
HAL Id: hal-02359695
https://inria.hal.science/hal-02359695

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Demo Proposal - Distrinet: a Mininet implementation
for the Cloud

Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric Giroire,
Thierry Turletti, Chidung Lac

To cite this version:
Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric Giroire, Thierry Turletti, et al.. Demo
Proposal - Distrinet: a Mininet implementation for the Cloud. CoNEXT 2019 - 15th International
Conference on emerging Networking EXperiments and Technologies, Dec 2019, Orlando, FL, United
States. �hal-02359695�

https://inria.hal.science/hal-02359695
https://hal.archives-ouvertes.fr


Demo Proposal – Distrinet: a Mininet
implementation for the Cloud

Giuseppe di Lena∗†, Andrea Tomassilli∗, Damien Saucez∗, Frédéric Giroire∗, Thierry Turletti∗, and Chidung Lac†
∗Université Côte d’Azur, Inria, CNRS, France

†Orange Labs, France

Abstract—Abstract—Networks became so complex and techni-
cal that it is now hard if not impossible to model or simulate them.
Consequently, more and more researchers rely on prototypes em-
ulated in controlled environments and Mininet is by far the most
popular tool. Mininet implements a simple, yet powerful API to
define and run network experiments on a single machine. In most
cases, running experiments on one machine is adequate but for
resource intensive applications one machine may not be sufficient.
For that reason we propose Distrinet, a way to distribute Mininet
over multiple hosts. Distrinet uses the same API than Mininet,
granting full compatibility with Mininet programs. Distrinet is
generic and can optimally deploy experiments in Linux clusters
or in public clouds and automatically minimizes the resource
consumed in the experimental infrastructure.

I. INTRODUCTION

Network emulation is becoming the candidate of choice
when it comes to SDN evaluation because modern networks
are too complex and implementation-dependent to be modeled
or simulated. In this field of research, Mininet [3] is by far
the most popular network emulator. It provides a simple yet
powerful API to emulate networks on one machine thanks to
lightweight virtualization techniques. The success of Mininet
comes from its simplicity: it can work directly on a basic
laptop or a powerful workstation, its installation is trivial and
its Python API is simple yet powerful. Most of the time,
running experiments in one machine is fine but for resource
intensive applications it may not be adapted anymore as one
computer may not offer enough resources [3].

Mininet has been designed to run on one single machine
assuming that all resources are shared. Unfortunately, when
multiple machines are used to run an experiment, this assump-
tion doesn’t hold true anymore, making it hard to implement
the Mininet API in a way that keep all the code compatible
with legacy Mininet code.

We propose to extend Mininet with Distrinet. Distrinet
keeps the Mininet idiom (e.g., API and CLI) and keeps
untouched the Mininet core implementation but it transparently
deploys experiments on multiple machines.
Related Work. Maxinet [6] distributes experiments by running
multiple instances of Mininet in a cluster. Maxinet and Dis-
trinet share the same philosophy but have an important tech-
nical difference: Mininet scripts are not directly usable with
Maxinet while our approach allows to directly run Mininet
scripts in a distributed environment. Yan and Jin added virtual
time to Mininet [7] to improve fidelity of Mininet experiments.
Virtual time is a right approach in most cases, but it prevents

users to pair their Mininet experiments with real hardware or
with real traffic. Finally, Containernet extends Mininet to better
isolate nodes, by means of Docker containers [4]. To benefit
from this isolation, Maxinet has proposed an extension running
with Containernet.
Our contributions. Distrinet [2] is a superset of Mininet
designed to be used for resource intensive (e.g., compute,
I/Os) experiments requiring multiple machines to be executed
properly. It is fully compatible with Mininet and can be run on
a large variety of experimental infrastructures (e.g., a single
computer, a Linux cluster, Amazon EC2).
Experimental infrastructure information is taken into account
by Distrinet to optimally allocate resources to the experiments
such that the cost of running experiments is minimized.

II. ARCHITECTURE

In Mininet a network node is basically a bash process
isolated from the rest with cgroups. Mininet interacts with
the process by reading and writing its standard outputs and
input directly via their file descriptors. Unfortunately, the file
descriptors and PIDs spaces are not shared when multiple
machines are used. To make the bridge we use SSH.

Figure 1. The client executes the
script. The master and the workers
run the actual experiment.

Figure 2. Amazon VPC configu-
ration.

We could have leveraged SSH options or even to use RPCs
as in Maxinet. However, our objective is to be compatible with
Mininet, not only from a user API point of view but also from
a code developer point of view. For that reason, we kept the
Mininet idea of relying only on the read and write primitives.
That’s why we create a node by starting a bash process in the



exact same way as in Mininet, except that it is started in a
LXC container instead of directly on the host.1 The standard
input and outputs are bound to local file descriptors that are
connected to the actual emulated node via SSH. As a result, all
the Mininet core code can seamlessly be used to interact with
the emulated nodes. Network links are emulated with VxLAN
tunnels.

Distrinet provides an infrastructure provisioning mechanism
that uses Ansible to automatically install and configure LXC,
SSH, and all the required dependencies on the machines as
shown in Fig. 1.

Distrinet is designed to be easy to deploy either in physical
or cloud infrastructure. In physical infrastructure, the Distrinet
client (the machine where Distrinet is installed) must be able
to connect via ssh to the master node, and the master node
must be able to connect via ssh to the workers. Distrinet
will configure Ansible and LXD automatically in the hosts.
Another requirement is that the master and the workers have
Internet access. To automatically deploy an infrastructure
compatible with Distrinet in Amazon EC2, Distrinet creates
a new Virtual Private Cloud (VPC) with public and private
subnet Fig. 2. The master host is placed in the public subnet in
order to be accessible by the Distrinet client, while the workers
are placed in the private subnet. In order to give Internet access
to the worker hosts, a NAT Gateway is created in the public
subnet and the private route table is updated to forward all the
public traffic via the virtual NAT.

III. RESOURCE ALLOCATION

Ultimately, a Mininet experiment can be seen as an an-
notated graph and Distrinet uses it to determine the number
of machines to use for an experiment and how to deploy
the emulated network on these machines by first solving an
optimization problem.

A fundamental question is how to map virtual nodes and
links to a physical network topology while minimizing a
certain objective function without exceeding the available
resources. Two different cases must be considered. Either
experiments are run in a free fully controlled Linux cluster or
they run in a costly public cloud (e.g., Amazon EC2). These
two use cases lead to the following distinct problems.

The first one is a virtual network embedding problem where
the objective is to find a valid mapping between the virtual
topology used for the experiment and the resources in the
infrastructure. In such a situation, Distrinet minimizes the
number of reserved machines to run an experiment, motivated
by the fact that scientific clusters such as Grid5000 [1]
require to reserve a group of machines before running an
experiment [5] and an excess in these terms may lead to usage
policy violations or to a large waiting time to obtain the needed
resources.

The second case is a vector bin packing with multiple-
choice problem. When experiments run in a public cloud, the

1The container is used to guarantee that all emulated hosts run in the same
Linux environment, regardless of the host.

problem consists in choosing a set of virtual machine instances
taken from a set of instance types, which provide different
combinations of CPU, memory, disk, and networking. In this
case, Distrinet objective consists in minimizing the cost to run
an experiment.

IV. CONCLUSION

We proposed Distrinet that extends Mininet to make it
able to distribute experiments on multiple hosts. Distrinet
determines the number of hosts required for an experiment to
minimize the overall consumed resources. Our implementation
is flexible and can be run on any pool of Linux hosts or even
in the Amazon EC2 cloud. Distrinet seamlessly provisions
hosts and launches cloud instances when needed. Distrinet is
compatible with Mininet and its source code is available on
http://distrinet-emu.github.io.

REFERENCES

[1] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jean-
not, E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec. Adding
virtualization capabilities to the Grid’5000 testbed. In I. I. Ivanov,
M. van Sinderen, F. Leymann, and T. Shan, editors, Cloud Computing
and Services Science, volume 367 of Communications in Computer and
Information Science, pages 3–20. Springer International Publishing, 2013.

[2] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and C. Lac.
Mininet on steroids: exploiting the cloud for mininet performance. In
IEEE CloudNet 2019, volume 8. IEEE, 2019.

[3] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In ACM SIGCOMM Workshop
HotNets, New York, NY, USA, 2010. ACM.

[4] M. Peuster, H. Karl, and S. van Rossem. Medicine: Rapid prototyping of
production-ready network services in multi-pop environments. In IEEE
NFV-SDN, pages 148–153, Nov 2016.

[5] P. Vicat-Blanc, B. Goglin, R. Guillier, and S. Soudan. Computing
networks: from cluster to cloud computing. John Wiley & Sons, 2013.

[6] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl. Maxinet: Distributed emulation of software-defined networks.
In 2014 IFIP Networking Conference, pages 1–9, June 2014.

[7] J. Yan and D. Jin. Vt-mininet: Virtual-time-enabled mininet for scalable
and accurate software-define network emulation. In ACM SIGCOMM
Symposium SOSR, New York, NY, USA, 2015. ACM.


