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Abstract: If G 18 a connected graph,of order n, a hamiltonian walk of
G is a closed walk of minimum length which contains every vertex of G.
The length of a hemi Ltontan walk 8 greater than or equal to n, With
equality if and only if G is hamiltonian. Following J.L. Jolivet, we
define s(G) to be the difference of the length of a hami ltontan walk
in G and n . Thus s(G) > 0 and  s(G) = 0 if and only if G 18 hamilto=
nian. We prove the following generalizations of Ore's and Pdsa's
theorems ( thus answering conjectures of J.L.Jolivet):

Theorem : Let ¢ <71 s if for every patr of non-adjacent vertices T and
y, d(x) +d(y) 2 ¢ then s(G) <n = C.
Theorem ¢ Let ¢ <71 5 if :

|{ec ¢ d(x) < il <dg -1 for 0= J < (e-1)/2

|{e : d(z) < (e=1)/2 < (e-1)/2 (if e t8 odd)

then s(G) <n —¢ .

In order to prove these ‘theorems we need  results concerning the
existence of elementary cycles of length at least ¢ in connected and

9—-connected graphs.



1. INTRODUCTION

We shall follow the terminology of Berge's book [ 1] » in which the
reader can find all the definitions not given here.

G will always denote a comnected graph of order n .
1.1. Recall that a hamiltonian cycle (path) of G is an elementary cycle
(path) of length n, that is, a cycle (path), which contains every vertex
of G exactly once. Not all graphs are hamiltonian, and several weaker
conditions can be considered.

1.2. One of the simplest conditions concerns the existence of a cycle of
length c or of length at least c. We shall return to this problem in &3.
Another possible generalization of a hamiltonian path is a tree with
at most h end vertices : existence conditions have been obtained in this

case by Las Vergnas [12] and the author [2]

1.3. Here we are interested in another generalization introduced by
Goodman and Hedetniemi [8] and Jolivet [10,11] .We define a spanning
closed walk of a connected graph G to be a closed walk (called moEMhMEmm
cycle), which contains every vertex of G.(This is called in [10] a
pseudo-hamiltonian cycle) .The length of a spanning closed walk is greater
than or equal to n ; if the length is n it is a hamiltonian cycle.
Exactly we are interested in spanning closed walks of minimum length h(G),
which we call hamiltonian walks such as in (8l . Following Jolivet [10,11]
we define for a connected graph G, s(G) to be the least integer k such
that there exists a spanning closed walk of length n + k , that is

8(G) = h(G) = n . Thus s(G) > 0 and s(G) = 0 if and only if G is hamilto-
-nian. For example it is proved in [10] , that for a tree T,s(T) = n-2 ,
and thus s(G) < n-2 for every graph G.

u.». Remark : The parameter s(G) gives a measure of the hamiltonicity of

a graph. Another parameter considered in [4,9,10,14,15] is the minimum
number of edges, which must be added to G in order to make it hamiltonian.
If G is not hamiltonian this number is equal to the minimum number of
vertex-disjoint paths covering the vertices of G.

1.5. The following lemmas of [10,11] give a relation between the existence
of elementary cycles and the parameter s(G) and will be very useful.

1.5.1. If G contains an elementary cycle of length e, then s(G) < n—c.

1.5.2. Lemma : If G contains two elementary cycles of length ¢ and c¢' ,
having at most ome vertex in common, then s(G) <n + 2 — (¢ +ec') .

Lemma 1.5.2. was proved in [11]for two disjoint cycles , but a similar
proof shows that if the two cycles have one vertex in common , then
s(G) <n+1-(c+c").
1.6. The aim of this paper is to prove for hamiltonian walks generaliza-
-tions of Ore's and Posa's theorems, thus answering conjectures of
Jolivet [10,11] . We first recall some results on the existence of
hamiltonian cycles ; then we give sufficient conditions for the existence

of elementary cycles of length at least c¢ for a connected and a 2-connec-

-ted graph. These are used to prove the theorems.

The results given here are part of the author's thesis [3] and we shall
generally indicate only sketches of the proofs.

1.7. Notations : In what follows cycle will always mean elementary cycle;
E will denote the set of edges of G ; d(x) means the degree of the vertex
X ; mxu.xnv....xnw 18 an arbitrary ordering of the vertices of G ; wwm
sequence of the degrees of the vertices in a non-decreasing order will

be denoted by m_.mm.....mu .

2. HAMILTONIAN CYCLES

The following results are known. The reader can find proofs, references

|
and more results in Bondy and Chvatal [6].

G has an hamiltonian cycle <if :
2.1. Dirac : d(x) > n/2 for every vertex x .
2.2, Ore :d®) +d(@y) >n if {x,y} € E.
2.3. Posa : |{x : d(x) < j}|< j for j < (n-1)/2 and

[{x : dx) < (n-1)/2}] < (n-1)/2 for n odd .

A

2.4, Bondy : j <k, mm <3, mw <kl = mm + mW >n .
2.5 Chvatal : mu <j<n/2 = mnlu >n-j .
2.6. Las Vergnas : j <k, k> nj, HN..wa ¢E
, J = d(x.) + anNWv >n .
dixg) £3 5 dlx) < k7 B



3. ELEMENTARY CYCLES OF LENGTH AT LEAST C.

Case 1 : G connected.

3.1. Theorem : Let mauu&m»...uaxv be any ordering of the vertices of G
and let e < n . Suppose that :

u.Aw‘TJ.kwumm
mnx )<i, moxwv < k-1

Then Q contains a cycle of length at least o+1 .

=  max H&AN.V 5 maxwvw >c .

Proof : Suppose the theorem false for some value of n and let G = (X,E)

be a graph with n vertices, which satisfies the hypothesis , but not the
conclusion,and has the maximum possible number of edges. Clearly G is not
complete. Let x. and X be two non adjacent vertices of G with j < k

J

and such that : i) there exists between uu and xw a path having the

maximum possible length P .
ii) j+k is as large as possible subject to i).
Then the graph obtained by adding to G the edge Hx..k } satisfies the
hypothesis of the theorem and by the maximality of m contains a cycle

of length at least c+l. Thus the length p of the path between xu and X

satisfies p > c. Let mAx..va {x. I%H.%N“....%.'....%vuxww be the path

vmnsmmﬁ ku mnm xw and let :

J = HWW H Vn € MAN.vuﬁWv and .mun.vaH.THw € E W
K = m%w ty; € mANu.x ) and mwwlu.x } €E}

£m=m<m _u_ u mﬁxuv anmmmmv Mu cannot be joined to a vertex z not in
wnxu.uva (otherwise we would have between z and x a path of length

greater than p. Also Auuuww ¢ E, otherwise we would have a cycle of
length greater than p+l > c+1, contradicting i)). Furthermore if y; € Js

m%..%ﬁluv...u%_u%. 12057 |_.% } is a path of length p ; thus
{y: ,Nww € E (otherwise we would have a cycle of length p+l > c+1), and

therefore by the maximality of j+k (condition ii))the label of v; is at

most j. Then we have _u_ points with labels at most j . Thus

_u_ mAu ) < j.Similarly _N_ = mﬁxwv and the points of K and Nu have
labels at Eomn k. Hence _N_ +1 = mﬁxwv + 1 < k . Thus the conditions of

the hypothesis are satisfied and either nAN ) or mﬂxwv is at least c .
Suppose , without loss of generality, that mﬁx ) > c ; since xu is only
joined to vertices in wak..xwv. we obtain a nwnwm of length at least c+l,

contrary to our assumption. a

3.2.Corollaries : Let ¢ <n . Then G contains a cycle of length at

least c+1 if any one of the following conditions is satisfied
@) Posa [13] : |[{x : d(x) < j}| <j foro<j<cl (c22) .
b) j <k, Tm;xww ¢ E
d(x.) <3, mAva < k-1
a i -1 ; n} if {x,y} € E .
c) Woodall [16] : d(x) + d(y) > min {2¢-1 ; n} i Y

In order to prove b) and c) , we need the results on hamiltonian

. d > min {2c-1 ; n}.
V = amxuv + ANWV > min

Proofs :
cycles ( 2.6. and N.N.vssﬂmz 2¢-1 >n .

3.3. Conjectures : We conjecture that each of the following conditions

is sufficient to ensure the existence of a cycle of length at least ctl.
a) j <k, k>min {2¢-1 ;3 n} - j

HN@.%WV ¢ E s m.AN.mv < .._ s QANWV < k-1

D) i<k, {x,x}¢
m?u.v < -1, d(x) < k-2

v = meﬁmﬁx@v 5 anxwvw > €

,

v = &ANuv + mAva > min{2c-1 ; n} .

3.4. Remark . Other generalizations are possible ; some of them are
false : for example we cannot replace in a) the condition
’

s . .. i s and
k > min{2¢-1 ; n} - j by k > n-j or the conditions &Axuv < j an

mANWv < k-1 by aANuV < j-n+c+l or mﬂxwv < k-n#c .(see [3])

Case 2 : G 2-comnected.

3.5. Theorem : Let G be a 2-comnected graph and ¢ < n . Suppose that :

j<k, me‘xww ¢ E
aon..mv £33, dG) <kl
Then G contains a cycle of length at least c.

imi i 1t
Proof : The proof is very similar to Bondy's proof in [5] of the resu
.(for a complete proof see [3]).

v = nﬁxuv + mﬁxwv >c .

given below ( 2.6.a) and thus we omit it

3.6. Corollaries : Let G be 2-comnected and ¢ < n . Then G contains a

cycle of length at least c if any one of the following conditions is
satisfied

a) Bondy [5] : m <3 mW.M k (j#k) = au + n .

b) Posa [13] : |G : a) < 31| sj-l1for15jx H?-CE

¢) dx) +d(y)>c if Ix,y} € E .

d) Dirac I7] : d®) > [(c+1)/2] for every vertex x .



3.7. Remark : In contrast with the hamiltonian case, when c < n, there
exist graphs satisfying the hypothesis of 2.6.c) but not 2.6.b) : for

example consider the graph containing a complete graph on j vertices ,
a complete graph on n-j vertices and a matching of cardinality j

between these two subgraphs , with j < [(c-1)/2]

Example : j =2, c=5,n=6

3.8. Conjecture : Let G be a 2—comnected graph and let ¢ < n . We
conjecture that the following condition is sufficient for the existence
of a cycle of length at least c :

J<k, k>cg, ﬁauuaxw g E

&maux <dJ, &«8w¥ < k-1 = &«auy +&«8N» > e.

3.9. Remark : The reader can find other results and conjectures in
Woodall [16,17] and in [3].

Case 3 : We shall give a refinement of theorem 3.1., which will be

very useful in the proofs of theorems 4.3. and 4.4.

3.10. Theorem : Let G' denote a 2-comnected graph of order n+l and let G
be the graph obtained by deleting a vertex of G' and let ¢ < n . The
degrees being the degrees in the graph G ; G' contains a cycle of length
at least c+2 if any one of the following conditions is satisfied :
a) j<k, mxuvxww ¢ E
mAxuv <3, mAxWV < k-1
b) |{x : d(x) < i €3 for0<j<ec+l .
c) d(x) +d(y) > 2¢-1 if {x,y} ¢ E .

Proof : Cases b and c are corollaries of case a). The beginning of the

=  max EQJ.V 3 dGx)} >

proof of the case a is the same as the proof of theorem 3.1. Suppose the
theorem false for some value of n and let G' = (XUa,E') be a 2-connected
graph of order n+l, which satisfies the condition a) , but has no cycle
of length at least c+2 and has the maximum possible number of edges. Let
G be the subgraph obtained by deleting the vertex a. G is not complete ;

otherwise as G' is 2-connected, a is joined to at least two vertices of

G and then G' would contain an hamiltonian cycle of length n+l > c+2

Let x.and Mw.wm two non adjacent vertices defined as in the proof of
u .
theorem 3.1.Similarly as in the proof of this theorem we can show that

BmxmmAkuv 3 QANWVW > ¢ . If max m&nxuv 3 mﬁwwvw > c+l , we obtain a

cycle of length at least c+2 . Thus we can suppose without loss of

J

generality that d(x.) = c¢ .Furthermore x. must be joined to the vertices
u 3
y.of the path wAN.vNWV such that 2 < i < c+1 , otherwise we would have
i 3 =

. . '
a cycle of length at least c+2. As G' is 2-connected, there exist in G

two vertex—disjoint paths joining the two set of vertices :

ﬁ%w :1<1i<ec) and m%w : c+2 < i < p} .(Remark that , as T, = % is

j i i he two sets
non adjacent to ¥y = %5 5 ¥ 1s different from x and thus t

1

i’’op c+l

are non empty ). One of these paths does not contain the vertex Yes1 *

Let P'(y_,y_ ) be the part of this path , where the end vertices Y, and

r’’s j ]

v satisfy 1 <r <c and c+2 < s < p and where the internal vertices do
s s ¥y = 8%

not belong to mﬂxu.NWv . Then H%_“%Nu...vwnl_‘m.A%H'%mv,%mlun...,%H+HV%HW
is a cycle of length greater than or equal to c+2 , contrary to our

assumption. o

4, EXISTENCE OF HAMILTONIAN WALKS.

We shall prove the generalizations of Ore's and Pdsa's theorems (2.2.
and 2.3.). The generalization of Dirac's theorem has been obtained by
Jolivet [10,11] and is a corollary of our results.

When G is 2-connected, lemma 1.5.1. and theorem 3.5. give :
4.1. Theorem : Let G be 2-connected and let ¢ <n . If :

j<k; mxuu Mww ¢ E

k-1
a?u.v <, dx) <
then s(G) <n - c .

= mnxuv + mAxWV >c 3

4.2. Definitions : A block of a graph G is a maximal 2-connected subgraph
of G. A cut—vertex in a connected graph is a vertex whose deletion
disconnect G . An end-block 1is a block containing exactly one cut-vertex

It is known that,if G is not 2-conneted, then G contains at least two

end-blocks.



4.3. Theorem : Let ¢ < n . If :
[{z : d(z) < Y| <=1 for 0< 4 < (c-1)/2 and
[{z : d(z) < (c=1)/2}| < (e=1)/2 (for ¢ odd) ;
then s(G) sn—-c .

Proof : 1f G is 2-connected the theorem is a corollary of theorem 4.1. .

A

Thus we suppose that G is not 2-connected and we distinguish 2 cases.
Case 1 : ¢ = 2p.

1) Every end-block of G contains at least p+l vertices : indeed let B be
an end-block and let b be the only cut-vertex of G in B. Suppose that

| 8] < p; _w_ = j+1 with j € p-1 . If x € B-b, then x is only joined to

the vertices of B (B is an end-block) ; thus d(x) = mwﬁxv < j and as
|B-b| = j we have [{x : d(x) < i} > j for j < p-1 « (c-1)/2 contrary to
the hypothesis.

i12) Every end-block contains a cycle of length at least p+l : indeed if
x € B-b, mwlwmxv > d(x) - 1 .Therefore the subgraph generated by B-b
satisfies by hypothesis the condition : |{x : &wldmxv < j} < j for
0 < j < p-2 ; then theorem 3.10.b) with G' = B , G = B-b , and ¢ = p-1 ,
implies the existence in B of a cycle of length at least p+l.

As G contains two end-blocks with at most one vertex in common, G
contains two cycles of length at least p+l having at most one vertex in

common and therefore by lemma 1.5.2. s(G) < n+2-2(p+1) = n-c.

Case 2 : e = 2p -1 .

Similarly as in case 1, it can be shown that each end-block contains P

vertices. As G satisfies the rwvonrmmwm of corrolary 3.2.a) with c = p, G
contains a cycle C of length at least p+l. C is included in a block. Let

B be an end-block which do not contain C . As mwamv = d(x) for every

vertex of B-b we have : |{x : d(x) < i} < j for 0 < j < p-2 and thus

by w.m.mv B contains a cycle of length at least p . Therefore G contains
two cycles having at most one vertex in common of length d > p+l and

d' > p and by lemma 1.5.2. s(G) <n+1-2p=n-c . o

4.4, Theorem : Let ¢ < n . If d(x) + d(y)

v

> ¢ for every pair of non
adjacent vertices x and y , then s(G) <n -c .
Proof : 1f G is 2-comnected the theorem is a corollary of theorem 4.1. .

Thus suppose that G is not 2-connected and that the theorem is false and

let c be the smallest value for which the theorem is false . Among the
graphs , which do not verify the theorem for ¢, let G be a graph with
the minimum possible number of vertices n . As the theorem is true for
n=c¢ (2.2.) we have n > ¢ .

Every end-block of G is non hamiltonian : otherwise suppose that G
contains a hamiltonian end-block B and let b be the cut vertex of B and
let P = B-b. First _w_ < c, otherwise G would contain a cycle of length
at least ¢ and thus s(G) < n-c . We claim that s(G) < s(G-P) + 1 ;
indeed let C be a hamiltonian walk of G-P of length |G-P| + s(G-P) and
let C' be a hamiltonian cycle of B ; then CUC' is a closed spanning walk
of G of Hmnmnw._o_ + 1 + s(G-P) and therefore s(G) < s(G-P) + 1 . Now
let |P| = k and thus |B| = k+]1 < c. We have d(x) = mmANv < k for every
vertex x of P . As B is an end-block, if x € P and y € G-B, x and y are
not adjacent and then, by hypothesis, d(x) + d(y) > ¢- Thus :
m0|wawv = d(y) > c-k . We have also molmmvv >1 .As c > k+l ,

2(c-k) > c+l-k and therefore anlmA%v + mnlwANv > c+1-k for every pair of
vertices y and z in G-P .The subgraph generated by G-P satisfies the
hypothesis of the theorem for c¢' = c+l-k < c and n' = _Olm_ =n-k <n .
By the choice of c and n (minimality), we have s(G-P) < n'-c' < n—c-1 .

From s(G) < s(G-P) + 1 we deduce s(G) < n—c contrary to our assumption .

Let B be an end-block ; P = B-b is not complete, otherwise B would be
hamiltonian ; thus there exist two non adjacent vertices x and y , which
satisfy (by hypothesis) d(x) + d(y) > c . If x € P, amANv >d(x) -1 and
therefore mwAMv + mwawv > c-2 . Let p = [(c+1)/2] ,. We have _w_ > p+l
otherwise , if _w_ <p, mwva < p-2 and mvnwv < p-2 (x and y are not
adjacent) and thus mwmxv + mmﬁwv < 2p-4 < c-2 . Therefore the subgraph
generated by P satisfies the hypothesis of theorem 3.10.c) with G = P,
G' = B, and ¢ = p-1 and thus contains a cycle of length at least p+l .
As G contains two end-blocks, G contains two cycles of length at least
p+l, having at most one vertex in common and therefore s(G) < n-c .
(Remark that the minimality of ¢ and n is used only to deal with the
case where B is an end block such that P = B-b is a complete subgraph

with |P| < p .) o



4.5. Remark : The conditions of theorems 4.3. and 4.4. are independent.
As we have seen in remark 3.7, there exist graphs satisfying the hypothe-
-sis of 4.4. and not of 4.3. . It is known that for c = n there exist
graphs , which satisfy the hypothesis of 4.3. and not of 4.4. ; it is
possible to exhibit such graphs for 5 < c < n : for example take a
complete graph of order n-2 and add two non adjacent vertices of degree
2 and 3 respectively .

Thus it will be interesting to prove the following conjecture ( a
proof similar to that of theorem 3.3. shows that this conjecture is a
consequence of conjecture 3.3.b) .)
4.6. Conjecture : Let ¢ < n and suppose that

Q.Awuﬁa%awymm w

dle) <, dlz) < k=1 =

Then s(G) <n

&ﬁamg tdlxy) > c .

c .
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