G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations, Mathematics of Computation, vol.73, issue.246, pp.613-635, 2004.

G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numerische Mathematik, vol.131, pp.713-735, 2015.

G. Bader and P. Deuflhard, A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numerische Mathematik, vol.41, pp.373-398, 1983.

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics. Society for Industrial Mathematics, 1987.

C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal, vol.42, issue.3, pp.934-952, 2004.

C. Besse, S. Descombes, G. Dujardin, and I. Lacroix-violet, Energy-preserving methods for nonlinear Schrödinger equations, IMA Journal of Numerical Analysis, 2020.

C. Besse, G. Dujardin, and I. Lacroix-violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, SIAM J. Numer. Anal, vol.55, issue.3, pp.1387-1411, 2017.

J. Butcher, Diagonally-implicit multi-stage integration methods, Applied Numerical Mathematics, vol.11, issue.5, pp.347-363, 1993.

J. Butcher, Selected Topics in Numerical Methods, vol.31, pp.105-112, 1996.

J. Butcher and G. Wanner, Runge-Kutta methods: some historical notes, Special Issue Celebrating the Centenary of Runge-Kutta Methods, vol.22, pp.113-151, 1996.

M. Calvo, J. De-frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Applied Numerical Mathematics, vol.37, issue.4, pp.535-549, 2001.

Q. Cheng and J. Shen, Multiple Scalar Auxiliary Variable (MSAV) approach and its application to the phase-field vesicle membrane model, SIAM Journal on Scientific Computing, vol.40, issue.6, pp.3982-4006, 2018.

J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Cambridge Philos. Soc, vol.43, pp.50-67, 1947.

G. Dahlquist, A special stability problem for linear multistep methods, BIT Numerical Mathematics, vol.3, pp.27-43, 1963.

M. Delfour, M. Fortin, and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation, J. Comput. Phys, vol.44, issue.2, pp.277-288, 1981.

G. Dujardin, Exponential Runge-Kutta methods for the Schrödinger equation, Applied Numerical Mathematics, vol.59, issue.8, pp.1839-1857, 2009.

R. Frank, J. Schneid, and C. W. Ueberhuber, The concept of B-convergence, SIAM Journal on Numerical Analysis, vol.18, issue.5, pp.753-780, 1981.

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.

E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, vol.8, 1993.

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, vol.14, 1996.

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad, vol.49, pp.503-505, 1973.

M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for parabolic problems, Tenth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations, vol.53, pp.323-339, 2005.

M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, vol.19, pp.209-286, 2010.

P. Kaps and G. Wanner, A study of Rosenbrock-type methods of high order, Numerische Mathematik, vol.38, 1981.

B. Kovàcs and C. Lubich, Linearly implicit full discretization of surface evolution, Numerische Mathematik, vol.140, pp.121-152, 2018.

W. Kutta, Beitrag zur naherungsweisen integration totaler differentialgleichungen, Z. Math. Phys, vol.46, pp.435-453, 1901.

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp, vol.77, issue.264, pp.2141-2153, 2008.

C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations, IMA Journal of Numerical Analysis, vol.15, issue.4, pp.555-583, 1995.

R. I. Mclachlan, Families of high-order composition methods, Numerical Algorithms, vol.31, issue.1, pp.233-246, 2002.

H. H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, The Computer Journal, vol.5, issue.4, pp.329-330, 1963.

C. Runge, Ueber die numerische auflösung von differentialgleichungen, Mathematische Annalen, vol.46, pp.167-178, 1895.

Y. Saad, Iterative Methods for Sparse Linear Systems, Second edn, Society for Industrial and Applied Mathematics, 2003.

J. Shen and J. Xu, Convergence and error analysis for the Scalar Auxiliary Variable (SAV) schemes to gradient flows, SIAM Journal on Numerical Analysis, vol.56, issue.5, pp.2895-2912, 2018.

K. Strehmel and R. Weiner, B-convergence results for linearly implicit one step methods, BIT Numerical Mathematics, vol.27, pp.264-281, 1987.

K. Strehmel, R. Weiner, and I. Dannehl, A study of B-convergence of linearly implicit Runge-Kutta methods, Computing, vol.40, pp.241-253, 1988.

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A, vol.146, issue.6, pp.319-323, 1990.

J. Wensch, K. Strehmel, and R. Weiner, A class of linearly-implicit Runge-Kutta methods for multibody systems, Special Issue Celebrating the Centenary of Runge-Kutta Methods, vol.22, pp.381-398, 1996.

H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A, vol.150, issue.5, pp.262-268, 1990.