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Deciding Feasibility of a Booking in the
European Gas Market on a Cycle is in P

Martine Labbé, Fränk Plein,
Martin Schmidt, and Johannes Thürauf

Abstract. We show that the feasibility of a booking in the European entry-
exit gas market can be decided in polynomial time on passive single-cycle
networks, i.e., on networks without controllable elements. The feasibility of a
booking can be characterized by solving polynomially many nonlinear potential-
based flow models for computing so-called potential-difference maximizing load
flow scenarios. We thus analyze the structure of these models and exploit both
the cyclic graph structure as well as specific properties of potential-based flows.
This enables us to solve the decision variant of the nonlinear potential-difference
maximization by reducing it to a system of polynomials of constant dimension
that is independent of the cycle’s size. This system of fixed dimension can be
handled with tools from real algebraic geometry to derive a polynomial-time
algorithm. The characterization in terms of potential-difference maximizing
load flow scenarios then leads to a polynomial-time algorithm for deciding the
feasibility of a booking. Our theoretical results extend the existing knowledge
about the complexity of deciding the feasibility of bookings from trees to
single-cycle networks.

1. Introduction

During the last decades, the European gas market has undergone ongoing lib-
eralization [26–28], resulting in the so-called entry-exit market system [19]. The
main goal of this market re-organization is the decoupling of trading and actual gas
transport. To achieve this goal within the European entry-exit market, gas traders
interact with transport system operators (TSOs) via bookings and nominations. A
booking is a capacity-right contract in which a trader reserves a maximum injection
or withdrawal capacity at an entry or exit node of the TSO’s network. On a
day-ahead basis, these traders are then allowed to nominate an actual load flow
up to the booked capacity. To this end, the traders specify the actual amount of
gas to be injected to or withdrawn from the network such that the total injection
and withdrawal quantities are balanced. On the other hand, the TSO is responsible
for the transport of the nominated amounts of gas. By having signed the booking
contract, the TSO guarantees that the nominated amounts can actually be trans-
ported through the network. More precisely, the TSO needs to be able to transport
every set of nominations that complies with the signed booking contracts. Thus,
an infinite number of possible nominations must be anticipated and checked for
feasibility when the TSO accepts bookings. As a consequence, the entry-exit market
decouples trading and transport. However, it also introduces many new challenges,
e.g., the checking of feasibility of bookings or the computation of bookable capacities
on the network [10, 23].
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A large branch of research considers the feasibility of nominations, as well as the
physics and the optimal control of gas networks w.r.t. single nominations. Early
works such as [25] or [8] study the physical properties of pipe networks. In particular,
it is shown that in pressure-based networks the flow corresponding to a given load
scenario is unique (given that the pressure at an arbitrary node is fixed). This result
holds more generally for a potential-based flow model; see, e.g., [30]. Such a potential-
based flow model is also used in [16] as an abstract model that approximates, among
others like water or lossless direct current (DC) power flow, the physics of stationary
flows in gas networks. More generally, the study of gas transport and the feasibility
of nominations has been researched from many different optimization perspectives.
For instance, in [9] and [4], the authors study the cost-optimal transport of gas
in the Belgian network before and after the market liberalization. An extension
of the simplex algorithm is proposed to solve the problem for the case in which
gas physics are approximated by piecewise-linear functions, enabling mixed-integer
linear programming (MILP) techniques to be used. MILP approaches can also be
found, e.g., in [12, 13, 24]. On the other hand, purely continuous and highly accurate
nonlinear optimization (NLP) models are discussed, e.g., in [33]. The combination
of both worlds leads to challenging mixed-integer nonlinear models that are tackled,
e.g., in [14, 20]. For an in-depth overview of optimization problems in gas networks,
we also refer to the recent survey [29] as well as the book [21] and the references
therein.

In contrast to the very rich literature on nominations, there is much less literature
on checking the feasibility of a booking. First mathematical analyses of bookings
are presented in the PhD theses [18, 34]. Moreover, the early technical report [11]
discusses the reservation-allocation problem, which is highly related to the feasibility
of bookings in the European entry-exit gas market. Deciding the feasibility of a
booking can also be seen as an adjustable robust feasibility problem [6], where
the set of booking-compliant nominations is the uncertainty set. Exploiting this
perspective, the authors of [3] propose set containment techniques to decide robust
feasibility and infeasibility with an application to the Greek gas transport network.
With an application to a tree-shaped hydrogen network, the problem of robust
discrete arc sizing is discussed in [31]. In [2], the uncertainty of physical parameters
is considered. On the other hand, structural properties of the sets of feasible
nominations and bookings such as nonconvexity and star-shapedness are discussed
in [32]. For networks consisting of pipes only, a characterization of feasible bookings
is given in [22] by conditions on nominations with maximum potential difference in
the network. Using a linear potential-based flow model, these nominations can be
computed efficiently using linear programming. In the nonlinear case, the authors
give a polynomial-time dynamic programming approach for deciding the feasibility
of a booking, if the underlying network is a tree. For the general case, i.e., nonlinear
potential-based physics and arbitrary network topologies, the complexity of deciding
the feasibility of a booking is not yet clear and only exponential upper bounds are
given in [18]. However, neither hardness results nor polynomial-time algorithms can
be found in the literature for cases where the network is not a tree.

In the light of this literature, our contribution is as follows. We further push
back the frontier of hardness by showing that deciding the feasibility of a booking
on single-cycle networks is in P. We analyze the structure of potential-difference
maximizing nominations by exploiting the cyclic structure of the network as well
as techniques specific to potential-based flow models. Interestingly, this allows to
reduce the task of checking the feasibility of a booking to checking the solvability
of a system of polynomial equalities and inequalities in fixed dimension, where the
latter does not depend on the size of the cycle. These systems of fixed dimension can
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then be tackled with tools from real algebraic geometry to derive a polynomial-time
algorithm for deciding the feasibility of a booking.

The remainder of this paper is structured as follows. In Section 2, the problem of
checking the feasibility of a booking is formally defined. Section 3 collects notations
and known results that are used in this work. In Section 4, we introduce a notion of
so-called flow-meeting points in cycle networks and study properties of potential-
difference maximizing nominations in Section 5. These results are then combined
in Section 6 to derive a polynomial-time algorithm for deciding the feasibility of a
booking on a cycle. Finally, we draw a conclusion and pose some open questions for
future research in Section 7.

2. Problem Description

Before restricting ourselves to cycles, we first introduce the problem of verifying
the feasibility of bookings for general networks. Thus, we model a gas network using
a weakly connected directed graph G = (V,A) with node set V and arc set A. The
set of nodes is partitioned into the set V+ of entry nodes, at which gas is supplied,
the set V− of exit nodes, where gas is withdrawn, and the set V0 of the remaining
inner nodes. The node types are encoded in a vector σ = (σu)u∈V , given by

σu =


1, if u ∈ V+,

−1, if u ∈ V−,
0, if u ∈ V0.

In real-world gas networks, the arc set is typically partitioned into different types
of arcs that correspond to different elements of the network; e.g., pipes, compressors,
control valves, etc. However, we restrict our analysis to passive networks that
consist of pipes only. We follow the notation and definitions of [32], which we briefly
introduce in the following.

Definition 2.1. A load is a vector ` = (`u)u∈V ∈ RV≥0, with `u = 0 for all u ∈ V0.
The set of load vectors is denoted by L.

A load vector thus corresponds to an actual situation at a single point in time by
specifying the amount of gas `u that is supplied at u ∈ V+ or withdrawn at u ∈ V−.
Since we only consider stationary flows, we need to impose that the supplied amount
of gas equals the withdrawn amount, which leads to the definition of a nomination.

Definition 2.2. A nomination is a balanced load vector `, i.e., σ>` = 0. The set
of nominations is given by

N :=
{
` ∈ L : σ>` = 0

}
.

A booking, on the other hand, is a load vector defining bounds on the admissible
nomination values. More precisely, we have the following definition.

Definition 2.3. A booking is load vector b ∈ L. A nomination ` is called booking-
compliant w.r.t. the booking b if ` ≤ b holds, where “≤” is meant component-wise
throughout this paper. The set of booking-compliant (or b-compliant) nominations
is given by

N(b) := {` ∈ N : ` ≤ b} .

Next, we introduce the notion of feasibility for nominations and bookings. We
model stationary gas flows using an abstract physics model based on the Weymouth
pressure drop equation and potential flows; see, e.g., [16] or [22]. It consists of arc
flow variables q = (qa)a∈A ∈ RA and potentials on the nodes π = (πu)u∈V ∈ RV≥0.
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We note that, in this context, potentials are linked to gas pressures at the nodes via
πu = p2

u for the case of horizontal pipes. An in-depth explanation for non-horizontal
pipes is given in [16].

Definition 2.4. A nomination ` ∈ N is feasible if a point (q, π) exists that satisfies

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa = σu`u, u ∈ V, (1a)

πu − πv = Λaqa |qa| , a = (u, v) ∈ A, (1b)

πu ∈ [π−u , π
+
u ], u ∈ V, (1c)

where δout(u) and δin(u) denote the sets of arcs leaving and entering node u ∈ V ,
Λa > 0 is an arc-specific constant for any a ∈ A, and 0 < π−u ≤ π+

u are potential
bounds for any u ∈ V .

Constraints (1a) ensure that flow is conserved at every node w.r.t. the nomi-
nation `. For any a = (u, v) ∈ A, Constraint (1b) links the flow qa to the differ-
ence πu − πv of potentials at the endpoints of a. We note that flow can be negative,
if it flows in the opposite direction of the orientation of the arc. Finally, due to
technical restrictions of the network, the potentials need to satisfy bounds (1c). In a
weakly connected network that only consists of pipes, the flow q = q(`) corresponding
to a given nomination ` ∈ N is unique since it is the optimal solution of a strictly
convex minimization problem [25]. The potentials π = π(`) are the corresponding
dual variables and are unique as soon as a reference potential is fixed; see, e.g.,
[30]. The potentials are therefore unique up to shifts, which in particular implies
that potential differences between nodes are unique for a given nomination `. The
feasibility of a given nomination can be checked using the approach described in [15].
In contrast, verifying the feasibility of a booking is less researched and much more
difficult.

Definition 2.5. We say that a booking b is feasible if all booking-compliant nomi-
nations ` ∈ N(b) are feasible.

To assess the feasibility of a booking, by definition, a possibly infinite number of
nominations need to be checked.

Remark 2.6. Deciding the feasibility of a booking can be seen as very special
case of deciding the feasibility of an adjustable robust optimization problem with
uncertainty set N(b). Let us briefly highlight this relationship in this remark. In
principle, for every booking-compliant nomination, we are allowed to adjust the
corresponding flow and the corresponding potentials according to the feasibility
system (1). However, the decision rule (in terms of adjustable robust optimization)
is very special. Note again that, for a given nomination ` ∈ N(b), the resulting
flow is uniquely determined and all potentials are uniquely determined if we fix a
certain potential πw at an arbitrarily chosen reference node w, e.g., if we set πw = ψ
for a reference potential ψ. Thus, we face the adjustable robust problem in which
the uncertainty set consists of all booking-compliant nominations and that can be
formalized as

∀` ∈ N(b) : ∃yψ ∈ Y : π−u ≤ yψu (`) ≤ π+
u , u ∈ V. (2)

Here, Y corresponds to the ψ-parameterized set of decision rules, which map given
nominations to node potentials, i.e., yψ ∈ Y and yψ : N(b) → RV . This, in
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particular, means that for a given nomination, the only choice is the reference
pressure since all flows and potentials are uniquely determined afterward by (1).

Consequently, deciding the feasibility of a booking is equivalent to finding a
specific decision rule in the ψ-parameterized family of functions Y . We note that
these decision rules are nonlinear, as well as nonsmooth in general and that the
uncertainty is not given in a constraint-wise way. Thus, the related adjustable robust
problem is a very special one that is, in general, not tractable in terms of adjustable
robust optimization; see, e.g., [7] or the recent survey [35] as well as the references
therein. One particular contribution of this paper is that the problem-specific
structure at hand is exploited so that the considered problem (which looks highly
intractable at a first glance) can be solved efficiently. The further question on
whether the developed techniques may be generalized to general adjustable robust
flow problems is beyond the scope of this paper.

In every network, the zero flow associated with the zero nomination is always
feasible. It is achieved by having the same potential at every node. This, in
particular, leads to the following assumption on the bounds of the potentials.

Assumption 2.7. The potential bound intervals have a non-empty intersection,
i.e., ⋂

u∈V
[π−u , π

+
u ] 6= ∅.

Since the zero nomination is always booking compliant, this assumption is required
for having a feasible booking at all. Thus, the assumption is also required to allow
for a reasonable study of deciding the feasibility of bookings.

It is shown in Theorem 7 of [22] that a feasible booking b can be characterized
by constraints on the maximum potential differences between all pairs of nodes.
Therefore, the authors introduce, for every fixed pair of nodes (w1, w2) ∈ V 2, the
following problem

ϕw1w2
(b) := max

`,q,π
πw1
− πw2

(3a)

s.t. (1a), (1b),
0 ≤ `u ≤ bu, u ∈ V, (3b)

where ϕw1w2 is the corresponding optimal value function (depending on the book-
ing b). Then, the booking b is feasible if and only if

ϕw1w2
(b) ≤ π+

w1
− π−w2

(4)

holds for every fixed pair of nodes (w1, w2) ∈ V 2. Hence, to verify the feasibility of
a booking using this approach, it is necessary to solve the nonlinear and nonconvex
global optimization problems (3). For tree-shaped networks, the authors give a
polynomial-time dynamic programming algorithm solving (3). As a consequence,
verifying the feasibility of a booking on trees can be done in polynomial time, which
can also be obtained by adapting the results of [32]. In this paper, we show that (4)
can still be decided in polynomial time on a single cycle.

3. Notations and Basic Observations

Entry and exit nodes v ∈ V+ ∪ V− are called active if `v > 0 holds. We denote by
V >+ := {v ∈ V+ : `v > 0} and V >− := {v ∈ V− : `v > 0} the set of active entries and
exits, respectively.
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Using directed graphs to represent gas networks is a modeling choice that allows
to interpret the direction of arc flows. However, the physical flow in a potential-
based network is not influenced by the direction of the arcs. Thus, for u, v ∈ V , we
introduce the so-called flow-paths P := P (u, v) = (V (P (u, v)), A(P (u, v))) in which
V (P (u, v)) ⊆ V contains the nodes of the path from u to v in the undirected version
of the graph G and A(P (u, v)) ⊆ A contains the corresponding arcs of this path.
Note that these flow-paths are not necessarily unique. For another pair of nodes
u′, v′ ∈ V , we say that P (u′, v′) is a flow-subpath of P (u, v) if P (u′, v′) ⊆ P (u, v),
i.e., V (P (u′, v′)) ⊆ V (P (u, v)) and A(P (u′, v′)) ⊆ A(P (u, v)), and if P (u′, v′) is
itself a flow-path. In particular, this allows us to define an order on the nodes of
a flow-path. For P = P (u, v) and u′, v′ ∈ P , we define u′ �P v′ if and only if a
flow-subpath P (u, u′) ⊆ P (u, v′).1 If u′ 6= v′ holds, we write u′ ≺P v′.

We now introduce the characteristic function of an arc a = (u, v) ∈ A. For any
flow-path P , it is given by

χa(P ) :=


1, if u≺P v,
−1, if v ≺P u,
0, if a /∈ P.

Next, we adapt a classical result from linear flow models to construct a flow
decomposition in a gas network.

Lemma 3.1. Given ` ∈ N \ {0}, let P` :=
{
P (u, v) : u ∈ V >+ , v ∈ V >−

}
be the set

of flow-paths in G with an active entry as start node and an active exit as end node.
Then, a decomposition of the given flow q = q(`) into path flows exists, such that

qa =
∑
P∈P`

χa(P ) q(P ), a ∈ A, (5)

where q(P ) is the nonnegative flow along the flow-path P ∈ P`.
Furthermore, we require that if qa > 0 for a ∈ A and χa(P ) = −1 for P ∈ P`,

then q(P ) = 0 holds. Similarly, if qa < 0 for a ∈ A and χa(P ) = 1 for P ∈ P`, then
q(P ) = 0 holds.

Proof. If qa < 0 holds, then we replace arc a = (u, v) by (v, u) and set q(v,u) =
−q(u,v). The resulting flow still corresponds to nomination `. We now apply
Theorem 3.5 of Chapter 3.5 of the book by Ahuja et al. [1]. Given Constraints (1b),
the flow q cannot contain any cycle flows. As a consequence, we obtain a flow
decomposition that satisfies all the properties. �

Observe that, by construction, the flow q and the path flows need to traverse
arcs in the same direction. A direct consequence of the flow decomposition is that
the nomination can be expressed as a function of the path flows.

Corollary 3.2. For any u ∈ V >+ , the condition∑
v∈V >

−

q(P (u, v)) = `u (6)

and for any v ∈ V >− , the condition∑
u∈V >

+

q(P (u, v)) = `v (7)

is satisfied.

1For the ease of presentation, we also use the notation u ∈ P = P (u, v) instead of u ∈ V (P (u, v))

or a ∈ P instead of a ∈ A(P (u, v)), if it is clear from the context.
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Next, we define the potential-difference function along a given flow-path.

Definition 3.3. Let ` ∈ N and a flow-path P be given. Then, the potential-
difference function along P is given by

ΠP : RA → R, ΠP (q) :=
∑
a∈P

χa(P )Λaqa |qa| , (8)

where q = q(`).

As a consequence of Constraint (1b), for any node pair u, v ∈ V and for any
flow-path P := P (u, v), the equation πu(`)− πv(`) = ΠP (q(`)) holds. We note that
if the path P is directed from u to v, the potential-difference function simplifies to

ΠP (q) =
∑
a∈P

Λaqa |qa| .

Since, we will mostly use directed paths in what follows, we state some properties
that hold in this case.

Lemma 3.4. For u, v ∈ V , let P := P (u, v) be a directed path. Then, the following
holds:

(a) ΠP is continuous.
(b) ΠP is strictly increasing w.r.t. every component. That means, for q fixed

except for one value qa, a ∈ P , ΠP is increasing in qa.
(c) ΠP is unbounded w.r.t. every component, i.e., for a ∈ P ,

lim
qa→−∞

ΠP (q) = −∞ and lim
qa→∞

ΠP (q) =∞.

(d) ΠP is additive w.r.t. the flow-path, i.e., for all v′ ∈ P ,
ΠP = ΠP (u,v′) + ΠP (v′,v)

where P = P (u, v′) ∪ P (v′, v).
(e) ΠP ≥ 0 holds if and only if πu ≥ πv holds.

4. Problem Reduction via Flow-Meeting Points

In the remainder of this paper, we restrict ourselves to a network that is a single
cycle. A stylized example of a cyclic gas network is shown in Figure 1. A first
observation is that in a potential-based flow model, there cannot be any cycling
flow. Thus, flow in a cycle has to “meet” in at least one node. In this section, we
show that the set of all feasible flows in Problem (3) can be restricted to flow along
two different paths without changing direction along the way.

In a cycle, for every pair of nodes u, v ∈ V , exactly two flow-paths exist. We
denote by P l(u, v) = (V l(u, v), Al(u, v)) the left path obtained when v is reached in
counter-clockwise direction from u. Similarly, P r(u, v) = (V r(u, v), Ar(u, v)) is the
right path obtained by using the clockwise direction. Moreover, A = Al(u, v)∪Ar(u, v)
holds. If it is clear from the context, we use previously introduced notations indexed
by “l” (left) or “r” (right), when they have to be understood w.r.t. P l or P r.

It is not hard to observe that, given Constraints (1a) and (1b), the highest
potential in G is attained at an entry node.

Lemma 4.1. Let ` ∈ N \ {0} and o ∈ V+ be an entry with highest potential. Then,
πo(`) ≥ πv(`) holds for all v ∈ V .

Given that no cycle flow is possible in a gas network, flow needs to change the
direction along a single cycle. We now specify a node as flow-meeting point if arc
flows from different directions “meet” at this node.
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Figure 1. Example of a cyclic gas network. Dashed arcs to or
from a node indicate entries or exits, respectively.

o

w w′

Figure 2. Flow directions and resulting flow-meeting points. Bold
arcs indicate entry-exit activity and flow directions, whereas gray
arcs indicate inactive nodes or zero arc-flow. In this example, exits
w and w′ are flow-meeting points.

Definition 4.2. Let ` ∈ N \{0} and o ∈ V+ be an entry node with highest potential,
i.e., πo(`) ≥ πv(`) for all v ∈ V . Then, w ∈ V \ {o} is a flow-meeting point if there
exist u ∈ V l(o, w) adjacent to w that satisfies πu(`) > πw(`) as well as v ∈ V r(o, w)
such that πv(`) > πw(`) and πv′(`) = πw(`) holds for all v′ ∈ V r(v, w) \ {v}.

This definition is illustrated in Figure 2. Note that we choose the node o ∈ V+

with highest potential to ensure that there is no flow through node o. If multiple
entry nodes with highest potential exist, flow-meeting points are still well-defined.
In fact, as a direct consequence of Lemma 4.1, the definition of a flow-meeting point
is independent of the choice of node o. By definition, the flow-meeting point w has
non-zero flow entering on one arc and possibly zero flow on the other arc. Thus, w
is necessarily an exit.

From Constraints (1a) and (1b), it directly follows that for every non-zero
nomination at least one flow-meeting point exists. We note that there can be
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multiple flow-meeting points with different potentials. However, since every flow-
meeting point is an exit, it is not hard to observe that the following result holds.

Lemma 4.3. Let ` ∈ N \ {0} and w be a flow-meeting point with lowest potential.
Then, πw(`) ≤ πv(`) holds for all v ∈ V .

In the remainder of this section, we show that for fixed (w1, w2) ∈ V 2 there are
optimal solutions of (3) with at most one flow-meeting point. More precisely, we
prove that an optimal solution exists that has a special entry node o ∈ V+, a special
exit node w ∈ V−, and has nonnegative flow from o to w.

Before we prove several auxiliary results, let us first make a notational comment.
For (o, w) ∈ V+ × V−, we are interested in the partition of the cycle into two flow-
paths P l(o, w) and P r(o, w). When discussing the order of nodes along P l(o, w),
we therefore simply write u �l v instead of u �P l(o,w) v. We use an analogous
simplification for P r(o, w).

A first observation is that nominations can be modified such that the flow from an
entry node with highest potential to an exit node with lowest potential is nonnegative,
while preserving particular potential differences.

Lemma 4.4. Given ` ∈ N \ {0} with flow q = q(`), let o ∈ V+ be an entry with
highest potential and w a flow-meeting point with lowest potential. Furthermore,
assume that P l(o, w) and P r(o, w) are directed paths. Then, for a given x ∈ V l(o, w),
a nomination `′ ∈ N exists such that the following properties hold (with q′ = q(`′)):

`′ ≤ `, (9a)

0 ≤ q′a for all a ∈ Al(o, w), (9b)

q′a = qa for all a ∈ Ar(o, w), (9c)

ΠP l(o,x)(q
′) = ΠP l(o,x)(q) ≥ 0, (9d)

ΠP l(o,w)(q
′) = ΠP l(o,w)(q). (9e)

Proof. We modify nomination ` and q(`) such that the required properties are
satisfied. To this end, we consider a flow decomposition as in Lemma 3.1.

Since o ∈ V+ has highest potential and P l(o, w) and P r(o, w) are directed paths,
it follows qa ≥ 0 for all a ∈ δout(o). In analogy, qa ≥ 0 for all a ∈ δin(w). From
Lemma 3.1, we then deduce that q(P (u, v)) = 0 if one of the following four conditions
holds:

• u ∈ V l
+(o, w) \ {o} and v ∈ V r

−(o, w) \ {w},
• u ∈ V r

+(o, w) \ {o} and v ∈ V l
−(o, w) \ {w},

• u ∈ V l
+(o, w) \ {o}, v ∈ V l

−(o, w) \ {w}, and P r(o, w) ⊆ P (u, v), or
• u ∈ V r

+(o, w) \ {o}, v ∈ V r
−(o, w) \ {w}, and P l(o, w) ⊆ P (u, v).

In other words, since there is no flow through o or w, there cannot be a flow-path
with non-zero flow through them, either. Consequently, for an arc a ∈ P l(o, w), we
can simplify Equation (5) to

qa =
∑
P∈Pl

`

χa(P ) q(P ), (10)

where P l
` contains all flow-paths on the left side of the cycle, i.e.,

P l
` :=

{
P (u, v) ∈ P` : P (u, v) ⊆ P l(o, w)

}
.

We note that P l
` depends on the choice of o and w. However, these are fixed nodes

throughout this section. We now modify the flow q such that Property (9b) is
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satisfied. To this end, for every arc a ∈ P l(o, w) and for every P ∈ P l
`, we set

the flow q(P ) = 0 if χa(P ) = −1 holds. We denote the modified flow and the
corresponding nomination by q′ and `′. Then, for a ∈ Al(o, w), the modified flow is
given by

q′a =
∑

P∈Pl
`:χa(P )=1

q(P ) (11)

and satisfies (9b). Furthermore, by Corollary 3.2, the corresponding modified
nomination `′ satisfies (9a). Additionally, (9c) is satisfied because we have not
modified any arc flows qa for a ∈ Ar(o, w). Due to Lemma 3.4 (b), the modifications
possibly increase the potential difference between o and x, as well as, between o and
w. This is the case if and only if the corresponding flow-path contains an arc with
negative flow in q, which is now set to zero in the modified flow q′. Next, we need to
iteratively adapt nomination `′ and flow q′ to ensure the remaining properties (9d)
and (9e).

Step 1: If an arc a ∈ Al(o, x) with qa < 0 exists, then, the potential difference
between o and x is increased, i.e., ΠP l(o,x)(q

′) > ΠP l(o,x)(q) holds. Let u ∈ V l(o, x),
possibly with u = x, such that qa′ ≥ 0 holds for all a′ ∈ Al(u, x) and |V l(u, x)| is
maximal. Given the flow decomposition, we then know that we have not modi-
fied arc flows on P l(u, x). Consequently, ΠP l(u,x)(q

′) = ΠP l(u,x)(q) holds. Thus,
ΠP l(o,u)(q

′) > ΠP l(o,u)(q) must hold. In particular, we have a ∈ Al(o, u). From
Lemma 3.1 and the construction of u it follows that for v1 ∈ V l

+(o, u) \ {u} and
v2 ∈ V l

−(u,w), we have q(P l(v1, v2)) = 0. Consequently, the potential difference
ΠP l(o,u)(q

′) is only determined by positive path flows q(P l(v1, v2)) with o�l v1 �l
v2�l u. We further note that ΠP l(o,u)(0) = 0 and, by Lemma 3.4 (e), ΠP l(o,u)(q) ≥ 0
holds because πo ≥ πu. Consequently, due to Lemma 3.4 (a) and 3.4 (b), we
can decrease path flows q(P l(v1, v2)) with o �l v1 �l v2 �l u to yield flow q′ such
that ΠP l(o,u)(q

′) = ΠP l(o,u)(q) holds. These flow modifications only decrease the
nomination at entries and exits in V l(o, u). Thus, Lemma 3.4 (d) implies the
Properties (9a)–(9d). We note that we have not changed an arc flow of Al(x,w) in
the modifications of Step 1.

Now it is left to show that we can modify the flow q′ and the corresponding
nomination `′ such that, additionally, Property (9e) is satisfied. To this end, we
assume that an arc a ∈ Al(x,w) with qa < 0 exists. Otherwise the claim follows
directly from Lemma 3.4.

Step 2: If an arc a ∈ Al(x,w) with qa < 0 exists, then, ΠP l(x,w)(q
′) > ΠP l(x,w)(q)

holds. Let u ∈ V l(x,w) be a node such that qa′ ≥ 0 holds for all a′ ∈ Al(x, u)
and |V l(x, u)| is maximal. Given the flow decomposition, we then know that we
have not modified arc flows on Al(x, u). Thus, ΠP l(x,u)(q

′) = ΠP l(x,u)(q) and
ΠP l(u,w)(q

′) > ΠP l(u,w)(q) hold. Furthermore, ΠP l(u,w)(0) = 0 and ΠP l(u,w)(q) ≥ 0
are valid. The latter is satisfied due to πw ≤ πu and Lemma 3.4 (e). Similarly to
Step 1, the potential difference ΠP l(u,w)(q

′) is only determined by positive path
flows q(P l(v1, v2)) with u�l v1�l v2�lw. Due to Lemma 3.4, we can again decrease
path flows q(P l(v1, v2)) for u�l v1 �l v2 �l w such that ΠP l(u,w)(q

′) = ΠP l(u,w)(q)
holds and Property (9e) is satisfied. Furthermore, this modification does not affect
any of Properties (9b)–(9d). Since we only decrease the nomination at entries and
exits, Property (9a) is also satisfied.

In total, we can modify nomination ` and q(`) by repeatedly applying Step 1
and 2 such that `′ and the corresponding q(`′) satisfy Properties (9). �

The same result can be established for the symmetric situation.
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Corollary 4.5. Given ` ∈ N \ {0} with flow q = q(`), let o ∈ V+ be an entry with
highest potential and w a flow-meeting point with lowest potential. Furthermore,
assume that P l(o, w) and P r(o, w) are directed paths. Then, for a given x ∈ V r(o, w),
a nomination `′ ∈ N exists such that the following properties hold (with q′ = q(`′)):

`′ ≤ `, (12a)

0 ≤ q′a for all a ∈ Ar(o, w), (12b)

q′a = qa for all a ∈ Al(o, w), (12c)

ΠP r(o,x)(q
′) = ΠP r(o,x)(q) ≥ 0, (12d)

ΠP r(o,w)(q
′) = ΠP r(o,w)(q). (12e)

Lemma 4.6. Given ` ∈ N \ {0} with flow q = q(`), let o ∈ V+ be an entry with
highest potential and w a flow-meeting point with lowest potential. Furthermore,
assume that P l(o, w) and P r(o, w) are directed paths. Then, for given o �l x �l
y �l w with ΠP l(x,y)(q) ≥ 0, a nomination `′ ∈ N with q′ = q(`′) exists such that
Properties (9a) and (9b) are satisfied and ΠP l(x,y)(q

′) = ΠP l(x,y)(q) ≥ 0 holds.

Proof. In analogy to the proof of Lemma 4.4, we consider a flow decomposition of
Lemma 3.1. Furthermore, for every arc a ∈ Al(o, w), we set the flow q(P l(v1, v2)) = 0
if χa(P l(v1, v2)) = −1 holds. Consequently, the modified flow q′, given as in (11),
and the corresponding nomination `′ satisfy (9a) and (9b). By this modification,
we increase the potential difference only if an arc in P l(o, w) with negative flow in q
exists.

If an arc a ∈ Al(o, x) with qa < 0 exists, we apply Step 1 of the proof of
Lemma 4.4, where we do not change the flow on any arc of P l(x,w). On the
other hand, if an arc a ∈ Al(y, w) with qa < 0 exists, we apply Step 2, where
we do not change the flow on any arc of P l(o, y). If an arc a ∈ Al(x, y) with
qa < 0 exists, then, ΠP l(x,y)(q

′) > ΠP l(x,y)(q) ≥ 0 holds. Due to Lemma 3.4 (a),
3.4 (b), and ΠP l(x,y)(0) = 0, we can decrease path flows q(P l(v1, v2)) such that
ΠP l(x,y)(q

′) = ΠP l(x,y)(q) and Properties (9a) and (9b) are still satisfied. This
modification possibly decreases the potential differences ΠP l(o,x)(q

′) and ΠP l(y,w)(q
′).

As a consequence of Lemma 3.4, we deduce that ΠP l(o,w)(q
′) ≤ ΠP r(o,w)(q

′).
If ΠP l(o,w)(q

′) < ΠP r(o,w)(q
′) is satisfied, q′ is not feasible. However, this

can be easily fixed. Since the arc flow of any a ∈ Ar(o, w) stays unchanged,
ΠP r(o,w)(q

′) = ΠP r(o,w)(q) ≥ 0 holds as a consequence of Lemma 3.4 (e). Since
Property (9b) is satisfied for the modified flow q′, we deduce that ΠP l(o,w)(q

′) ≥ 0.
It follows that 0 = ΠP r(o,w)(0) ≤ ΠP l(o,w)(q

′) < ΠP r(o,w)(q
′). By Lemma 3.4, we

can decrease q(P r(v1, v2)) such that ΠP l(o,w)(q
′) = ΠP r(o,w)(q

′) holds. Furthermore,
ΠP l(x,y)(q

′) = ΠP l(x,y)(q) and Properties (9a) and (9b) still hold. �

Analogously, we derive the symmetric result.

Corollary 4.7. Given ` ∈ N \ {0} with flow q = q(`), let o ∈ V+ be an entry with
highest potential and w a flow-meeting point with lowest potential. Furthermore,
assume that P l(o, w) and P r(o, w) are directed paths. Then, for given o �r x �r
y �r w with ΠP r(x,y)(q) ≥ 0, a nomination `′ ∈ N with q′ = q(`′) exists such that
Properties (12a) and (12b) are satisfied and ΠP l(x,y)(q

′) = ΠP l(x,y)(q) ≥ 0 holds.

As a final auxiliary result, we give a sufficient condition for the existence of a
unique flow-meeting point.
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Lemma 4.8. Given ` ∈ N \ {0} with flow q = q(`), let o ∈ V+ be an entry with
highest potential and let w ∈ V \{o} be an arbitrary node. Furthermore, assume that
P l(o, w) and P r(o, w) are directed paths. If qa ≥ 0 for all a ∈ A = Al(o, w)∪Ar(o, w),
then there is a unique flow-meeting point x. Furthermore, x ∈ V l(o, w) holds.

Proof. Since q ≥ 0, it holds πw ≤ πv for all v ∈ V . Let x ∈ V l(o, w) be such that
qa = 0 holds for all a ∈ Al(x,w) and |V l(x,w)| is maximal. By construction of x, it
is the only flow-meeting point and it may hold x = w. �

Recall that it is sufficient to solve Problem (3) for each fixed node pair
(w1, w2) ∈ V 2 and then check Inequality (4) to decide the feasibility of a book-
ing. We now combine the previous results to show that an optimal solution of
Problem (3) with at most one flow-meeting point exists.

Theorem 4.9. Let b be a booking and (w1, w2) ∈ V 2 a fixed pair of nodes. Then,
there is an optimal solution of Problem (3) that has at most one flow-meeting
point w.

Proof. Let (`, q, π) be an optimal solution of (3). Choose an entry o ∈ V+ with high-
est potential and a flow-meeting point w with lowest potential. Due to Lemma 4.3,
πw ≤ πv holds for all v ∈ V . Without loss of generality, we assume that P l(o, w)
and P r(o, w) are directed.

The zero nomination corresponds to a feasible point that satisfies the claim and
πw1 − πw2 = 0. Thus, we can assume that

πw1
− πw2

> 0 (13)

holds. If there is only one flow-meeting point, we are done. Hence, we now
additionally assume that ` admits at least two different flow-meeting points.

Case 1: w1 ∈ V l(o, w) and w2 ∈ V r(o, w) holds. Thus, we can equivalently
reformulate (13) as

0 < πw1 − πw2 = −ΠP l(o,w1)(q) + ΠP r(o,w2)(q).

We now apply Lemma 4.4 with x = w1, which possibly decreases ΠP l(o,w1)(q) and
does not change ΠP r(o,w2)(q). Then, we apply Corollary 4.5 with x = w2, which
does not change ΠP l(o,w1)(q) and possibly decreases ΠP r(o,w2)(q). Consequently,
the obtained nomination `′ and the corresponding flow q′ = q(`′) are still optimal,
since the modifications only possibly increase the objective function value πw1

−πw2
.

Thus, (13) is satisfied by q(`′) ≥ 0. The claim then follows by Lemma 4.8.
Case 2: w1 ∈ V r(o, w) and w2 ∈ V l(o, w) holds. The claim follows in analogy to

Case 1.
Case 3: w1, w2 ∈ V l(o, w) and w1 �l w2. In this case, (13) reads

0 < πw1 − πw2 = ΠP l(w1,w2)(q).

We first apply Corollary 4.5 with x = w, which does not change ΠP l(w1,w2)(q).
Thus, (13) is still satisfied and q′a ≥ 0 holds for every a ∈ P r(o, w). We now apply
Lemma 4.6 with x = w1 and y = w2, which does not change the objective value
πw1 − πw2 = ΠP l(w1,w2)(q). Consequently, q′ ≥ 0 holds and (13) is still satisfied.
The claim then again follows from Lemma 4.8.

Case 4: w1, w2 ∈ V r(o, w) and w1�rw2. The claim follows in analogy to Case 3.
Case 5: w1, w2 ∈ V l(o, w) and w2 �l w1. Inequality (13) then reads

0 < πw1 − πw2 = −ΠP l(w2,w1)(q).

We first apply Corollary 4.5 with x = w, which does not change ΠP l(w2,w1)(q). Thus,
(13) is still satisfied and q′a ≥ 0 for every a ∈ P r(o, w). Now take u ∈ V l(o, w)
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such that q′a ≥ 0 for all a ∈ Al(u,w) and |Al(u,w)| is maximal. If u ∈ V l(o, w2),
then q′a ≥ 0 for all a ∈ Al(w2, w1). Thus, ΠP l(w2,w1)(q) ≥ 0 also holds, which
contradicts (13). Hence, we conclude that u ∈ V l(w2, w) \ {w2}. By Lemma 3.1 and
the construction of u, we deduce that for a ∈ Al(u,w) the flow is given by

q′a =
∑
P∈P̄l

`

q(P ), P̄ l
` :=

{
P ∈ P` : P ⊆ P l(u,w), χa(P ) = 1

}
.

We now set the flow q(P l) = 0 for P l ⊆ P l(u,w) and χa(P
l) = 1. By this

modification, we have possibly decreased ΠP l(w2,w1) and thus also ΠP l(o,w). In
particular, (13) is still satisfied. Lemma 3.4 (d) implies

ΠP l(o,w)(q
′) = ΠP l(o,u)(q

′) + ΠP l(u,w)(q
′).

After modification, we have ΠP l(u,w)(q
′) = ΠP l(u,w)(0) = 0 and ΠP l(o,u)(q

′) =
ΠP l(o,u)(q). By Lemma 3.4 (e) and πo ≥ πu, ΠP l(o,u)(q) is nonnegative. We deduce
that ΠP l(o,u)(q

′) ≥ 0. Given Lemma 3.4 (a) and 3.4 (b), we can now decrease path
flows q(P r) such that ΠP l(o,w)(q

′) = ΠP r(o,w)(q
′) holds. After this modification,

(13) is still satisfied and its value is possibly increased, i.e., the objective function
value πw1

− πw2
is possibly increased by the modifications. Consequently, the

obtained solution is still optimal. Moreover, w is now connected to a flow-meeting
point in V l(o, u) because q′a = 0 holds for all a ∈ P l(u,w). Consequently, for
nomination `′ a flow-meeting point in V l(o, u) with lowest potential exists. We now
repeat this procedure until either the claim holds or a new flow-meeting point with
lowest potential is an element of V l(o, w1). Then, we apply the respective case of
Cases 1–4.

Case 6: w1, w2 ∈ V r(o, w) and w2 �r w1. The claim follows in analogy to
Case 5. �

As a direct consequence of this result, we deduce the following corollary.

Corollary 4.10. Let b be a booking and (w1, w2) ∈ V 2 a fixed pair of nodes. Then,
there exist nodes (o, w) ∈ V+ × V− and an optimal solution (`, q, π) of Problem (3)
with q ≥ 0, if we assume that P l(o, w) and P r(o, w) are directed paths.

The previous result implies that when determining potential-difference maximizing
nominations solving Problem (3) for fixed (w1, w2) ∈ V 2, we can additionally restrict
the search space by iteratively considering (o, w) ∈ V+×V− and imposing that there
is flow from o to w. This is further formalized and exploited in the next section.

5. Structure of Potential-Difference Maximizing Nominations

In this section, we fix (w1, w2) ∈ V 2 and show that there exist optimal solutions
of (3) with additional structure that allows to reduce the dimension of the problem.
Based on the results of Section 4, in particular, Corollary 4.10, we next show that
(4) can be decided by considering the following variant of Problem (3) for every
(o, w) ∈ V+ × V−:

ϕ̄oww1w2
(b) := max

`,q,π
πw1
− πw2

(14a)

s.t.
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = σu`u, u ∈ V,

0 ≤ `u ≤ bu, u ∈ V,
πu − πv = Λaqa |qa| , a ∈ A′, (14b)

qa ≥ 0, a ∈ A′, (14c)
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where b is a booking and A′ is obtained from A by orienting all arcs from o to w.
Note that in addition to the constraints of (3), we now also impose nonnegative
flow from o to w, thus effectively reducing the feasible domain of the problem.

Theorem 5.1. Let b be a booking, then

ϕw1w2
(b) = max

(o,w)∈V+×V−
ϕ̄oww1w2

(b)

holds. Furthermore, the optimal values are finite and attained.

Proof. First, observe that ` is bounded in (3). As a consequence of Theorem 7.1 of
Chapter 7 in [21], an optimal solution of (3) with finite optimal value exists, i.e.,
ϕw1w2(b) <∞.

Let (`, q, π) be an optimal solution corresponding to max(o,w)∈V+×V− ϕ̄
ow
w1w2

(b).
First, observe that the arc orientation does not play any role in Problem (3). If an
arc has a different orientation, we just switch the sign of the corresponding flow
variable. Thus, we assume w.l.o.g. that P l(o, w) and P r(o, w) are directed paths in
the given instance of (3). Consequently, (`, q, π) is feasible for (3). Thus,

ϕw1w2(b) ≥ max
(o,w)∈V+×V−

ϕ̄oww1w2
(b).

The other inequality follows directly from Corollary 4.10. �

As a consequence, the feasibility of a booking can be characterized using Prob-
lem (14) as follows.

Corollary 5.2. A booking b is feasible if and only if for every pair (w1, w2) ∈ V 2

and for every (o, w) ∈ V+ × V−,
ϕ̄oww1w2

(b) ≤ π+
w1
− π−w2

. (15)

We now further analyze the structure of optimal solutions of (14) for fixed
(o, w) ∈ V+ × V− and given (w1, w2) ∈ V 2 w.r.t. their respective position in the
cycle. Without loss of generality, we assume that P l(o, w) and P r(o, w) are directed
paths.

5.1. Nodes on Different Sides of G. Assume that w1 ∈ P l(o, w) and w2 ∈
P r(o, w) holds. We show that an optimal solution (`, q, π) of (14) exists that
additionally satisfies the following properties:

(a) Two entries sl1, sl2 ∈ V l
+(o, w) with sl1 �l s

l
2 exist such that

`v = 0, v ∈
(
V l

+(o, sl1) ∪ V l
+(sl2, w)

)
\
{
o, sl1, s

l
2

}
,

`v = bv, v ∈ V l
+(sl1, s

l
2) \

{
sl1, s

l
2

}
.

(b) An exit tl1 ∈ V l
−(o, w) exists such that

`v = 0, v ∈ V l
−(o, tl1) \

{
tl1
}
,

`v = bv, v ∈ V l
−(tl1, w) \

{
tl1
}
.

(c) An entry sr1 ∈ V r
+(o, w) exists such that

`v = bv, v ∈ V r
+(o, sr1) \ {sr1} ,

`v = 0, v ∈ V r
+(sr1, w) \ {sr1} .

(d) Two exits tr1, tr2 ∈ V r
−(o, w) with tr1 �r t

r
2 exist such that

`v = 0, v ∈
(
V r
−(o, tr1) ∪ V r

−(tr2, w)
)
\ {tr1, tr2, w} ,

`v = bv, v ∈ V r
−(tr1, t

r
2) \ {tr1, tr2} .
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o

w

sl1

w1

sl2

tl1 sr1

w2

tr1

tr2

Figure 3. Configuration of s and t nodes if w1 ∈ P l(o, w) and
w2 ∈ P r(o, w). Boxes qualitatively illustrate the amount of the
booking that is nominated.

A possible configuration of nodes o, w1, s
l
1, s

l
2, t

l
1, w, w2, s

r
1, t

r
1, t

r
2 is given in Figure 3.

To show the existence of such a solution, we introduce a bilevel problem, where
the lower level is given by (14) and the upper level chooses, among all lower-level
optimal solutions, one with the additional structure. It is given by

min
x,y

f1(`, x�l , x�l) + f2(`, y�l) + f3(`, x�r) + f4(`, y�r , y�r) (16a)

s.t. (`, q, π) solves (14),

Mx�l
v ≥

∑
u∈V l

+(o,v)\{o}

`u, v ∈ V l
+(o, w) \ {o} , (16b)

Mx�l
v ≥

∑
u∈V l

+(v,w)

`u, v ∈ V l
+(o, w) \ {o} , (16c)

My�l
v ≥

∑
u∈V l

−(o,v)

`u, v ∈ V l
−(o, w), (16d)

Mx�r
v ≥

∑
u∈V r

+(v,w)

`u, v ∈ V r
+(o, w), (16e)

My�r
v ≥

∑
u∈V r

−(o,v)

`u, v ∈ V r
−(o, w) \ {w} , (16f)

My�r
v ≥

∑
u∈V r

−(v,w)\{w}

`u, v ∈ V r
−(o, w) \ {w} , (16g)

x�l
v , x

�l
v , x

�r
v , y�l

v , y�r
v , y�r

v ∈ {0, 1} , v ∈ V, (16h)

where M =
∑
u∈V bu and f1, . . . , f4 are continuous functions that we specify later.

By Constraints (16b) and (16c), the variables x�l
v and x�l

v model the existence of an
active entry before and after v on P l. Similarly, Constraints (16d) ensure that y�l

v
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determines the existence of an active exit before v on P l. An analogous interpretation
can be given for Constraints (16e)–(16g) and the variables x�r , y�r , y�r . Then, the
optimal value function reformulation of (16) is given by

min
`,q,π,x,y

f1(`, x�l , x�l) + f2(`, y�l) + f3(`, x�r) + f4(`, y�r , y�r) (17a)

s.t. (1a), (3b), (14b), (14c), (17b)
(16b)–(16h), (17c)
πw1 − πw2 ≥ ϕ̄oww1w2

(b). (17d)

Here, Constraint (17b) determines the feasible domain of Problem (14) and Con-
straint (17d) guarantees feasible points with a potential difference of at least ϕ̄oww1w2

(b).
Thus, we only consider optimal solutions of (14). We denote by

z := (`, q, π, x�l , x�l , x�r , y�l , y�r , y�r)

a feasible point of (17). In particular, we have the following result.

Lemma 5.3. Let z be feasible for (17), then (`, q, π) is an optimal solution of (14).
Conversely, every optimal solution of (14) can be extended to a feasible point of (17).

Proof. The first statement follows from the previous discussion. For the converse, let
an optimal solution (`, q, π) of (14) be given. We construct a solution z as follows:

x�l
v = 1, if and only if an active u ∈ V l

+(o, v) \ {o} exists,

x�l
v = 1, if and only if an active u ∈ V l

+(v, w) \ {o} exists,

y�l
v = 1, if and only if an active u ∈ V l

−(o, v) exists,

x�r
v = 1, if and only if an active u ∈ V r

+(v, w) exists,

y�r
v = 1, if and only if an active u ∈ V r

−(o, v) \ {w} exists,

y�r
v = 1, if and only if an active u ∈ V r

−(v, w) \ {w} exists. �

We now specify the parts of the objective function of (17) and prove connections
between these functions and the stated Properties (a)–(d). We discuss and prove
the results for f1 and f2 in detail, whereas we only state the results for f3 and f4,
since they are very similar. The proofs for the results concerning f3 and f4 can be
found in Appendix A.

For the following proofs, we make use of structures resulting from the negation
of Properties (a)–(d) on Page 14. More precisely, we observe that

• if Property (a) does not hold, then there are u1, u2, u3 ∈ V l
+(o, w) \ {o} with

u1 ≺l u2 ≺l u3 such that `u1 > 0, `u2 < bu2 , and `u3 > 0,
• if Property (b) does not hold, then there are u1, u2 ∈ V l

−(o, w) with u1≺l u2

such that `u1
> 0 and `u2

< bu2
,

• if Property (c) does not hold, then there are u1, u2 ∈ V r
+(o, w) with u1≺l u2

such that `u1
< bu1

and `u2
> 0, and

• if Property (d) does not hold, then there are u1, u2, u3 ∈ V r
−(o, w)\{o} with

u1 ≺l u2 ≺l u3 such that `u1 > 0, `u2 < bu2 , and `u3 > 0.
Consider, for instance, the negation of Property (a). It is always possible to satisfy
the first part of the property, i.e., there exist two entries sl1, sl2 ∈ V l

+(o, w) with
sl1 �l s

l
2 such that

`v = 0, v ∈
(
V l

+(o, sl1) ∪ V l
+(sl2, w)

)
\
{
o, sl1, s

l
2

}
.

To achieve this, we simply choose the first and the last active entry node on the
left side of the cycle, i.e., sl1 �l s

l
2 ∈ V l

+(o, w) such that `sl1 > 0, `sl2 > 0, and `u = 0
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for all u ∈ V l
+(o, sl1) ∪ V l

+(sl2, w) \
{
o, sl1, s

l
2

}
. Now, if Property (a) is not satisfied,

there has to exist another node u ∈ V l
+(sl1, s

l
2) \

{
sl1, s

l
2

}
with `u < bu, which shows

the claim. Analogously, we can obtain the remaining statements.

Lemma 5.4. Let z be feasible for (17) and

f1(`, x�l , x�l) :=
∑

i,j∈V l
+(o,w)\{o}:
i�lj

x�l
i x
�l
j

∑
v∈V l

+(i,j)\{i,j}

(bv − `v). (18)

Then, there exists (x�l , x�l) such that f1(`, x�l , x�l) = 0 holds if and only if `
satisfies Property (a).

Proof. Let z be feasible for (17). For i, j ∈ V l
+(o, w) \ {o} where i�l j,

x�l
i x
�l
j

∑
v∈V l

+(i,j)\{i,j}

(bv − `v) ≥ 0

holds. Assume now that Property (a) does not hold. Consequently, there are
u1, u2, u3 ∈ V l

+(o, w) \ {o} with u1 ≺l u2 ≺l u3 such that `u1 > 0, `u2 < bu2 , and
`u3 > 0 hold. Thus, x�l

u1
= 1 = x�l

u3
and

∑
v∈V l

+(u1,u3)\{u1,u3}(bv − `v) > 0, therefore

x�l
u1
x�l
u3

∑
v∈V l

+(u1,u3)\{u1,u3}

(bv − `v) > 0

holds. Consequently, f1(`, x�l , x�l) > 0.
If ` satisfies Property (a), then we set x�l

u = 0 for all u ∈ P l(o, sl1) \
{
sl1
}
.

Otherwise, we set x�l
u = 1. Additionally, we set x�l

u = 1 for all u ∈ P l(o, sl2)
and otherwise we set x�l

u = 0. Consequently, for i ∈ V l
+(o, sl1) \

{
sl1
}

or j ∈
V l

+(sl2, w) \
{
sl2
}
, we have x�l

i x
�l
j = 0 and for i, j ∈ V l

+(sl1, s
l
2),∑

v∈V l
+(i,j)\{i,j}

(bv − `v) = 0

holds due to Property (a). Consequently, f1(`, x�l , x�l) = 0 holds. �

Lemma 5.5. Let z be feasible for (17) and

f2(`, y�l) :=
∑

i∈V l
−(o,w)

y�l
i

∑
v∈V l

−(i,w)\{i}

(bv − `v). (19)

Then, there exists y�l such that f2(`, y�l) = 0 holds if and only if ` satisfies
Property (b).

Proof. Let z be feasible for (17). For i ∈ V l
−(o, w),

y�l
i

∑
v∈V l

−(i,w)\{i}

(bv − `v) ≥ 0

holds. Assume now that Property (b) does not hold. Consequently, there are
u1, u2 ∈ V l

−(o, w) with u1≺l u2 such that `u1
> 0 and `u2

< bu2
hold. Thus, y�l

u1
= 1

and ∑
v∈V l

−(u1,w)\{u1}

(bv − `v) > 0

holds, which implies f2(`, y�l) > 0.
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If ` satisfies Property (b), then we set y�l
u = 0 for all u ∈ V l

−(o, tl1) \
{
tl1
}
.

Otherwise, we set y�l
u = 1. Furthermore, for i ∈ V l

−(tl1, w),∑
v∈V l

−(i,w)\{i}

(bv − `v) = 0

holds due to Property (b). Consequently, f2(`, y�l) = 0 holds. �

Lemma 5.6. Let z be feasible for (17) and

f3(`, x�r) :=
∑

i∈V r
+(o,w)

x�r
i

∑
v∈V r

+(o,i)\{i}

(bv − `v). (20)

Then, there exists x�r such that f3(`, x�r) = 0 holds if and only if ` satisfies
Property (c).

Lemma 5.7. Let z be feasible for (17) and

f4(`, y�r , y�r) =
∑

i,j∈V r
−(o,w)\{w}:
i�rj

y�r
i y�r

j

∑
v∈V r

−(i,j)\{i,j}

(bv − `v). (21)

Then, there exists (y�r , y�r) such that f4(`, y�r , y�r) = 0 holds if and only if `
satisfies Property (d).

In the following, we consider f1, . . . , f4 as specified in Lemmas 5.4–5.7. As a
next step, we show that changing the nomination ` on the boundary nodes of
Properties (a)–(d) does not affect the values of f1, . . . , f4, since the corresponding
products of binary variables are zero.

Lemma 5.8. Let z be an optimal solution of (17) and let u1, u3 ∈ V l
+(o, w) with

u1 �l u3 be nodes such that `u1
> 0, `u3

> 0, `u = 0 for all u ∈ (V l
+(o, u1) ∪

V l
+(u3, w)) \ {o, u1, u3}. Suppose further that z′ is feasible for (17) with

`′u1
> 0, `′u3

> 0, `′u = `u, u ∈ V l
+(o, w) \ {o, u1, u3} .

Then, f1(`′, x�l , x�l) = f1(`, x�l , x�l) holds.

Proof. Optimality of z and the choice of u1 and u3 imply x�l
u = 0 for all u ∈

V l
+(o, u1) \ {o, u1} and x�l

u = 0 for all u ∈ V l
+(u3, w) \ {u3}. Hence, for i, j ∈

V l
+(o, w) \ {o} with i�l j we have

x�l
i x
�l
j

∑
v∈V l

+(i,j)\{i,j}

(bv − `v) = 0,

whenever u1 or u3 is in V l
+(i, j) \ {i, j}, because then x�l

i x
�l
j = 0. Consequently, a

change of `u1 or `u3 does not change f1(`, x�l , x�l). �

Lemma 5.9. Let z be an optimal solution of (17) and let v1 ∈ V l
−(o, w) be a node

such that `v1 > 0 and `v = 0 for all v ∈ V l
−(o, v1) \ {v1}. Suppose further that z′ is

feasible for (17) with

`′v1 > 0, `′v = `v, u ∈ V l
−(o, w) \ {v1, w} .

Then, f2(`′, y�l) = f2(`, y�l) holds.
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Proof. Optimality of z and the choice of v1 imply y�l
v = 0 for all v ∈ V l

−(o, v1)\{v1}.
Hence,

y�l
i

∑
v∈V l

−(i,w)\{i}

(bv − `v) = 0

holds whenever v1 ∈ V l
−(i, w) \ {i}. Thus, a change of `v1 does not change f2(`, y�l).

�

Lemma 5.10. Let z be an optimal solution of (17) and let u1 ∈ V r
+(o, w) be a

node such that `u1 > 0 and `u = 0 for all u ∈ V r
+(u1, w) \ {u1}. Suppose further

that z′ is feasible for (17) with

`′u1
> 0, `′u = `u, u ∈ V r

+(o, w) \ {o, u1} .

Then, f3(`, x�r) = f3(˜̀, x�r) holds.

Lemma 5.11. Let z be an optimal solution of (17) and let v1, v3 ∈ V r
−(o, w) with

v1 �r v3 be nodes such that `v1 > 0, `v3 > 0, `u = 0 for all u ∈ (V r
−(o, v1) ∪

V r
−(v3, w)) \ {v1, v3, w}. Suppose further that z′ is feasible for (17) with

`′v1 > 0, `′v3 > 0, `′u = `u, u ∈ V r
−(o, w) \ {v1, v3, w} .

Then, f4(`′, y�r , y�r) = f4(`, y�r , y�r) holds.

The two last proofs can again be found in Appendix A. We next show that there
is an optimal solution of (14) that satisfies Properties (a)–(d). More precisely, we
prove that the optimal value of (17) is zero by individually treating f1, . . . , f4. The
final result then easily follows from Lemmas 5.4–5.7.

Lemma 5.12. If z is an optimal solution of (17), then f1(`, x�l , x�l) = 0 holds.

Proof. Let z be an optimal solution of (17). By contradiction, we assume that
f1(`, x�l , x�l) > 0 holds. Lemma 5.4 implies that ` does not satisfy Property (a).
Consequently, there are entries u1, u2, u3 ∈ V l

+(o, w)\{o} with u1≺lu2≺lu3 such that
`u1

> 0, `u2
< bu2

, and `u3
> 0. If qa > 0 for a ∈ δout(o)∩P l(o, w), we replace u1 = o.

Otherwise, we choose u1 6= o such that `u = 0 holds for all u ∈ V l
+(o, u1)\{o, u1} and

we choose u3 such that `u = 0 holds for all u ∈ V l
+(u3, w) \ {u3}. We now consider

a flow decomposition as in Lemma 3.1. Due to q ≥ 0, an exit v3 ∈ V l
−(u3, w)

with q(P l(u3, v3)) > 0 exists. Moreover, by the choice of u1, there is an exit
v1 ∈ V l

−(u1, w) with `v = 0 for all v ∈ V l
−(o, v1) \ {v1} and q(P l(u1, v1)) > 0. We

need to distinguish two cases.
Case 1: v1 ≺l u2 holds. We now decrease q(P l(u3, v3)) by ε > 0 and in-

crease q(P l(u2, v3)) by the same amount ε. This increases the potential difference
ΠP l(o,w)(q) due to u2 ≺l u3. Thus, we decrease q(P l(u1, v1)) by ε̃ > 0. Due to
Lemma 3.4, we can choose ε and ε̃ such that ΠP l(o,w)(q) stays the same as before
the modification and `u1

> 0, `u2
≤ bu2

, `u3
> 0, `v1 > 0 holds. In particular, the

binary variables of z stay the same. Due to this and Lemmas 5.9–5.11, the values
of f2, f3, and f4 stay the same. Moreover, the modified solution satisfies Con-
straints (17b). Furthermore, by this modification we decrease qa for a ∈ P l(u1, v1),
increase qa for a ∈ P l(u2, u3), and the remaining arc flows stay the same. Hence,
since u1 ≺l v1 ≺l u2 ≺l u3 and by Lemma 3.4 (d), we possibly increase the potential
difference between w1 and w2 and Constraint (17d) is still satisfied. Consequently,
z is still feasible for (17). Due to this modification, we decrease `u1 > 0 and `u3 > 0
and increase `u2 . By Lemma 5.8, considering only the decrease of `u1 and `u3 does
not change the objective function value. In contrast, the increase of `u2 decreases



20 M. LABBÉ, F. PLEIN, M. SCHMIDT, AND J. THÜRAUF

f1 because
x�l
u1
x�l
u3

∑
v∈V l

+(u1,u3)\{u1,u3}

(bv − `v)

decreases. Thus, the modification decreases the objective function value, which
contradicts the optimality of the original solution.

Case 2: u2 ≺l v1 holds. We now decrease q(P l(u1, v1)) by ε > 0 and in-
crease q(P l(u2, v1)) by the same amount ε. This decreases the potential difference
ΠP l(o,w)(q) due to u1 ≺l u2. Thus, we now decrease q(P l(u3, v3)) by ε̃ > 0 and
increase q(P l(u2, v3)) by the same amount ε̃, which increases the potential differ-
ence ΠP l(o,w)(q) due to u2 ≺l u3. Due to Lemma 3.4, we can choose ε and ε̃ such
that ΠP l(o,w)(q) stays the same and `u1

> 0, `u2
≤ bu2

, `u3
> 0 holds. In analogy

to Case 1, the function values of f2, f3, and f4 stay the same and the modified
solution satisfies Constraints (17b). Further, the modification only decreases qa
for a ∈ P l(u1, u2) and increases flow qa for a ∈ P l(u2, u3). The remaining arc
flows stay the same. Hence, since u1 ≺l u2 ≺l u3 and by Lemma 3.4 (d), we possi-
bly increase the potential difference between w1 and w2 and Constraint (17d) is
still satisfied. Consequently, z is feasible for (17) after modification. In analogy
to Case 1, the modification decreases f1, which contradicts the optimality of the
original solution. �

Lemma 5.13. If z is an optimal solution of (17), then f2(`, y�l) = 0 holds.

Proof. Let z be an optimal solution of (17). By contradiction, we assume that
f2(`, y�l) > 0 holds. Lemma 5.5 implies that ` does not satisfy Property (b).
Consequently, there are exits v1, v2 ∈ V l

−(o, w) with v1 ≺l v2, `v1 > 0 and `v2 < bv2 .
We now choose v1 such that `u = 0 holds for all u ∈ V l

−(o, v1) \ {v1} and v2 such
that `u = bu holds for all u ∈ V l

−(v1, v2) \ {v1, v2}. Next, let an entry u1 ∈ V l
+(o, w)

be given so that `u1
> 0, `u = 0 for all u ∈ V l

+(o, u1) \ {o, u1}, and in a flow
decomposition as by Lemma 3.1, q(P l(u1, v1)) > 0 holds. Due to Lemma 3.4
and v1 ≺l v2, we can decrease q(P l(u1, v1)) and increase q(P l(u1, v2)) such that
ΠP l(o,w)(q) remains the same and 0 < `u1

≤ bu1
, `v1 > 0, 0 < `v2 ≤ bv2 hold. Thus,

the binary variables of z stay the same. Furthermore, by Lemmas 5.8, 5.10, and
5.11 the values of f1, f3, and f4 stay the same. The modified solution satisfies
Constraints (17b) and we only decrease qa for a ∈ P l(u1, v1) and increase qa for
a ∈ P l(v1, v2). The remaining arc flows are unchanged. Then, since u1 ≺l v1 ≺l v2

and by Lemma 3.4 (d), Constraint (17d) is still satisfied. Consequently, z is still
feasible for (17). Due to this modification, we decrease `v1 > 0 and increase `v2 .
By Lemma 5.9, considering only the decrease of `v1 does not change the objective
function value. In contrast, the increase of `v2 decreases f2 because

y�l
v1

∑
v∈V l

−(v1,w)\{v1}

(bv − `v)

decreases. Thus, the modification decreases the objective function value, which
contradicts the optimality of the original solution. �

Lemma 5.14. If z is an optimal solution of (17), then f3(`, x�r) = 0 holds.

Lemma 5.15. If z is an optimal solution of (17), then f4(`, y�r , y�r) = 0 holds.

Again, the proofs for the results concerning f3 and f4 can be found in Appendix A.
Finally, we obtain the main structural property for nodes w1 and w2 on different
sides of G by combining the previous lemmas.
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o

w

sl1

tl1

sl2

tr2

w2

sr2

tr1

w1

sr1

Figure 4. Configuration of s and t nodes with o�r w1≺r w2�r w.
Boxes qualitatively illustrate the amount of the booking that is
nominated.

Theorem 5.16. Let (o, w) ∈ V+ × V− be fixed, w1 ∈ P l(o, w), and w2 ∈ P r(o, w).
Then, an optimal solution (`, q, π) of (14) exists that satisfies Properties (a)–(d).

Proof. The zero nomination is feasible for Problem (14). Furthermore, the feasible
region of the latter problem is compact and thus, an optimal solution is attained.
Consequently, Problem (17) has an optimal solution, which is attained. Due to
Lemmas 5.12–5.15 and Lemmas 5.4–5.7, an optimal solution (`, q, π, x, y) of Prob-
lem (17) exists that satisfies Properties (a)–(d). Additionally, the solution (`, q, π)
is also optimal for Problem (14). �

5.2. Nodes on the Same Side of G. Assume w1, w2 ∈ P l(o, w) or w1, w2 ∈
P r(o, w) holds. We can w.l.o.g. assume that w1, w2 ∈ P r(o, w) holds. If w2 ≺r w1

holds, then from q ≥ 0 in Problem (14) it follows that ΠP r(w1,w2)(q) ≤ 0 is valid.
Thus, the zero nomination is an optimal solution for Problem (14). Consequently,
we now assume that w1 ≺r w2 holds.

We want to show that an optimal solution (`, q, π) of Problem (14) exists such that
Properties (a), (b), (d), and (a) w.r.t. P r(o, w), i.e., two entries sr1, sr2 ∈ V r

+(o, w)
with sr1 �r s

r
2 exists such that

`v = 0, v ∈
(
V r

+(o, sr1) ∪ V r
+(sr2, w)

)
\ {o, sr1, sr2} ,

`v = bv, v ∈ V r
+(sr1, s

r
2) \ {sr1, sr2} ,

is satisfied. Figure 4 illustrates a possible node configuration. To this end, we
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introduce an optimization problem similar to (16), which is given by

min
`,q,π,x,y

f1(`, x�l , x�l) + f2(`, y�l) + f3(`, x�r , x�r) + f4(`, y�r , y�r) (22a)

s.t. (1a), (3b), (14b), (14c), (16b)–(16h), (17d),

Mx�r
v ≥

∑
u∈V r

+(o,v)\{o}

`u, v ∈ V r
+(o, v) \ {o} , (22b)

x�r
v ∈ {0, 1} , v ∈ V. (22c)

Note that an analogous variant of Lemma 5.3 is also valid for Problem (22).
We specify the parts of the objective function of (22) as follows: the functions f1,

f2, and f4 are defined as in Lemmas 5.4, 5.5, and 5.7. The function f3 is defined
in analogy to Lemma 5.4 w.r.t. P r. We note that fi for i = 1, . . . , 4 also inherit
the corresponding properties of Lemmas 5.4–5.11. We now prove that the optimal
objective value of (22) is zero.

Lemma 5.17. If z is an optimal solution of (22), then f1(`, x�l , x�l) = 0 holds.

Proof. The claim follows in analogy to Lemma 5.12. In doing so, we note that the
modifications in the proof of Lemma 5.12 only affect nodes of P l(o, w). Consequently,
we do not change the potential difference between w1 and w2 due to w1, w2 ∈
P r(o, w). �

Lemma 5.18. If z is an optimal solution of (22), then f2(`, y�l) = 0 holds.

Proof. The claim follows in analogy to Lemma 5.13. �

To show analogous results for f3 and f4, we make use of an auxiliary lemma.

Lemma 5.19. An optimal solution z of (22) exists such that `v = 0 for all v ∈
V r
−(o, w1) and `u = 0 for all u ∈ V r

+(w2, w) is satisfied.

Proof. We choose an optimal solution z of (22) such that∑
v∈V r

−(o,w1)

`v +
∑

u∈V r
+(w2,w)

`u

is minimal. Note that every addend is nonnegative. By contradiction, we assume
that ∑

v∈V r
−(o,w1)

`v +
∑

u∈V r
+(w2,w)

`u > 0

holds.
Case 1: There exists v ∈ V r

−(o, w1) with `v > 0. We now choose v such that
`v′ = 0 for all v′ ∈ V r

−(o, v) \ {v} is satisfied. Consequently, an entry u ∈ V r
+(o, v)

exists such that `u′ = 0 holds for all u′ ∈ V r
+(o, u) \ {o} and in a flow decomposition,

such as in Lemma 3.1, q(P r(u, v)) > 0 is satisfied. We can now decrease the latter
by ε > 0 such that `u > 0 and `v > 0 holds. This decreases the potential drop
ΠP r(o,w)(q). Due to Lemmas 5.17 and 5.18, we can assume that q(P l(sl1, t

l
1)) > 0

holds. By using Lemma 3.4, we can now decrease the latter by ε̃ and choose ε
such that ΠP l(o,w)(q) = ΠP r(o,w)(q) holds and `u, `v, `sl1 , `tl1 are positive. Moreover,
Lemmas 5.8–5.11 imply that the solution obtained after the modifications is still
feasible and optimal for (22). In doing so, we note that the modifications do not
change any flow of P r(w1, w2) and thus, the potential difference between w1 and w2
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stays the same. This is a contradiction to the choice of z because∑
v∈V r

−(o,w1)

`v +
∑

u∈V r
+(w2,w)

`u

is decreased in the modified solution.
Case 2: There is u ∈ V r

+(w2, w) with `u > 0. We now choose u such that `u′ = 0
for all u′ ∈ V r

+(u,w). Due to q ≥ 0, an exit v ∈ V r
−(u,w) exists such that `v′ = 0

holds for all v′ ∈ V r
−(v, w) \ {v, w} and q(P r(u, v)) > 0. In analogy to Case 1,

the claim follows by decreasing the flow q(P r(u, v)) by ε > 0 and q(P l(sl1, t
l
1)) by

ε̃ > 0. �

Lemma 5.20. If z is an optimal solution of (22), then f3(`, x�r , x�r) = 0 holds.

Proof. Let z be an optimal solution of (22) that satisfies Lemma 5.19. By contradic-
tion, we assume that f3(`, x�r , x�r) > 0 holds. Lemma 5.4 implies that ` does not sat-
isfy Property (a) w.r.t. P r. Consequently, there are entries u1, u2, u3 ∈ V r

+(o, w)\{o}
with u1 ≺r u2 ≺r u3 such that `u1 > 0, `u2 < bu2 , and `u3 > 0 hold. If qa > 0 for
a ∈ δout(o) ∩ P r(o, w), we replace u1 = o. Otherwise, we choose u1 6= o such that
`u = 0 holds for all u ∈ V r

+(o, u1) \ {o, u1} and we choose u3 such that `u = 0 holds
for all u ∈ V r

+(u3, w)\{u3}. We now consider a flow decomposition as in Lemma 3.1.
Due to q ≥ 0, an exit v3 ∈ V r

−(u3, w) with q(P r(u3, v3)) > 0 exists. By the choice
of u1, there is an exit v1 ∈ V r

−(u1, w) with `v = 0 for all v ∈ V r
−(o, v1) \ {v1} and

q(P r(u1, v1)) > 0. Consequently, v1 �r v3 holds. We now distinguish two cases.
Case 1: u2 �r w1. Due to Lemma 5.19, w1 �r v1 holds. Consequently, we

can decrease q(P r(u1, v1)) > 0 by ε > 0 and we increase q(P r(u2, v1)) by the same
amount such that `u1

> 0 and `u2
≤ bu2

holds. Since u1≺ru2 holds, this modification
decreases the potential difference ΠP r(o,w)(q) but the flow on arcs of P r(w1, w2)
stays the same due to u2 �r w1. Consequently, ΠP r(w1,w2)(q) is unchanged. From
the proof of Lemma 5.12, it follows that this modification decreases f3. In analogy
to Case 1 of Lemma 5.19, we can now decrease ΠP l(o,w)(q) by modifying `sl1 and
`tl1 such that ΠP r(o,w)(q) = ΠP l(o,w)(q) holds without changing the values of fi for
i = 1, . . . , 4. This is a contradiction to the optimality of z because we have decreased
f3 in the first part of the modification.

Case 2: w1≺ru2. Due to u2≺ru3 and Lemma 3.4, we can decrease q(P r(u3, v3))
by ε > 0 and increase q(P r(u2, v3)) by 0 < ε̃ ≤ ε such that ΠP r(o,w)(q) = ΠP l(o,w)(q),
`u3

> 0, `v3 > 0, and `u2
≤ bu2

holds. Consequently, the binary variables of z
stay the same. By using Lemmas 5.8, 5.9, and 5.11, the values f1, f2, and f4

stay the same as well. The modified solution satisfies Constraints (17b). Further,
the modification only increases qa for a ∈ P r(u2, u3) and decreases the flow qa for
a ∈ P r(u3, v3). The remaining arc flows stay unchanged. Due to w1≺ru2≺ru3≺rw2

and Lemma 3.4 (d), we possibly increase the potential difference between w1 and w2

and thus, Constraint (17d) is still satisfied. Case 1 of Lemma 5.12 implies that
the previous modification decreases f3, which is a contradiction to the optimality
of z. �

Lemma 5.21. If z is an optimal solution of (22), then f4(`, y�r , y�r) = 0 holds.

Proof. Let z be an optimal solution of (22) that satisfies Lemma 5.19. By contra-
diction, we assume that f4(`, y�r , x�r) > 0 holds. Lemma 5.7 implies that ` does
not satisfy Property (d). Consequently, there are exits v1, v2, v3 ∈ V r

−(o, w) \ {w}
with v1 ≺r v2 ≺r v3, `v1 > 0, `v2 < bv2 , and `v3 > 0. Furthermore, we choose v1 such
that `v = 0 holds for all v ∈ V r

−(o, v1) \ {v1}. If qa > 0 for a ∈ δin(w) ∩ P r(o, w),
we replace v3 = w. Otherwise, we choose v3 6= w such that `v = 0 holds for all
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v ∈ V l
−(v3, w) \ {v3, w}. We now consider a flow decomposition as in Lemma 3.1.

Due to q ≥ 0, there is an entry u3 ∈ V r
+(o, v3) with `u = 0 for all u ∈ V r

+(u3, w)\{u3}
and q(P r(u3, v3)) > 0. Furthermore, an entry u1 ∈ V r

+(o, w) with `u = 0 for all
u ∈ V r

+(o, u1) \ {o, u1} exists that satisfies q(P r(u1, v1)) > 0. Due to Lemma 5.19,
w1 ≺r v1 ≺r v2 ≺r v3 holds. We now distinguish two cases.

Case 1: v2 �r w2. Consequently, v1 ≺r v2 �r w2 holds. We can now decrease
q(P r(u1, v1)) by ε > 0 and increase q(P r(u1, v2)) by 0 < ε̃ ≤ ε such that ΠP r(o,w)

stays the same and `u1
> 0, `v1 > 0, and `v2 ≤ bv2 holds. In particular, the binary

variables of z stay the same after the modification. Due to this and Lemmas 5.8 and
5.10, the values of f1, f2, and f3 stay unchanged. The modified solution satisfies
Constraints (17b). Further, this modification only decreases qa for a ∈ P r(u1, v1)
and increases arc flows qa for a ∈ P r(v1, v2). The remaining arc flows stay the
same. Hence, since w1≺r v1≺r v2�r w2 and by Lemma 3.4 (d), we possibly increase
the potential difference between w1 and w2 and Constraint (17d) is still satisfied.
Consequently, z is still a feasible for (22). In analogy to Case 1 of Lemma 5.15, it
follows that the modification decreases f4, which is a contradiction to the optimality
of z.

Case 2: w2 ≺r v2. Consequently, u3 ≺r w2 ≺r v2 ≺r v3 holds. We can now apply
Case 2 of Lemma 5.15. In doing so, we keep in mind that w1≺r v1 and w2≺r v2≺r v3

hold which ensures that z still satisfies (17d) after the applied modifications. �

Finally, we obtain a result for the present case that is analogous to Theorem 5.16.

Theorem 5.22. Let (o, w) ∈ V+ × V− be fixed and w1, w2 ∈ P r(o, w). Then, an
optimal solution (`, q, π) of (14) exists that satisfies Properties (a), (b), (d) and
(a) w.r.t. P r.

Proof. The zero nomination is feasible for Problem (14) and it is optimal if w2�rw1

holds. Furthermore, the feasible region of the latter problem is compact and thus,
an optimal solution is attained. Consequently, Problem (22) has an optimal solution,
which is attained. Due to Lemmas 5.17–5.21 and Lemmas 5.4–5.7, for w1 ≺r w2 an
optimal solution of Problem (22) exists that satisfies Properties (a), (b), (d) and,
(a) w.r.t. P r. Additionally, the solution is also optimal for Problem (14). �

6. A Polynomial-Time Algorithm

Exploiting the special structure of nominations that maximize the potential
difference between a pair of nodes, we now show that the feasibility of a booking can
be checked in polynomial time on a cycle. First, we obtain an estimate on the number
of arithmetic operations necessary to detect the existence of an infeasible nomination,
or otherwise certify its non-existence. In a second step, we then translate this result
to the Turing model of computation, resulting in a polynomial-time algorithm
for deciding the feasibility of a booking. For doing so, we make the following
non-restrictive assumption on the rationality of the problem data.

Assumption 6.1. We consider a booking b ∈ QV and assume that Λa ∈ Q for all
a ∈ A and π−u , π+

u ∈ Q for all u ∈ V . Additionally, we assume that the encoding
lengths are bounded from above by τ .

As a consequence of Corollary 5.2, a booking b is feasible if and only if, for every
(w1, w2) ∈ V 2 and (o, w) ∈ V+ × V−,

πw1
− πw2

> π+
w1
− π−w2

, (1a), (3b), (14b), (14c) (23)

admits no solution. We now make several observations. First, recall that A′ is
obtained from A by orienting all arcs from o to w. Then, given (14c), the right-hand
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sides of (14b) simplify to Λaq
2
a for all a ∈ A′. Second, we eliminate the potentials π

by aggregating the resulting constraints along P l(o, w) and P r(o, w). We only treat
the situation corresponding to Section 5.2 in which o �r w1 ≺r w2 �r w is valid,
since it has the highest number of s and t nodes necessary to set up the structural
properties and thus represents the worst case in terms of complexity. The situation
corresponding to Section 5.1 with w1 and w2 on different paths w.r.t. o and w can
however be treated in a similar way. We obtain∑

a∈P r(w1,w2)

Λaq
2
a > π+

w1
− π−w2

,

∑
a∈P l(o,w)

Λaq
2
a −

∑
a∈P r(o,w)

Λaq
2
a = 0.

It is well-known that if the nomination is balanced, the rank of the flow conserva-
tion constraints (1a) is |V | − 1, resulting in a single degree of freedom in the case of
a cycle. Thus, we introduce `w = `lw + `rw to take into account the supply to the
flow-meeting point w along P l and P r separately. Then, for a = (u, v) ∈ A′, (1a)
leads to

qa =


−

∑
v′∈P l(v,w)\{w}

σv′`v′ + `lw, if a ∈ P l(o, w),

−
∑

v′∈P r(v,w)\{w}

σv′`v′ + `rw, if a ∈ P r(o, w).

As a consequence of the previous discussion, we need to check that the system of
polynomials

∑
a=(u,v)∈P r(w1,w2)

Λa

− ∑
v′∈P r(v,w)\{w}

σv′`v′ + `rw

2

> π+
w1
− π−w2

, (24a)

∑
a=(u,v)∈P l(o,w)

Λa

− ∑
v′∈P l(v,w)\{w}

σv′`v′ + `lw

2

−
∑

a=(u,v)∈P r(o,w)

Λa

− ∑
v′∈P r(v,w)\{w}

σv′`v′ + `rw

2

= 0, (24b)

−
∑

v′∈P l(v,w)\{w}

σv′`v′ + `lw ≥ 0, (u, v) ∈ P l, (24c)

−
∑

v′∈P r(v,w)\{w}

σv′`v′ + `rw ≥ 0, (u, v) ∈ P r, (24d)

`lw + `rw = `w, ` ∈ N(b), (24e)

admits no solution.
We now reduce the dimension of (24) to obtain a system of polynomials with

a constant number of constraints and variables independent of the problem size.
Hence, we make use of the structure analyzed in Section 5.2 for potential-difference
maximizing nominations.

In what follows, we consider a configuration of Properties (a), (b), (d) and
(a) w.r.t. P r, determined by sl1, sl2 ∈ V l

+(o, w), tl1 ∈ V l
−(o, w), sr1, sr2 ∈ V r

+(o, w) as
well as tr1, tr2 ∈ V r

−(o, w), and the corresponding partially fixed ` ∈ N(b).

Lemma 6.2. There exists a system of polynomials equivalent to (24e) that has at
most 9 variables and 16 constraints, independent of the size of the cycle.
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Proof. First, observe that we can substitute the nomination entries for o and w
using

`w = `lw + `rw, `o = −
∑

u∈V \{o}

σu`u.

Fixing nomination entries either to their booking bound or to zero, as by Proper-
ties (a)–(d), it is easy to observe that `sl1 , `sl2 , `tl1 , `sr1 , `sr2 , `tr1 , `tr2 , `

l
w, `

r
w, are the only

remaining 9 variables. Note that in some situations these variables may coincide. In
particular, there are at most 14 constraints corresponding to the booking bounds,
namely 0 ≤ `u ≤ bu for all u ∈

{
sl1, s

l
2, t

l
1, s

r
1, s

r
2, t

r
1, t

r
2

}
.

The number of additional constraints due to o and w depend on the configuration
under consideration. If o /∈

{
sl1, s

r
1

}
, then the additional constraint `o = bo is

necessary. If w /∈
{
tl1, t

r
2

}
, then `w = bw is required. �

A combinatorial analysis of (24c) and (24d) also leads to the following constant
number of constraints.

Lemma 6.3. There exists a system of polynomials equivalent to (24c) and (24d)
with at most 24 constraints, independent of the size of the cycle. This system can
be determined in O(|A|) time.

Proof. Let us first consider (24d). There are four s and t nodes on P r(o, w), namely
sr1, s

r
2, t

r
1, t

r
2. Thus, assuming that constants have been moved to the right-hand

sides in (24d), there can be at most 24 left-hand sides with different constant right-
hand sides. For every left-hand side, it is sufficient to impose a single constraint
admitting the maximum constant on the right-hand side. This is easily achieved by
iterating over all arcs of P r(o, w). Similarly, (24c) can be reduced to a system with
23 constraints. �

The following result now is a direct consequence of the two previous results.

Theorem 6.4. System (24) can be reduced in O(|A|) time to a system of polyno-
mials with at most 9 variables and 42 constraints.

Next, we apply a general decision algorithm for the existence of solutions for
systems of polynomial equations and inequalities, given by Algorithm 14.16 in [5], to
estimate the number of arithmetic operations necessary to decide the existence of a
solution for (24). Note that this algorithm can in particular handle strict inequalities
as required to determine a violation of the potential difference bounds; see, e.g.,
Notation 11.31 in [5]. We then obtain the following result.

Theorem 6.5. Suppose Assumption 6.1 holds. Then, the existence of a solution
of (24) can be decided in O((log|V |+ τ)|V+|4|V−|3) time.

Proof. Algorithm 14.16 in [5] has a complexity in the arithmetic computation model
of skdO(k), where s is the number of constraints, k is the number of variables, and d
is the highest degree of the polynomials. For a given configuration of Properties (a),
(b), (d), and (a) w.r.t. P r, the number of variables and constraints in (24) can be
reduced to a constant by Theorem 6.4 and d = 2. Consequently, the existence of a
solution for this reduced system can be checked in O(1) arithmetic operations.

Under Assumption 6.1, the encoding length of the rational coefficients of (24) are
bounded by O(log|V |+ τ). This can easily be deduced by analyzing the constant
term in, e.g., (24a). Given the constant number of variables and constraints in the
reduced version of (24), the encoding length of integer coefficients after scaling is
still bounded by O(log|V | + τ). In this case, the encoding length of coefficients
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appearing in intermediate computations and the output of Algorithm 14.16 in [5]
are also bounded by O(log|V |+ τ). From a discussion in Chapter 1 of [17], the
existence of a solution to the reduced version of System (24) can then be checked in
O(log|V |+ τ)O(1) = O(log|V |+ τ) time on a Turing machine.

By Lemmas 5.17–5.21, a solution of (24) exists if and only if there is a config-
uration of Properties (a), (b), (d), and (a) w.r.t. P r, such that a solution of the
reduced version of (24) exists. Consequently, the result follows by iterating over all
combinations of sl1, sl2, tl1, sr1, sr2, tr1, tr2. �

Furthermore, iterating this procedure over all (o, w) ∈ V+ × V−, we obtain the
final result for validating a booking on a cycle, which ensures that checking the
feasibility of a booking on a cycle can be done in polynomial time.

Corollary 6.6. Under Assumption 6.1, the feasibility of booking b ∈ QV≥0 can be
checked in O((log|V |+ τ)|V+|5|V−|4) time on a cycle.

We close this section with a short remark on how our results can be applied to
other types of utility networks, e.g., to water distribution or power networks.

Remark 6.7. The structural properties derived in Sections 2–5 can be applied to
potential-based networks if the following assumptions hold: The potentials satisfy (1)
where for any arc a ∈ A, the right-hand side of (1b) is a function φa : R → R

that may depend on the arc flow qa and that is continuous, strictly increasing, and
odd, i.e., φa(−qa) = −φa(qa). Consequently, our structural results hold for many
different networks such as water, hydrogen, or lossless DC (direct current) power
flow networks, if the physics model is chosen appropriately; see [16]. In particular,
we can reduce the considered optimization problem to a fixed inequality system for
all these potential-based networks as shown in Section 6. However, the presented
complexity result is only valid in the case in which the above mentioned system
consists of polynomials.

However, the overall question of deciding the feasibility of a booking discussed in
this paper is rather specific and tailored to the European gas market system since,
e.g., the market design for electricity is different to the one for gas in Europe.

7. Conclusion

In this work, we prove that deciding the feasibility of a booking in the European
entry-exit gas market model is in P for the special case of cycle networks. To
the best of our knowledge, this is the first in-depth complexity analysis in this
context that considers a nonlinear flow model and a network topology that is not
a tree. Our approach requires the combination of both the cyclic structure of the
network and properties of the underlying nonlinear potential-based flow model with
a general decision algorithm from real algebraic geometry. We show that the size of
a polynomial equality and inequality system for deciding the feasibility of a booking
is constant and, in particular, does not depend on the size of the cycle. Thus, a
general algorithm for solving this system can serve as a constant-time oracle used in
an enumeration of polynomial complexity.

Although our theoretical result moves the frontier of knowledge about the hardness
of deciding the feasibility of bookings in the European entry-exit gas market, it
still remains an open question to exactly determine the frontier between easy and
hard cases if a nonlinear and potential-based flow model is considered. Although
we believe that the problem is hard on general networks, no hardness results are
known so far. Since both trees and single cycle networks are now well understood, a
possibility is to consider more general classes of networks. Thus, a reasonable next
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step could be networks consisting of a single cycle with trees on it or, even more
generally, cactus graphs. In our opinion, it is promising to combine the techniques
used on trees and cycles in order to solve this larger graph class.

Finally, although the present paper is a very specific one, we hope that the
structural insights gained can be later put together with other insights to obtain
more general techniques for (adjustable) robust and nonlinear flow problems.
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Appendix A. Omitted Proofs

Proof of Lemma 5.6. Let z be feasible for (17). For i ∈ V r
+(o, w),
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i
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v∈V l

+(o,i)\{i}

(bv − `v) ≥ 0

holds. Assume now that Property (c) does not hold. Consequently, there are
u1, u2 ∈ V r

+(o, w) with u1≺r u2 such that `u1
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and `u2
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x�r
u2

= 1 and ∑
v∈V l

+(o,u2)\{u2}

(bv − `v) > 0

holds. Thus, f3(`, x�r) > 0.
If ` satisfies Property (c), then we set x�r

u = 0 for all u ∈ V r
+(sr1, w) \ {sr1},

otherwise we set x�r
u = 1. Furthermore, for i ∈ V r

+(o, sr1),∑
v∈V r

+(o,i)\{i}

(bv − `v) = 0

holds due to Property (c). Consequently, f3(`, x�r) = 0. �

Proof of Lemma 5.7. Let z be feasible for (17). For i, j ∈ V r
−(o, w) where i�r j

y�r
i y�r

j

∑
v∈V r

−(i,j)\{i,j}

(bv − `v) ≥ 0

holds. Assume now that Property (d) does not hold. Consequently, there are
u1, u2, u3 ∈ V r

−(o, w) \ {w} with u1 ≺r u2 ≺r u3 such that `u1
> 0, `u2

< bu2
, and

`u3
> 0 hold. Thus, y�r

u1
= y�r

u3
= 1 and∑

v∈V r
−(u1,u3))\{u1,u3}

(bv − `v) > 0

holds. Thus, f4(`, y�r , y�r) > 0.
If ` satisfies Property (d), then we set y�r

v = 0 for all v ∈ V r
−(o, tr1)\{tr1}, otherwise

we set y�r
v = 1. Additionally, we set y�r

v = 1 for all v ∈ V r
−(o, tr2) and otherwise

we set y�r
v = 0. Consequently, for i ∈ V r

−(o, tr1) \ {tr1} or j ∈ V r
−(tr2, w) \ {tr2}, the

equality y�l
i y�r

j = 0 holds and for i, j ∈ V r
−(tr1, t

r
2),∑

v∈V r
−(i,j)\{i,j}

(bv − `v) = 0

holds due to Property (d). Consequently, f4(`, y�r , y�r) = 0. �

Proof of Lemma 5.10. Optimality of z and the choice of u1 imply x�r
u = 0 for all

u ∈ V r
+(u1, w) \ {u1}. Hence,

x�r
i

∑
v∈V r

+(o,i)\{i}

(bv − `v) = 0,

whenever u1 ∈ V r
+(o, i) \ {i}. Thus, a change of `u1

does not change f3(`, x�r). �

Proof of Lemma 5.11. Optimality of z and the choice of v1 and v3 imply y�r
u = 0

for all u ∈ V r
−(o, v1) \ {o, v1} and y�r

u = 0 for all u ∈ V r
−(v3, w) \ {v3, w}. Hence,

y�r
i y�r

j

∑
v∈V r

−(i,j)\{i,j}

(bv − `v) = 0,

whenever v1 or v3 are in V r
−(i, j) \ {i, j}. Consequently, a change of `v1 or `v3 does

not change f4(`, y�r , y�r). �

Proof of Lemma 5.14. Let z be an optimal solution of (17). By contradiction, we
assume that f3(`, x�r) > 0 holds. Lemma 5.6 implies that ` does not satisfy
Property (c). Consequently, there are entries u1, u2 ∈ V r

+(o, w) with u1 ≺r u2,
`u1

< bu1
, and `u2

> 0. We now choose u1 such that `u = bu holds for all
u ∈ V r

+(o, u1) \ {u1} and u2 such that `u = 0 holds for all u ∈ V r
+(u2, w) \ {u2}.

Due to the latter, there is an exit v2 ∈ V r
−(u2, w) with `v2 > 0 and `v = 0

for all v ∈ V r
−(v2, w) \ {v2, w}. Furthermore, we can assume w.l.o.g. that in a
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flow decomposition, see Lemma 3.1, q(P r(u2, v2)) > 0 holds. Due to Lemma 3.4
and u1 ≺r u2, we can decrease q(P r(u2, v2)) and increase q(P r(u1, v2)) such that
ΠP r(o,w)(q) stays the same as before the modification and 0 < `u1 ≤ bu1 , `u2 >
0, `v2 > 0 hold. Thus, the binary variables of z stay the same. Furthermore,
by Lemmas 5.8, 5.9, and 5.11 the values of f1, f2, and f4 stay the same. The
modified solution satisfies Constraints (17b). The modification only decreases qa
for a ∈ P r(u2, v2), increases qa for a ∈ P r(u1, u2), and the remaining arc flows stay
the same. Hence, since u1 ≺r u2 ≺r v2 and by Lemma 3.4 (d), Constraint (17d) is
still satisfied. Consequently, z is still feasible for (17). Due to this modification, we
increase `u1 > 0 and decrease `u2 . By Lemma 5.10, considering only the decrease
of `u2

does not change the objective value. In contrast, the increase of `u1
decreases

f3 because
x�r
u2

∑
v∈V r

+(o,u2)\{u2}

(bv − `v)

decreases. Thus, the modification decreases the objective value, which is a contra-
diction to the optimality of the original solution. �

Proof of Lemma 5.15. Let z be an optimal solution of (17). By contradiction,
we assume that f4(`, y�r , y�r) > 0 holds. Lemma 5.7 implies that ` does not
satisfy Property (d). Consequently, there are exits v1, v2, v3 ∈ V r

−(o, w) \ {w} with
v1 ≺r v2 ≺r v3, `v1 > 0, `v2 < bv2 , and `v3 > 0. Furthermore, we choose v1 such
that `v = 0 holds for all v ∈ V r

−(o, v1) \ {v1}. If qa > 0 for a ∈ δin(w) ∩ P r(o, w),
we replace v3 = w. Otherwise, we choose v3 6= w such that `v = 0 holds for all
v ∈ V l

−(v3, w)\{v3, w}. We now consider a flow decomposition such as in Lemma 3.1.
Due to q ≥ 0, there is an entry u3 ∈ V r

+(o, v3) with `u = 0 for all u ∈ V r
+(u3, w)\{u3}

and q(P r(u3, v3)) > 0. Furthermore, an entry u1 ∈ V r
+(o, w) with `u = 0 for all

u ∈ V r
+(o, u1) \ {o, u1} exists which satisfies q(P r(u1, v1)) > 0. We now distinguish

two cases.
Case 1: v2 ≺r u3 holds. We now decrease q(P r(u1, v1)) by ε > 0 and in-

crease q(P l(u1, v2)) by the same amount ε. This increases the potential difference
ΠP (o,w)(q). Thus, we decrease q(P l(u3, v3)) by ε̃ > 0. Due to Lemma 3.4, we can
choose ε and ε̃ such that ΠP (o,w)(q) stays the same and `v1 > 0, 0 < `v2 ≤ bv2 , `u3

>
0, `v3 > 0 hold. Thus, the binary variables of z stay the same. Furthermore, by
Lemmas 5.8–5.10, the values of f1, f2, and f3 stay the same. The modified solu-
tion satisfies Constraints (17b). Further, the modification only decreases qa for
a ∈ P r(u3, v3), increases qa for a ∈ P r(v1, v2), and the remaining arc flows stay the
same. Hence, since v1 ≺r v2 ≺r u3 ≺r v3 and by Lemma 3.4 (d), Constraint (17d) is
still satisfied. Consequently, z is still feasible for (17). Due to this modification, we
decrease `v1 > 0 and `v3 > 0 and increase `v2 . By Lemma 5.11, considering only
the decrease of `v1 and `v3 does not change the objective value. In contrast, the
increase of `v2 decreases f4 because

y�r
v1 y
�r
v3

∑
v∈V r

−(v1,v3)\{v1,v3}

(bv − `v)

decreases. Thus, the modification decreases the objective value, which contradicts
the optimality of the original solution.

Case 2: u3 ≺r v2 holds. We now decrease q(P r(u3, v3)) by ε > 0 and in-
crease q(P r(u3, v2)) by the same amount ε. This decreases the potential difference
ΠP r(o,w)(q). Thus, we decrease q(P r(u1, v1)) by ε̃ > 0 and increase q(P r(u1, v2))
by the same amount ε̃ which increases the potential difference ΠP r(o,w)(q). Due
to Lemma 3.4, we can choose ε and ε̃ such that ΠP r(o,w)(q) stays the same and
`v1 > 0, 0 < `v2 ≤ bv2 , `v3 > 0 hold. In particular, the binary variables of z stay
the same. Furthermore, by Lemmas 5.8–5.10, the values of f1, f2, and f3 stay the
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same. The modified solution satisfies Constraints (17b). Further, the modification
only decreases qa for a ∈ P r(v2, v3), increases qa for a ∈ P r(v1, v2), and the remain-
ing arc flows stay the same. Hence, since v1 ≺r v2 ≺r v3 and by Lemma 3.4 (d),
Constraint (17d) is still satisfied.

Consequently, z is still feasible for (17). In analogy to Case 1, the modification
decreases f4, which contradicts the optimality of the original solution. �
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