Acher, Battista Biggio, Jean-Marc Jézéquel, and Fabio Roli.
2018. Towards Adversarial Configurations for Software Product Lines. arXiv
preprint arXiv:1805.12021 (2018).

[58] Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, and Olivier Barais. 2017. Learn-
ing Contextual-Variability Models. IEEE Software 34, 6 (2017), 64–70. https:
//doi.org/10.1109/MS.2017.4121211

[59] Paul Temple, José Angel Galindo Duarte, Mathieu Acher, and Jean-Marc Jézéquel.
2016. Using Machine Learning to Infer Constraints for Product Lines. In Software

Product Line Conference (SPLC). Beijing, China. https://hal.inria.fr/hal-01323446
[60] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.

Auto-WEKA: Combined selection and hyperparameter optimization of classifica-
tion algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 847–855.

[61] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. Comput. Surveys (2014).

[62] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2015. Empirical comparison
of regression methods for variability-aware performance prediction. In SPLC’15.

[63] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister, and
Krzysztof Czarnecki. 2017. Transferring performance prediction models across
different hardware platforms. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering. ACM, 39–50.

[64] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[65] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. 2018. A classification of product sampling
for software product lines. In Proceeedings of the 22nd International Conference
on Systems and Software Product Line - Volume 1, SPLC 2018, Gothenburg, Sweden,
September 10-14, 2018. 1–13. https://doi.org/10.1145/3233027.3233035

[66] Markus Weckesser, Roland Kluge, Martin Pfannemüller, Michael Matthé, Andy
Schürr, and Christian Becker. 2018. Optimal reconfiguration of dynamic software
product lines based on performance-influence models. In Proceeedings of the 22nd
International Conference on Systems and Software Product Line-Volume 1. ACM,
98–109.

[67] Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farahbod. 2012.
Automated inference of goal-oriented performance prediction functions. ACM,
190–199.

[68] Cemal Yilmaz, Myra B Cohen, and Adam A Porter. 2006. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE Transactions
on Software Engineering 32, 1 (2006), 20–34.

[69] Yi Zhang, Jianmei Guo, Eric Blais, Krzysztof Czarnecki, and Huiqun Yu. 2016. A
mathematical model of performance-relevant feature interactions. In Proceedings
of the 20th International Systems and Software Product Line Conference. ACM,
25–34.

[70] Wei Zheng, Ricardo Bianchini, and Thu D Nguyen. 2007. Automatic configuration
of internet services. ACM SIGOPS Operating Systems Review 41, 3 (2007), 219–229.

, Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/2684200.2684314
https://doi.org/10.1145/2684200.2684314
https://doi.org/10.1145/3106237.3106238
http://arxiv.org/abs/arXiv:1906.03018
https://hal.inria.fr/hal-01991857
https://doi.org/10.1145/3241743
https://doi.org/10.1109/MS.2017.4121211
https://doi.org/10.1109/MS.2017.4121211
https://hal.inria.fr/hal-01323446
https://doi.org/10.1145/3233027.3233035

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Learning Software Configuration Spaces
	2.2 Sampling Strategies
	2.3 Sampling Effect on x264

	3 Design Study
	3.1 Research Questions
	3.2 Subject System
	3.3 Experiment Setup

	4 Results
	4.1 Results RQ1—Prediction Accuracy
	4.2 Results RQ2—Robustness

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

