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Abstract. In this paper we study how mesoscopic heterogeneities affect elec-
trical signal propagation in cardiac tissue. The standard model used in cardiac
electrophysiology is a bidomain model - a system of degenerate parabolic PDEs,
coupled with a set of ODEs, representing the ionic behviour of the cardiac cells.
We assume that the heterogeneities in the tissue are periodically distributed
diffusive regions, that are significantly larger than a cardiac cell. These regions
represent the fibrotic tissue, collagen or fat, that is electrically passive. We
give a mathematical setting of the model. Using semigroup theory we prove
that such model has a uniformly bounded solution. Finally, we use two–scale
convergence to find the limit problem that represents the average behviour of
the electrical signal in this setting.

1. Introduction. Heart contractions are coordinated by a complex electrical ac-
tivation process which relies on millions of ion channels, pumps, and exchangers of
various kinds embedded in the membrane of each cardiac cell. Their interactions
result in periodic changes in transmembrane voltage, called action potential. Action
potentials in the cardiac muscle propagate rapidly from cell to cell, synchronising
the contraction of the entire muscle to achieve an efficient pump function. The
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spatio–temporal pattern of this propagation is related both to the function of the
cellular membrane and to the structural organisation of the cells into tissues.

1.1. The standard bidomain model. Mathematical models of whole–heart phys-
iology are based on the idea of a perfect cardiac muscle, made of uniformly dis-
tributed and interconnected cardiac cells and the extracellular matrix that sur-
rounds them, approximated using homogenisation methods. The standard macro-
scopic electrophysiological model of the heart is the so–called bidomain model, which
has been proposed in the late 70s and early 80s [25, 23, 15]. It is the anisotropic
three–dimensional cable equation that represents the averaged electric behviour of
the heart tissue. The bidomain model involves the electrical conductivities of the
intracellular and the extracellular spaces. Both of them are anisotropic, mean-
ing that there is a different conductivity in the longitudinal and the transversal
direction with respect to fiber direction. Neu and Krassowska [26, 20] suggested
the first mathematical approach in understanding the derivation of the bidomain
model from the microscopic description of the tissue. Their derivation is based on
an idealised representation of the syncytium as a network of interconnected cells,
arranged periodically in space. From this microscopic model, a homogenisation pro-
cess derives a macroscopic, volume–averaged model for intracellular, extracellular
and transmembrane voltage and it’s boundary conditions. This model adds a deeper
understanding of the parameters and their connection to the cell scale processes to
the already used bidomain model. Colli Franzone, Savaré and Pennacchio [14, 28]
used the framework of the Γ–convergence theory and the same assumptions on the
microstructure of the cardiac tissue to provide the rigorous mathematical derivation
of the bidomain model, as a limit problem of the microscopic (cell scale) model.

Denoting by Ω the homogenised cardiac tissue, by σe and σi the respective ho-
mogenised conductivities of the extracellular medium and of the cell cytoplasm,
and by Cm and Iion the respective homogenised membrane capacitance and the ho-
mogenised ionic currents that flow through the membranes (see [20]), the bidomain
model reads

for almost all (t, x) ∈ (0,+∞)× Ω,

∇ · (σe∇ue + σi∇ui) = 0, (1a)
Cm∂tv + Iion(t, v) = ∇ · (σe∇ue) , where v = ue − ui, (1b)

with initial and boundary conditions on (ue, ui) to close the system.
There are two main challenges to solving the model: the degeneracy of the par-

abolic system (1) and the derivation of the homogenised ionic model Iion from
the microstructure. The first rigorous proof of existence was given in [28], for the
FitzHugh Nagumo ionic model. The following was the work of Bourgault, Coudière
and Pierre [4], where the compactness technique is used and the proof of the exis-
tence was extended to the more complex ionic models, namely the Aliev–Panfilov
and the MacCulloch models. In the same year Veneroni proved the existence and
uniqueness for the Luo–Rudy ionic model [31]. Boulakia et al. [3] gave a proof
for a coupled heart–torso problem and extended the proof to include the Mitchell–
Schaeffer ionic model. The most recent extension of the proof for the FitzHugh
Nagumo and Mitchell–Schaeffer ionic models was done by Collin and Imperiale
in [8], using two–scale convergence theory.

While the bidomain model is widely accepted as a standard model for the car-
diac electrophysiology, it has several limitations that come from the assumptions in



MODIFIED BIDOMAIN MODEL WITH HETEROGENEITIES 3

its derivation. As pointed out in [7], some of the assumptions can have important
implications, such as: the heart is treated as a static continuum, where parame-
ter values are either uniformly distributed or vary smoothly in space; the cardiac
tissue is comprised of myocytes and extracellular space only, while other types of
cells and compartments are neglected. Similarly, the assumptions on the values of
the model parameters can have important consequences on the propagation of the
electric voltage, but many parameter values are difficult to obtain and verify.

1.2. Limitations of the bidomain model. The cardiac tissue is composed of
many cell types, supported by the extracellular matrix and permeated by fluids.
Myocytes are the most studied cells which occupy the largest volume of the cardiac
tissue and they are electrically active and contractile cells. On the other hand,
the most numerous cells in the heart are fibroblasts. They are much smaller than
myocytes and they play an important role in maintenaning the extracellular matrix
of the cardiac tissue as they produce interstitial collagen. They are involved in the
development of fibrosis in the injured or aged heart. Pathological states are fre-
quently associated with myocardial remodelling involving fibrosis. This is observed
in ischemic and rheumatic heart disease, inflammation, hypertrophy and infarction
[5]. The structural arrangement of the fibroblasts is still not well understood. Some
work has been done to understand the role of the fibroblasts in electrophysiology
[5, 18, 19, 22, 30], but it still remains to be studied.

The extracellular matrix is a complex network of fibrous proteins, mainly colla-
gen and elastin. The arrangement of collagen differs throughout the heart. Collagen
surrounds each myocyte cell, envelops groups of adjacent myocytes and provides the
laminar structure of the myocardium. The thickness of collagen fibrils can increase
in pathological cases from 40 nm up to 300 nm [7].

There are several open questions in modelling cardiac electrophysiology. They
include the choice of the parameters, such as tissue conductivities, finding an effi-
cient method to represent the detailed and heterogeneous tissue microstructure and
the way to study pathological structure and function [7].

In the current modelling of such defects the standard models for the healthy tis-
sues are usually used, and the model parameters are tuned ad hoc. We propose an
explanatory model for more rigorous tuning of the parameters in such situations.
It is a mesoscopic model, beyond the cell scale of the previously cited models.

1.3. Accounting for the diffusive part of the heart. In the proposed model
of the electrical activity of the heart tissue we will assume periodic alternations of
the healthy tissue, modelled with the standard bidomain model, and non–active re-
gions, modelled with the electrostatic equation. We call it a mesoscale model and we
prove the well–posedness of this model using the semigroup theory approach. Nu-
merical simulation of such a problem is very demanding because the domain has to
be discretised with the mesh whose step depends on the periodic cell of the domain.
Instead, we are interested in finding the averaged macroscopic model over the whole
domain. For this we use a homogenisation technique [2, 13]. More specifically, we
use the two–scale convergence approach developed by Allaire in [1]. We obtain the
homogenised macroscopic bidomain–like model, with modified conductivity tensors.
As it turns out, the modified conductivity tensors depend on the size and shape of
the diffusive inclusions. Hence, our approach bridges the standard modelling ap-
proach of the electrical activity in the heart with its structural heterogeneities.

This model has been firstly proposed in [9]. Here we give a rigorous proof for
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well posedness of the mesoscale model, and its two–scale convergence to the ho-
mogenised model, which has been presented in [10]. From an applied point of view,
the homogenised model has been used in numerical studies in the rat heart in [11].

Remark 1. The bidomain model has been studied and almost validated in compu-
tational modelling since several decades. That is why we choose to use this model
as a starting point and to study the influence of periodic diffusive inclusions on this
model. This view point is justified by the fact that these diffusive inclusions are at
the mescoscale, in between the cardiac cell scale and the heart tissue scale. We do
believe that a three–scale expansion of the complete model would lead to similar
limit problem, while it would have increased the technical complexity significantly.
Indeed, we are mainly interested in the zeroth order term of the expansion, with-
out accounting for the boundary layer terms that would appear in the next order
expansion. These boundary layer terms would probably be different if we chose the
three–scale expansion strategy.

1.4. Outline of the paper. In the next section, we present the mesoscopic bido-
main model with periodic inclusions. In particular, we precise the partial differential
equations and the model of nonlinear ionic current which is chosen here. In Sec-
tion 3 we perform the formal two–scale expansion, which enables to identify the
limit problem. Section 4 is devoted to the well–posedness of the limit problem, by
defining the appropriate unbounded operators. In Section 5 the rigorous proof of
the two–scale formal expansion of Section 3 is given. In particular we prove how
the homogenised nonlinear electric current is linked to the mesoscale ionic current.
We conclude the paper with numerical simulations, which illustrate the convergence
results.

2. Statement of the problem: The mesoscopic bidomain model with pe-
riodic diffusive inclusions. We consider the bounded open set Ω ∈ RN (here
N = 3), with Lipschitz boundary ∂Ω, such that Ω = ΩBε ∪ ΩDε ∪ Σε. Here ΩBε
represents the healthy heart tissue which can be modelled with standard bidomain
equations, ΩDε represents the collection of periodical diffusive inclusions and Σε is
the interface between these two subdomains. The domain Ω is a periodic medium,
i.e. it is divided into small cells identical to each other. These small cells are
identical up to a translation and rescaling by ε to the unit cell Y = [0, 1]N . Fur-
thermore, the unit cell is decomposed in two parts: YB represents the tissue that
can be modelled by the standard bidomain model, YD is the diffusive inclusion,
hence Y = YB ∪ YD ∪ Γ where Γ is the interface. Let ε be a sequence of a strictly
positive real numbers which tends to zero.

For the sake of simplicity, throughout the paper, we assume that YB and YD are
smooth connected domains and that ΩBε is also smooth and connected. We also
assume that the boundary ∂Ω of Ω as well as Σε are smooth. The domains ΩBε , ΩDε
and Σε read

ΩBε =
⋃

z∈ZN
ε(z + YB) ∩ Ω, ΩDε =

⋃
z∈ZN

ε(z + YD) ∩ Ω, Σε =
⋃

z∈ZN
ε(z + Γ) ∩ Ω,

as illustrated in Figure 1.
The idea is to extend the standard bidomain model on ΩBε with the periodic dif-

fusive inclusions on ΩDε and to study their effect on the macroscopic level. Standard
bidomain model involves the intracellular electric potential, uiε(t, x), and the extra-
cellular one, ueε(t, x), while the transmembrane voltage is denoted as vε = uiε − ueε.
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Figure 1. On the left: the idealised full 2D domain, Ω. On the
right: the periodic cell, Y .

The bidomain model assumes that the change in the transmembrane voltage results
from the ionic activity and the diffusion of the electric potential.

In (0, T )× ΩBε the bidomain model reads

∂thε(t, x) + g(vε(t, x), hε(t, x)) = 0, (2)
∂tvε(t, x) + Iion(vε(t, x), hε(t, x))−∇ ·

(
σi(x)∇uiε(t, x)

)
= 0, (3)

∂tvε(t, x) + Iion(vε(t, x), hε(t, x)) +∇ · (σe(x)∇ueε(t, x)) = 0, (4)

where σi and σe are the time–independent intracellular and extracellular conduc-
tivity tensors. They are assumed to be symmetric and positive definite matrices,
whose coefficients are periodic functions of the period εY . Equation (2) and the
function Iion represent the ionic model related to the behviour of the myocardium
cells’ membrane, which depends on the transmembrane voltage, vε, and the state
variables, hε. We will describe the ionic model later on.

We propose to extend the standard bidomain model by assuming passive diffusive
inclusions ΩDε , i.e. in (0, T )× ΩDε ,

∇ ·
(
σd∇udε(t, x)

)
= 0,

where σd is the conductivity tensor, and ud is the electric potential in ΩDε . Our
modelling assumption is that the diffusive inclusions are “large“ extensions of ex-
tracellular space of the standard bidomain model. We assume the continuity of
potential and the flux between ueε and udε . Additionally we assume no–flux on the
intracellular potential uiε. Hence, the standard transmission conditions are given on
the interface (0, T )× Σε(

σi∇uiε(t, x)
)
· nΩBε

= 0,

(σe∇ueε(t, x)) · nΩBε
=

(
σd∇udε(t, x)

)
· nΩBε

,

ueε(t, x) = udε(t, x),

where nΩBε
is the unit normal vector from ΩBε to ΩDε . On the outer bound-

ary homogeneous Neumann conditions are imposed, i.e. on (0, T ) × ∂Ω ∩ ∂ΩBε
holds (σi∇uiε(t, x)) · n = −(σe∇ueε(t, x)) · n = 0, and on (0, T ) × ∂Ω ∩ ∂ΩDε holds
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(σd∇udε(t, x)) ·n = 0, where n is the outer unit normal vector on ∂Ω. The following
Gauge condition on ueε is imposed to ensure the uniqueness,

∀t ∈ (0, T ),

∫
ΩBε

ueε(t, x)dx+

∫
ΩDε

udε(t, x)dx = 0. (5)

The Gauge condition is chosen to ensure the uniqueness of the solution, otherwise
the electrical potentials would have been determined up to a constant. The choice
of the Gauge condition is not so important since only the transmembrane voltage,
vε, is physically relevant. A change in the Gauge condition would lead to the
same transmembrane voltage. The initial conditions on vε and hε are vε(0, x) =
v0
ε(x) in ΩBε , and hε(0, x) = h0

ε(x) in ΩBε .
Similar set of equations have been studied previously in [3] on the heart–torso

problem, where the torso was represented by the diffusive part and the heart, i.e.
the bidomain equations were embedded inside of the diffusive domain.

We summarise the full problem:

∂thε + g(vε, hε) = 0, in (0, T )× ΩBε , (6a)

∂tvε + Iion(vε, hε)−∇ ·
(
σi∇uiε

)
= 0, in (0, T )× ΩBε , (6b)

∂tvε + Iion(vε, hε) +∇ · (σe∇ueε) = 0, in (0, T )× ΩBε , (6c)

∇ ·
(
σd∇udε

)
= 0, in (0, T )× ΩDε , (6d)

with the transmission and boundary conditions:(
σi∇uiε

)
· nΩBε

= 0, on (0, T )× Σε, (6e)

ueε = udε , on (0, T )× Σε, (6f)

(σe∇ueε) · nΩBε
=
(
σd∇udε

)
· nΩBε

, on (0, T )× Σε, (6g)(
σi∇uiε

)
· n = 0, on (0, T )× ∂Ω ∩ ∂ΩBε , (6h)

(σe∇ueε) · n = 0, on (0, T )× ∂Ω ∩ ∂ΩBε , (6i)(
σd∇udε

)
· n = 0, on (0, T )× ∂Ω ∩ ∂ΩDε , (6j)

and with Gauge and the initial conditions:∫
ΩBε

ueε +

∫
ΩDε

udε = 0, in (0, T ), (6k)

vε(0, x) = v0
ε(x) in ΩBε , (6l)

hε(0, x) = h0
ε(x) in ΩBε . (6m)

2.1. Ionic model regularisation. We focus on the use of the Mitchell–Schaeffer
(MS) model [24]. This model has become the standard model in computational
cardiac electrophysiology, because it has been well validated with biological exper-
iments and its complexity is comparable to the FitzHugh–Nagumo model, which
makes it useful in numerical simulations, especially in two or three spatial dimen-
sions where numerical efficiency is so important. The ionic current IMS of the
Mitchell–Schaeffer model reads

IMS(v, h) =
1

τin
hv2(v − 1)− v

τout
, (7a)
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where the gating variable h is defined as:

∂th =


1− h
τop

, if v ≤ vgate,

− h

τcl
, if v > vgate,

(7b)

where τin, τout, τop, τcl and vgate are the constant model parameters. The for-
mer four parameters define the shape of cardiac action potential, while the latter
one defines the threshold value of the transmembrane voltage for which an action
potential is triggered.

The difficulties in analyzing the above model are two–fold. One difficulty lies
in the step function involved in (7b), which prevents any regularity results, which
is somehow needed in the homogenisation derivation. The second difficulty lies in
the unboundedness of the ionic current IMS , which is cubic in v. Since there is
no maximum principles in bidomain model, such cubic behviour is a hard task to
overcome when proving boundedness. Boulakia et al. in [3] proposed a regularised
version of this model by regularising the step function of the right hand side of
(7b). However, their ionic current remains unbounded since it grows cubically with
respect to v. In order to use the two–scale convergence theory, as in Section 5, we
need a–priori bounds on the solution of the mesoscopic problem. For this reason
we need a better behaved ionic function.

Here we propose regularisation that accounts for the electroporation of the cell.
It is well known that far from the physiological values of the transmembrane volt-
age electroporation of cell membranes occurs [17, 21, 32], which consists of a high
increase of membrane conductance. Moreover the membrane conductance cannot
be infinite since it is bounded by the medium conductivity. We thus propose the
following modified version of the MS model: assuming v given, the ionic current
Iion is defined as

Iion(v, h) =
1

τin
hv2(v − 1)e−(v/vth)2 − v

τout

(
1 + rmaxe

−(vth/v)2
)
, (8)

where the gating variable h is given by

∂th+ g(v, h) = 0, (9)

with g(v, h) =
h− h∞(v)

τ(v)
, (10)

h|t=0 = h0(v), (11)

where the functions h∞(v) and τ(v) are defined as

h∞(v) = 1− e−(vgate/v)2 , (12)
1

τ(v)
=

1

τcl
+
τcl − τop
τclτop

h∞(v), (13)

and the parameters vth, vgate, and rmax are assumed to be given and constant and
the initial datum h0(v) is a given function of v. The function g is a regularisation
similar to the one given in [3], vth � vgate is the membrane voltage above which
electroporation occurs, and rmax � 1 stands for the maximal ratio of membrane
conductance with membrane capacitance in a fully electroporated membrane. We
refer to [17] for more details.
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In the physiological range of membrane voltage, the current behaves similarly to
the standard MS model, while for non–physiological values of v, when v � vth, the
current behaves as a passive conducting pore: Iion ∼ (1 + rmax)v/τout. The above
model is interesting for two reasons: it provides a simple model for cardiac tissues
submitted to electroporation and the ionic function has the Lipschitz property as
we will see in the following proposition.

Proposition 1 (Lipschitz property of the modified MS). Let M > 0, and let h0(v)
be a smooth function such that 0 < h0(v) < 1, and

∣∣∂vh0
∣∣ ≤M , for all v ∈ R. Then,

for all v ∈ R, and all t > 0, we have 0 ≤ h(t, v) ≤ 1. Moreover the current Iion
of the modified version of Mitchell–Schaeffer model (8) is globally Lipschitz with
respect to v, i.e. that there exists K > 0 such that for all t > 0, and any v1, v2 ∈ R,
it holds |Iion(v1, h(t, v1))− Iion(v2, h(t, v2))| ≤ K|v1 − v2|.

Proof. By hypothesis on h0, it is easy to show that the function h stays between 0
and 1 for all t > 0 (see Lemma 4.2). Since g is a smooth function of v, h is globally
Lipschitz with respect to v. Let us define function H(t, v) := ∂vh(t, v). Then the
following ODE holds,

∂H

∂t
=

1

τ(v)

((
h′∞(v)− τ ′(v)

τ(v)
(h∞(v)− h(v))

)
−H

)
,

H(0, v) = ∂vh0(v).

Let m = maxv∈R

(
h′∞(v)− τ ′(v)

τ(v) (h∞(v)− h(v))
)
. Then H is uniformly bounded on

R+ by max(M,m) and there exists S∞ such that the function |∂vIion(t, v)| ≤ S∞,
for all t ≥ 0. Therefore by definition of Iion one has the global Lipschitz property
for any t > 0 and for all v1, v2 ∈ R:

|Iion(v2, h(t, v2))− Iion(v1, h(t, v1))|

≤
∣∣∣∣∫ v2

v1

∂vIion(λ, h(t, v2))dλ

∣∣∣∣+

∣∣∣∣∣
∫ h(t,v2)

h(t,v1)

∂hIion(v1, µ)dµ

∣∣∣∣∣
≤ K|v2 − v1|.

3. Formal derivation of the macroscopic bidomain model with periodic
diffusive inclusions. We are interested in finding the averaged macroscopic model
over the whole domain Ω. This is done by use of the homogenisation technique
[2, 13]. The complexity of such a derivation is two–fold. Firstly, one has to tackle
the coupling of the degenerate parabolic phase –the bidomain phase– and the el-
liptic phase, which corresponds to the diffusive inclusion. It is not clear whether
or not this coupling problem is well–posed. Moreover, at the limit the two phases
are tightly mixed and the resulting homogenised problem is not easy to figure out,
even in the linear case. The second difficulty lies in the rigorous derivation of the
homogenised nonlinearity. To address these two difficulties we first derive formally
the limit problem thanks to a two–scale expansion strategy. Then we prove the
well–posedness and uniform bounds on the mesoscopic coupled problem. The proof
of the two–scale expansion is given in Section 5.

In this section the method of formal two–scale asymptotic expansions is per-
formed in order to find the macroscopic homogenised problem for (6). This formal
derivation is interesting from the modelling point of view, as it makes it possible
to intuitively obtain the homogenised problem. We want to split mesoscopic (∼ ε)
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and macroscopic (∼ 1) scales contributions. The standard technique is to introduce
a small scale variable y, such that y = x/ε. The assumption is that, due to the
periodicity of space, the behviour of the solution can be split into the large scale
behviour, given through dependence on x, and the small scale behviour of the same
frequency ε, given through dependence on y. Then, the macroscopic behviour of
the solution is extracted by taking ε→ 0.

Following the general idea, we assume that the solution (uiε, u
e
ε, u

d
ε , hε) can be

written as formal series

hε(t, x) =
∑
k≥0

εkhk(t, x, x/ε), uiε(t, x) =
∑
k≥0

εkuik(t, x, x/ε), (14)

ueε(t, x) =
∑
k≥0

εkuek(t, x, x/ε), udε(t, x) =
∑
k≥0

εkudk(t, x, x/ε), (15)

with ui,e,dk (t, x, y) and hk(t, x, y) as Y−periodic functions. Using the ansatz in (14)
- (15), and substituting it into the system of equations (6) we obtain the cascade
systems of equations with respect to the power of ε. We are interested in the first
three terms, for k = 0, 1 and 2, that we will use to obtain the macroscopic problem.
The following derivation rule is used ∇f

(
x, xε

)
=
[

1
ε∇yf +∇xf

] (
x, xε

)
, where ∇x

and∇y denote the partial derivative with respect to the first and the second variable
of f(x, y). Identifying each power of ε as an individual equation yields a cascade of
systems of equations.

Order 0: The ε−2 system of equations gives for ui0,

∇y ·
(
σi∇yui0

)
= 0, in Ω× YB ,(

σi∇yui0
)
· nΓ = 0, on Σε × Γ,

+ periodic boundary conditions on ∂Y.

(16)

Multiplying (16) by ui0 and integrating over y, we deduce that ui0 does not depend
on variable y, i.e. ui0 = ui0(t, x).

And for ue0 and ud0 we get,

∇y · (σe∇yue0) = 0, in Ω× YB ,

∇y ·
(
σd∇yud0

)
= 0, in Ω× YD,

ue0 = ud0, on Σε × Γ,

(σe∇yue0) · nΓ =
(
σd∇yud0

)
· nΓ, on Σε × Γ,

+ periodic boundary conditions on ∂Y.

(17)

Due to the boundary conditions, i.e. continuity of potential and flux, we can define
a new function u0(t, x, y) on the domain Ω × Y such that u0 = ue0 in Ω × YB , and
u0 = ud0 in Ω× YD. We also define the conductivity tensor σ as σ = σe in Ω× YB ,
and σ = σd in Ω× YD. Hence, the problem (17) simplifies to

∇y · (σ∇yu0) = 0, in Ω× Y,
+ periodic boundary conditions on ∂Y.

(18)

Similarly, we find that u0 does not depend on y, i.e. u0 = u0(t, x).
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Order 1: The ε−1 system of equation then gives,

∇y · (σi∇yui1) = 0, in Ω× YB ,(
σi∇yui1

)
· nΓ = −

(
σi∇xui0

)
· nΓ, on Σε × Γ,

+ periodic boundary conditions on ∂Y,

(19)

and,

∇y · (σe∇yue1) = 0, in Ω× YB ,

∇y · (σd∇yud1) = 0, in Ω× YD,(
σe∇yue1 − σd∇yud1

)
· nΓ = −

(
(σe − σd)∇xu0

)
· nΓ, on Σε × Γ,

+ periodic boundary conditions on ∂Y.

(20)

From (19) and (20) we see that the terms ui1, ue1 and ud1 can be expressed as functions
of ui0 and u0, in a standard way as

ui1(t, x, y) =

3∑
j=1

wij(y)
∂ui0
∂xj

(t, x), on Ω× YB , (21)

ue1(t, x, y) =

3∑
j=1

wej (y)
∂u0

∂xj
(t, x), on Ω× YB , (22)

ud1(t, x, y) =

3∑
j=1

wdj (y)
∂u0

∂xj
(t, x), on Ω× YD. (23)

By the substitution the problems for functions wij(y), wej (y), wdj (y), for j = 1, 2, 3,
read

∇y · (σi∇ywij) = 0, in YB ,

σi
(
∇ywij + ej

)
· nΓ = 0, on Γ,

wij is Y periodic,

(24)

and
∇y · (σe∇ywej ) = 0, in YB ,

∇y · (σd∇ywdj ) = 0, in YD,(
σe∇ywej − σd∇ywdj + (σe − σd)ej

)
· nΓ = 0, on Γ,

wej , w
d
j are Y periodic.

(25)

The problems (24) and (25) are called the cell problems.
Order 2: Finally, the ε0 system of equation gives the equation for the term ui2

in Ω× YB ,

−∇y · (σi∇yui2) =∇y · (σi∇xui1)

+∇x · (σi∇xui0) +∇x · (σi∇yui1)− ∂tv0 − Iion(v0, h0),
(26)

with the boundary condition,(
σi∇yui2

)
· nΓ =

(
σi∇xui1

)
· nΓ, on Σε × Γ

+ periodic boundary condition on ∂Y.
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Integrating (26) over YB , and using the boundary conditions we have on Ω

|YB | (∂tv0 + Iion(v0, h0)) = |YB |∇x · (σi∇xui0) +

∫
YB

∇x · (σi∇yui1) dy,

Then using (21), we obtain

|YB | (∂tv0 + Iion(v0, h0)) = ∇x
(
σi∗∇xui0

)
, (27)

where

σi∗kj = |YB |σikj + σik1

∫
YB

∂y1w
i
j dy + σik2

∫
YB

∂y2w
i
j dy + σik3

∫
YB

∂y3w
i
j dy. (28)

For the term ue2, the system of equation gives on Ω× YB ,
−∇y · (σe∇yue2) =∇y · (σe∇xue1)

+∇x · (σe∇xu0) +∇x · (σe∇yue1)− ∂tv0 − Iion(v0, h0),
(29)

and for the term ud2, the system of equation gives on Ω× YD,

−∇y · (σd∇yud2) =∇y · (σd∇xud1) +∇x · (σd∇xu0) +∇x · (σd∇yud1), (30)

with the boundary conditions

(σe∇yue2) · nΓ = (σe∇xue1) · nΓ, on Σε × Γ,(
σd∇yud2

)
· nΓ =

(
σd∇xud1

)
· nΓ, on Σε × Γ,

+ periodic boundary conditions on ∂Y.

Once again, integrating (29) over YB , and (30) over YD, and using the boundary
conditions, and summing them up, lead to the following equation on Ω

|YB | (∂tv0 + Iion(v0, h0)) =

∫
Y

∇x · (σ∇xu0) dy

+

∫
YB

∇x · (σe∇yue1) dy +

∫
YD

∇x · (σd∇yud1) dy.

Using (22), we obtain

|YB | (∂tv0 + Iion(v0, h0)) = ∇x (σe∗∇xu0) , (31)

where

σe∗kj = |YB |σekj +

∫
YB

σek1∂y1w
e
j dy +

∫
YB

σek2∂y2w
e
j dy +

∫
YB

σek3∂y3w
e
j dy

+|YD|σdkj +

∫
YD

σdk1∂y1w
d
j dy +

∫
YD

σdk2∂y2w
d
j dy +

∫
YD

σdk3∂y3w
d
j dy.

(32)

Homogenised problem: Equations (27) and (31), together with

∂th0 + g(v0, h0) = 0, (33)

represent the homogenised macroscopic problem, whose solution (h0, u
i
0, u0) is the

limit of (hε, u
i
ε, u

e
ε, u

d
ε) for ε → 0, and does not depend on the small scale y. The

small scale effects are accounted for through the conductivity tensors and parameter
|YB | that represents the volume fraction of the healthy tissue in the periodic cell.
The constant tensors σi∗ and σe∗ describe the effective or homogenised properties
of the heterogeneous tissue. They do not depend neither on time, nor on the choice
of Ω. They depend on the initial conductivity tensors and on the shape and size of
the diffusive inclusions.
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Remark 2. The method of the two–scale expansion has yet to be rigorously proven.
In other words, it leads heuristically to the homogenised system of equations, but
it is not a sufficient proof for the homogenisation process. First issue is that we still
did not prove the existence of the solution to the original ε-dependent mesoscopic
problem. Secondly, we do not know if such mesoscopic problem has in fact a limit.
And even if we assume it has, the ansatz (14)-(15) is not yet justified. Hence, we can
not claim that (h0, u

i
0, u0) is actually a limit to (hε, u

i
ε, u

e
ε, u

d
ε) when ε→ 0. And the

last, but not least issue is that we have to deal with the nonlinearity and actually
justify the assumption that g(vε, hε) → g(v0, h0), and Iion(vε, hε) → Iion(v0, h0).
The rigorous proof is laid out in Section 4 and Section 5.

4. Existence and bounds on the solutions of the mesoscopic problem. We
go back to our mesoscopic problem, where we want to prove the existence of the
solution for (6), by use of the semigroup theory approach [6]. In this section we will
use the parabolic–elliptic form of the problem.

∂thε + g(vε, hε) = 0, in ΩBε , (34a)

∂tvε + Iion(vε, hε(t, vε))−∇ · (σi∇vε) = ∇ · (σi∇uε), in ΩBε , (34b)

−∇ · ((σi + σe)∇uε) = ∇ · (σi∇vε), in ΩBε , (34c)

−∇ · (σd∇uε) = 0, in ΩDε , (34d)

where uε is H1(Ω). The boundary and transmission conditions are given as

(σi∇vε) · nΩBε
= −(σi∇uε) · nΩBε

, on Σε, (34e)

(σe∇uε) · nΩBε
= −(σd∇uε) · nΩDε

, on Σε, (34f)

(σi∇vε) · n = 0, on ∂Ω ∩ ∂ΩBε , (34g)(
(σi + σe)∇uε

)
· n = 0, on ∂Ω ∩ ∂ΩBε , (34h)

(σd∇uε) · n = 0, on ∂Ω, (34i)

the initial conditions are

hε(0, vε) = h0
ε(vε), in ΩBε , (34j)

vε(0, x) = v0
ε(x), in ΩBε , (34k)

and the Gauge condition is ∫
Ω

uεdx = 0, (34l)

where nΩBε
is the normal on Σε outwards from ΩBε , nΩDε

is the normal on Σε outwards
from ΩDε , and n is the outwards normal on ∂Ω.

Remark 3. Given the initial conditions for hε and vε, and assuming that there
exists a unique solution to the above problem continuous in time, then u0

ε(x) :=
uε(0, x) is the solution to∫

ΩBε

(σi + σe)∇u0
ε∇φdx+

∫
ΩDε

σd∇u0
ε∇φdx = −

∫
ΩBε

σi∇v0
ε∇φdx, (35)

for all φ ∈ H1(Ω), with the Gauge condition
∫

Ω
u0
ε dx = 0.

In this section we prove the following well–posedness theorem.



MODIFIED BIDOMAIN MODEL WITH HETEROGENEITIES 13

Theorem 4.1 (Well–posedness of the mesoscopic model). Let ε > 0 be given. Let
h0
ε ∈ L∞(ΩBε ), with 0 < h0

ε(x) ≤ 1 and let v0
ε ∈ L2(ΩBε ). Then the problem (34) has

a unique solution (vε, uε, hε), such that

vε ∈ C([0,+∞);H1(ΩBε )) ∩ C1([0,+∞);L2(ΩBε )),

uε ∈ C([0,+∞);H1(Ω)),

hε ∈ C([0,+∞);L∞(ΩBε )) ∩ C1([0,+∞);L∞(ΩBε )).

Lemma 4.2 (A priori uniform estimates on hε). Let h0
ε ∈ L∞(ΩBε ), with 0 < h0

ε ≤
1, then we have hε(t, ·) ∈ L∞(ΩBε ) and ∂thε(t, ·) ∈ L∞(ΩBε ). Moreover,

0 < hε(t, x) ≤ 1.

Proof. From the modified MS model we have

−∂thε = (h∞(vε)− hε)
(

1

τcl
+
τcl − τop
τclτop

h∞(vε)

)
︸ ︷︷ ︸

(∗)

. (36)

The term (∗) is positive, because 0 < τop < τcl. From the definition of h∞(vε),
given in (12), we have that 0 ≤ h∞(vε) ≤ 1, for all vε ∈ R. Using this and applying
the Gronwall lemma, we have the upper and lower bound on hε

hε(t, x) ≥ h0
ε(x)e

−
∫ T
0

(
1
τcl

+
τcl−τop
τclτop

h∞(vε)
)
ds
, (37)

hε(t, x) ≤ 1− (1− h0
ε(x))e

−
∫ T
0

(
1
τcl

+
τcl−τop
τclτop

h∞(vε)
)
ds
. (38)

The exponential part is bounded with,

1 ≥ e−
∫ T
0

(
1
τcl

+
τcl−τop
τclτop

h∞(vε)
)
ds ≥ e−

∫ T
0

(
1
τcl

+
τcl−τop
τclτop

)
ds

= e
− T
τop . (39)

Combining (37), (38) and (39), and using the assumption that the initial condition
h0
ε is bounded, we obtain min{h0

ε(x)}e−
T
τop ≤ hε(t, x) ≤ 1, in ΩBε . Finally, from

(36), we have |∂thε(t, x)| ≤ 1
τop

, in ΩBε .

Remark 4. Normally we work with constant conductivity tensors σi, σe and σd,
but our proof will work in the following more general case. We suppose that the
conductivity tensors σe(x), σi(x) and σd(x) are symmetric definite positive matrix–
functions, such that

σ|ξ|2 ≤ ξTσe,i(x)ξ ≤ σ|ξ|2, ∀x ∈ ΩBε , (40)

and

σ|ξ|2 ≤ ξTσd(x)ξ ≤ σ|ξ|2, ∀x ∈ ΩDε . (41)

We denote by
√
σi,
√
σe, and

√
σd their respective symmetric definite positive square

roots.

In this section, the parameter ε is fixed, so we will omit it as a subscript in the
equations in the rest of the section. To build the proof we will use the semigroup
approach, following the theory exposed in [6].

Definition 4.3. We define B as the operator from H1(ΩBε ) to H1(Ω), such that

∀v ∈ H1(ΩBε ),B(v) := u,
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where u is the solution of the following variational problem∫
ΩBε

(σi + σe)∇u∇φdx+

∫
ΩDε

σd∇u∇φdx = −
∫

ΩBε

σi∇v∇φdx,

∀φ ∈
{
H1(Ω),

∫
Ω

φ = 0

}
.

(42)

Additionally, we denote as BΩBε
the restriction of the operator B to ΩBε in the

following sense:
BΩBε

(v) := u|ΩBε .

Lemma 4.4. For a constant β > 0, the following inequality holds

‖∇B(v)‖L2(ΩBε ) ≤ β‖∇v‖L2(ΩBε ). (43)

Proof. Taking φ = u in (42), we have∫
ΩBε

|
√
σi∇u|2dx+

∫
ΩBε

|
√
σe∇u|2dx+

∫
ΩDε

|
√
σd∇u|2dx = −

∫
ΩBε

σi∇v∇udx.

From the assumption on the boundedness of the conductivity tensors we have

σ ‖∇u‖2L2(ΩBε ) ≤ σ ‖∇v‖L2(ΩBε ) ‖∇u‖L2(ΩBε ) .

Taking β = σ/σ, we obtain the inequality (43).

Definition 4.5. Let A be the operator on D(A), defined as

∀v ∈ D(A), A(v) := −∇ ·
(
σi∇v

)
−∇ ·

(
σi∇BΩBε

(v)
)
,

with the domain D(A),

D(A) :=
{
v ∈ H1(ΩBε ) : BΩBε

(v) ∈ L2(ΩBε ),
(
σi∇v + σi∇BΩBε

(v)
)
· nΩBε

= 0
}
.

Lemma 4.6. The operator (A, D(A)), is m-dissipative with dense domain in
L2(ΩBε ). Therefore the operator A generates a contraction semi–group, whose gen-
erator is denoted by e−tA.

Proof. To prove that the operator A is m-dissipative, we need to prove that for
any λ > 0, and any f ∈ L2(ΩBε ), there exists a unique solution v ∈ D(A) to the
equation

v − λA(v) = f,

or expanded,
v + λ

(
∇ ·
(
σi∇v

)
+∇ ·

(
σi∇BΩBε

(v)
))

= f.

We define the bilinear form

a(v, φB) :=

∫
ΩBε

vφB dx+ λ

(∫
ΩBε

σi∇v∇φB dx+

∫
ΩBε

σi∇BΩBε
(v)∇φB dx

)
.

Then the variational formulation for this problem reads,

a(v, φB) =

∫
ΩBε

fφB dx, ∀φB ∈ H1(ΩBε ). (44)

The boundedness of the bilinear form a(v, φB) is shown by using (43),

|a(v, φB)| ≤ ‖v‖L2(ΩBε ) ‖φB‖L2(ΩBε ) + λσ(1 + β) ‖∇v‖L2(ΩBε ) ‖∇φB‖L2(ΩBε )

≤ ‖v‖H1(ΩBε ) ‖φB‖H1(ΩBε ) .
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To prove coerciveness we use the definition (42) of the operator B(v), and express
the bilinear form as follows,

a(v, φB) =

∫
ΩBε

vφB dx+ λ

(∫
ΩBε

σi∇v∇φB dx+

∫
ΩBε

σi∇u∇φB dx

+

∫
ΩBε

(σi + σe)∇u∇φdx+

∫
ΩBε

σi∇v∇φdx+

∫
ΩDε

σd∇u∇φdx

)
.

Then, for φB = v, and φ = u, and using the inequality: 0 ≤ |a+δb|2, for all a, b ∈ R,
we have

a(v, v) ≥
∫

ΩBε

v2dx+ λ

(∫
ΩBε

∣∣∣√σi∇v∣∣∣2 dx
− δ

∫
ΩBε

∣∣∣√σi∇v∣∣∣2 dx− 1

δ

∫
ΩBε

∣∣∣√σi∇u∣∣∣2 dx
+

∫
ΩBε

∣∣∣√σi∇u∣∣∣2 dx+

∫
ΩBε

∣∣∣√σe∇u∣∣∣2 dx+

∫
ΩDε

∣∣∣√σd∇u∣∣∣2 dx) =: A.

Then using Remark 4 and choosing 1
1+σ/σ < δ < 1 we have

A ≥
∫

ΩBε

v2dx+ λ

(∫
ΩBε

(1− δ)σ |∇v|2 dx

+

∫
ΩBε

(
1− 1

δ

)
σ |∇u|2 dx+

∫
ΩBε

σ |∇u|2 dx+

∫
ΩDε

σ |∇u|2 dx

)

≥
∫

ΩBε

v2dx+ λσ

(∫
ΩBε

(1− δ) |∇v|2 dx

+

∫
ΩBε

(
1 +

(
1− 1

δ

)
σ

σ

)
|∇u|2 dx+

∫
ΩDε

|∇u|2 dx

)
.

Thanks to the choice of δ we have that every term in the rightmost side above is
positive. Hence,

a(v, v) ≥ c ‖v‖H1(ΩBε ) . (45)

From Lax–Milgram theorem, the problem (44) has a unique solution. Hence, the
operator A(v) is m-dissipative. Note that D(A) is dense in L2(ΩBε ) as it contains
the set of infinitely smooth functions with compact support in ΩBε , that is itself
dense in L2(ΩBε ). Hence, the operator (A, D(A)) generates the semigroup denoted
by e−tA.

Lemma 4.7. The evolution problem (34) is equivalent to the problem

∂thε + g(vε, hε) = 0, in ΩBε , ∀t ∈ (0, T ), (46a)

∂tvε +A(vε) + Iion(vε, hε(t, vε)) = 0, in ΩBε , ∀t ∈ (0, T ), (46b)

with the initial conditions

hε(0, x) = h0
ε(vε), vε(0, x) = v0

ε(x). (46c)
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Moreover, vε is also the solution of the following problem:

vε(t, x) = e−tAv0
ε −

∫ t

0

e−(t−s)AIion(s, hε(s, vε(s, x))) ds, ∀t ∈ (0, T ). (47)

Proof. The equivalence of the two problems comes from the definition of the opera-
tors A and B. The formula (47) is a straightforward use of the standard Duhamel’s
formula, see Lemma 4.1.1 in [6].

Proof of Theorem 4.1. The proof that vε exists and is unique, where

vε ∈ C([0,+∞);H1(ΩBε )) ∩ C1([0,+∞);L2(ΩBε ))

is a straightforward consequence of the Hille–Yosida theorem, since (A, D(A)) is
an m-dissipative operator with dense domain, and the Lipschitz property of the
ionic function given in Proposition 1, see Section 4.3. in [6]. The regularity of hε
comes directly from the assumption on the initial conditions and Lemma 4.2, and
the regularity on uε from Definition 4.3 and the Poincare’s inequality.

Remark 5. For the function uiε := vε + uε1ΩBε
, we have

uiε ∈ C([0,+∞);H1(ΩBε )).

5. Two-scale convergence towards the macroscopic model. In this section
we provide a rigorous justification for the formal derivation of the homogenised
problem given in Section 3. We will follow the idea of two–scale convergence as
in [1]. For the sake of clarity, let us recall the definition–theorem of two–scale
convergence (see [1, 27]).

Definition–Theorem 5.1. Let Ω be a bounded domain of RN , for N ∈ N \ {0}.
Let φε be a bounded sequence in L2(Ω). There exists a subsequence, still denoted
by φε, and a function φ0(x, y) ∈ L2(Ω× (R/Z)N ) such that

lim
ε→0

∫
Ω

φε(x)ψ(x, x/ε) dx =

∫
Ω×Y

φ0(x, y)ψ(y) dy,

for any smooth function ψ defined on Ω× (R/Z)N and (R/Z)N -periodic in y. Such
a sequence φε is said to two–scale converge to φ0 and we denote it by

φε
2−scale, L2

−−−−−−−→ φ0.

To apply the two–scale convergence to our case we need to address two problems:
first to find uniform bounds, independent on ε, on the functions vε, uε, hε,∇vε, and
∇uε, and secondly to show the convergence of the nonlinear part of the problem.

Definition 5.2 (Trivial extension operator). Denote with ·̃ the extension by zero
in the domain ΩDε , i.e. for any function fε(x) defined in ΩBε , its trivial extension is

f̃ε(x) =

{
fε(x), if x ∈ ΩBε ,

0, if x ∈ ΩDε .

Note that if fε(x) has a uniform bound on ΩBε , ‖fε‖L2(ΩBε ) < C, it’s trivial
extension is also uniformly bounded on Ω, ‖f̃ε‖L2(Ω) < C.
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5.1. Hypotheses on the initial conditions.

Hypothesis 5.3. The initial conditions v0
ε and h0

ε fulfill the following hypotheses:
v0
ε and ∇v0

ε are uniformly bounded in L2(ΩBε ), and h0
ε is uniformly bounded in

L∞(ΩBε ), 0 ≤ h0
ε(x) ≤ 1 almost everywhere in ΩBε .

• There exists v0
0 ∈ L2(Ω) and v0

1 ∈ L2(Ω;H1(YB)) such that the following
two–scale convergences hold:

ṽε
0(x)

2−scale, L2

−−−−−−−→ χYB (y)v0
0(x),

∇̃v0
ε(x)

2−scale, L2

−−−−−−−→ χYB (y)
(
∇xv0

0(x) +∇yv0
1(x, y)

)
.

• There exist h0
0 ∈ L2(Ω) such that

h̃0
ε(x)

2−scale, L∞−−−−−−−−→ χYB (y)h0
0(x).

Interestingly, no assumption are required on u0, since from the above hypotheses
the following proposition holds.

Proposition 2. There exist u0
0 ∈ L2(Ω) and u0

1 ∈ L2(Ω;H1(Y )) such that u0

defined by (35) satisfies

u0
ε(x)

2−scale, L2

−−−−−−−→ u0
0(x), ∇u0

ε(x)
2−scale, L2

−−−−−−−→ ∇xu0
0(x) +∇yu0

1(x, y). (48)

The functions (u0
0, u

0
1) are the unique solution in L2(Ω) × L2(Ω;H1(Y )|R) to the

following problem:

−∇x ·
∫
YB

(σi + σe)(∇xu0
0 +∇yu0

1) dy −∇x ·
∫
YD

σd(∇xu0
0 +∇yu0

1) dy =

∇x ·
∫
YB

σi(∇xv0
0 +∇yv0

1) dy,

in Ω, with the Gauge condition
∫

Ω
u0

0dx = 0, and the correction term is given as
the solution to:

−∇y ·
(
(χYB (σi + σe) + χYDσ

d)(∇xu0
0 +∇yu0

1)
)

= ∇y ·
(
χYBσ

i(∇xv0
0 +∇yv0

1)
)
,

in Ω × Y, with the periodic boundary conditions for y → u0
1(x, y) in Y , and the

boundary condition:(
(σi + σe − σd)(∇xu0

0 +∇yu0
1)
)
· nYB = −

(
σi(∇xv0

0 +∇yv0
1)
)
· nYB ,

on Ω× Γ.

Proof. From (35) taking φ = u0
ε, and Poincare’s inequality, we have that the initial

condition u0
ε(x) satisfies ‖u0

ε‖L2(Ω) ≤ C, and ‖∇u0
ε‖L2(Ω) ≤ C, so we have (48).

The homogenised problem for (u0
0, u

0
1) can be then derived, using the test function

φ(x) + εφ1(x, x/ε), such that φ(x) ∈ D(Ω) and φ1 ∈ D(Ω, C∞# ). We have,∫
ΩBε

(σi + σe)∇u0
ε(∇xφ+∇yφ1 + ε∇xφ1) dx

+

∫
ΩDε

σd∇u0
ε(∇xφ+∇yφ1 + ε∇xφ1) dx

= −
∫

ΩBε

σi∇v0
ε(∇xφ+∇yφ1 + ε∇xφ1) dx.

Passing to the two–scale limit, and after the partial integration, we obtain the
homogenised problem for u0

0 and u0
1.
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5.2. Uniform bounds. In order to find the uniform bound, we will introduce an
energy functional Eλ,κ. This is the key idea that is adapted from the work of Allaire
[1], and used in a different context by Collin and Imperiale [8].

First, we multiply by hε, vε, uε the first, second and third and fourth equations
respectively and integrate by parts. Using the transmission conditions, we obtain

1

2

d

dt
‖hε‖2L2(ΩBε ) +

∫
ΩBε

g(vε, hε)hε dx = 0, (49)

and

1

2

d

dt
‖vε‖2L2(ΩBε ) +

∫
ΩBε

Iion(vε, hε)vε dx+
∥∥∥√σi∇(vε + uε)

∥∥∥2

L2(ΩBε )
(50)

+
∥∥√σ∇uε∥∥2

L2(Ω)
= 0,

with σ as before, σ = σe, in ΩBε , and σ = σd, in ΩDε . Then we infer the following
proposition.

Proposition 3. For any λ, κ ∈ R, let us define the energy functional

Eλ,κ(t, v, u, h) :=
1

2
e−λt

(
‖v‖2L2(ΩBε ) + κ ‖h‖2L2(ΩBε )

)
+

∫ t

0

e−λs
(
λ

2

(
‖v‖2L2(ΩBε ) + κ ‖h‖2L2(ΩBε )

)
+
∥∥∥√σi∇(v + u)

∥∥∥2

L2(ΩBε )
+
∥∥√σ∇u∥∥2

L2(Ω)

)
ds.

Let (vε, uε, hε) be the solution to problem (34). The energy functional Eλ,κ satisfies
the following equality

Eλ,κ(t, vε, uε, hε) +

∫ t

0

e−λs
∫

ΩBε

(
Iion(vε, hε)vε + κg(vε, hε)hε

)
dx ds

=
1

2
‖v0
ε‖2L2(ΩBε ) +

κ

2
‖h0

ε‖2L2(ΩBε ) = Eλ,κ(0, v0
ε , u

0
ε, h

0
ε).

(51)

Proof. By definition of Eλ,κ(t, v, u, h), using (49) (multiplied by κe−λt) and (50)
(multiplied by e−λt) one has

∂tEλ,κ(t, vε, uε, hε) + e−λt
∫

ΩBε

(Iion(vε, hε)vε + κg(vε, hε)hε) dx = 0.

Proposition 4. The following inequalities hold:∣∣∣∣∣
∫ t

0

e−λs
∫

ΩBε

Iion(vε, hε)vε dx ds

∣∣∣∣∣ ≤ C

∫ t

0

e−λs ‖vε‖2L2(ΩBε ) ds, (52)

‖Iion(vε, hε)‖L2(ΩBε ) ≤ C ‖vε‖2L2(ΩBε ) . (53)

Proof. From the definition of the ionic function we see that Iion(0, h(0)) = 0. Then,
using the Lipschitz property from Proposition 1, one can easily see that

|Iion(v, h)| ≤ |v|, for any v ∈ R.

Both inequalities fall directly from this.
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Proposition 5. Assume that v0
ε and h0

ε satisfy Hypothesis 5.3. Then we have the
uniform bounds:

0 ≤ hε(t, x) ≤ 1, |g(vε, hε)| ≤ C, ∀t ∈ [0, T ],

‖vε(t, ·)‖L2(ΩBε ) ≤ C, ‖Iion(vε, hε)‖L2(ΩBε ) ≤ C, ∀t ∈ [0, T ],

and

‖∇vε(t, ·)‖L2((0,T )×ΩBε ) ≤ C,
‖uε(t, ·)‖L2((0,T )×Ω) ≤ C, ‖∇uε(t)‖L2((0,T )×Ω) ≤ C.

Proof. The estimates on hε(t, x) and g(vε, hε) come directly from the assumption on
the initial condition and Lemma 4.2. Then from Proposition 3 and Proposition 4,
we have that

Eλ,κ(t, vε, uε, hε) =
1

2

∥∥v0
ε

∥∥2

L2(ΩBε )
+
κ

2

∥∥h0
ε

∥∥2

L2(ΩBε )

−
∫ t

0

e−λs
∫

ΩBε

(Iion(vε, hε)vε + κg(vε, hε)) dx ds

≤ 1

2

∥∥v0
ε

∥∥2

L2(ΩBε )
+
κ

2

∥∥h0
ε

∥∥2

L2(ΩBε )

+

∫ t

0

e−λs
(
c1 ‖vε‖2L2(ΩBε ) + κc2|ΩBε |

)
ds.

Note that the volume |ΩBε | < |Ω| < c3. Taking λ such that λ
2 > c1, and going

back to the definition of Eλ,κ, we obtain the uniform bound on ‖vε(t, ·)‖L2(ΩBε ), and
hence on ‖Iion(vε, hε)‖L2(ΩBε ). Now, going back to (50), and integrating over time,
we obtain∫ t

0

∥∥∥√σi∇(vε + uε)
∥∥∥2

L2(ΩBε )
ds+

∫ t

0

∥∥√σ∇uε∥∥2

L2(Ω)
ds ≤

∥∥v0
ε

∥∥
L2(ΩBε )

≤ C,

which, together with the bounds on conductivities provides the uniform bounds on
the derivatives. From

∫
Ω
uε(t, x)dx = 0 and the Poincare’s inequality, we have the

bound on ‖uε‖L2((0,T )×Ω).

Remark 6 (Two–scale limits). From the uniform bounds we obtained, by direct
application of the theory developed in [1], we have the following convergences

• h̃ε(t, x)
2−scale, L∞−−−−−−−−→ χYB (y)h0(t, x), a.e. t ∈ (0, T ),

• ṽε(t, x)
2−scale, L2

−−−−−−−→ χYB (y)v0(t, x), a.e. t ∈ (0, T ),

• ∇̃vε(t, x)
2−scale, L2

−−−−−−−→ χYB (y)(∇xv0(t, x) +∇yv1(t, x, y)),

• uε(t, x)
2−scale, L2

−−−−−−−→ u0(t, x),

• ∇uε(t, x)
2−scale, L2

−−−−−−−→ ∇xu0(t, x) +∇yu1(t, x, y),

• Ĩion(vε, hε)
2−scale, L2

−−−−−−−→ χYB (y)I0(t, x), a.e. t ∈ (0, T ),

• g̃(vε, hε)
2−scale, L∞−−−−−−−−→ χYB (y)g0(t, x), a.e. t ∈ (0, T ),

for some functions h0(t, ·), I0(t, ·), g0(t, ·) ∈ L2(Ω), v0(t, ·) ∈ H1(Ω), v1(t, ·, ·) ∈
L2(Ω;H1(YB)/R), u0 ∈ L2((0, T );H1(Ω)), and u1 ∈ L2((0, T ) × Ω;H1(Y )/R).
These limit functions satisfy the homogenised problem given in Section 3, except
the nonlinear functions from the ionic model which are still not identified.



20 YVES COUDIÈRE, ANÐELA DAVIDOVIĆ AND CLAIR POIGNARD

5.3. Nonlinear convergence. We are now ready to prove that the functions I0
and g0 take the forms: I0 = Iion(v0, h0), and g0 = g(v0, h0).

From the given two–scale limits on the functions we have that the equality (51)
holds for a limit case in the form,

E0
λ,κ(t, (v0, v1), (u0, u1), h0) :=

1

2
e−λt

(
‖v0‖2L2(Ω×YB) + κ ‖h0‖2L2(Ω×YB)

)
+

∫ t

0

e−λs
(λ

2

(
‖v0‖2L2(Ω×YB) + κ ‖h0‖2L2(Ω×YB)

)
+
∥∥∥√σi(∇(v0 + u0) +∇y(v1 + u1))

∥∥∥2

L2(Ω×YB)

+
∥∥√σ(∇xu0 +∇yu1)

∥∥2

L2(Ω×Y )

)
ds,

and

E0
λ,κ(t, (v0, v1), (u0, u1), h0) +

∫ t

0

e−λs
∫

Ω

∫
YB

(
I0v0 + κg0h0

)
dy dx ds

=
1

2
‖v0

0‖2L2(Ω×YB) +
κ

2
‖h0

0‖2L2(Ω×YB).

(54)

Using the above properties of the nonlinear terms, for appropriate choice of λ and
κ, we get

Eλ,κ(t, vε − µε, uε − ρε, hε − ηε)

+

∫ t

0

e−λs
∫

ΩBε

(
(Iion(vε, hε)− Iion(µε, ηε))(vε − µε)

+κ(g(vε, hε)− g(µε, ηε))(hε − ηε)
)
dx ds ≥ 0,

where µε, ρε, ηε will be chosen later. We develop the above expression, as follows

Eλ,κ(t, vε − µε, uε − ρε, hε − ηε)

+

∫ t

0

e−λs
∫

ΩBε

(
Iion(vε, hε)vε − Iion(vε, hε)µε − Iion(µε, ηε)vε + Iion(µε, ηε)µε (55)

+κ(g(vε, hε)hε − g(vε, hε)ηε − g(µε, ηε)hε + g(µε, ηε)ηε)
)
dx ds ≥ 0.

Furthermore, for the energy functional we have,

Eλ,κ(t, vε − µε, uε − ρε, hε − ηε) =
1

2
e−λt

(
‖vε − µε‖2L2(ΩBε ) + κ ‖hε − ηε‖2L2(ΩBε )

)
+

∫ t

0

e−λs
(λ

2

(
‖vε − µε‖2L2(ΩBε ) + κ ‖hε − ηε‖2L2(ΩBε )

)
+
∥∥∥√σi∇(vε − µε + uε − ρε)

∥∥∥2

L2(ΩBε )
+
∥∥√σ∇(uε − ρε)

∥∥2

L2(Ω)

)
ds.

Hence,

Eλ,κ(t,vε − µε, uε − ρε, hε − ηε) = Eλ,κ(t, vε, uε, hε)

+
e−λt

2

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx
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+

∫ t

0

e−λs
(λ

2

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+

∫
ΩBε

σi∇(µε + ρε)(−2∇(vε + uε) +∇(µε + ρε)) dx

+

∫
Ω

σ∇ρε(−2∇uε +∇ρε) dx
)
ds.

Now, we use the fact that (vε, uε, hε) is solution to the problem (34), so equality
(51) holds. Hence, (55) becomes,

1

2
‖v0
ε‖2L2(ΩBε ) +

κ

2
‖h0

ε‖2L2(ΩBε ) +
e−λt

2

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+

∫ t

0

e−λs
(λ

2

∫
ΩBε

(µε(−2vε + µε) + κηε(−2hε + ηε)) dx

+

∫
ΩBε

σi∇(µε + ρε)(−2∇(vε + uε) +∇(µε + ρε)) dx

+

∫
Ω

σ∇ρε(−2∇uε +∇ρε) dx
)
ds

+

∫ t

0

e−λs
∫

ΩBε

(
−Iion(vε, hε)µε − Iion(µε, ηε)vε + Iion(µε, ηε)µε

+κ(−g(vε, hε)ηε − g(µε, ηε)hε + g(µε, ηε)ηε)
)
dx ds ≥ 0.

Now let us choose, µε, ρε and ηε as follows

µε(x) = v0(x) + αφ(x) + εφ1(x, x/ε),

ρε(x) = u0(x) + εψ1(x, x/ε),

ηε(x) = h0(x) + αθ(x),

where φ1(x, y) and ψ1(x, y) are smooth functions that we can choose as close as we
need to v1(x, y) and u1(x, y), respectively. From the construction we have a strong
convergences for µε,∇µε, ρε,∇ρε and ηε. Now, passing to the two–scale limit in
the above inequality, we have,

1

2
‖v0

0‖2L2(Ω×YB) +
κ

2
‖h0

0‖2L2(Ω×YB)

+
e−λt

2

∫
Ω

∫
YB

(
(αφ)2 − v2

0) + κ((αθ)2 − h2
0)
)
dy dx

+

∫ t

0

e−λs
(λ

2

∫
Ω

∫
YB

(
(αφ)2 − v2

0) + κ((αθ)2 − h2
0)
)
dy dx

+

∫
Ω

∫
YB

σi
(
(α∇φ)2 − (∇xv0 +∇yv1 +∇xu0 +∇yu1)2

)
dy dx

−
∫

Ω

∫
Y

σ∇(∇xu0 +∇yu1) dy dx
)
ds

+

∫ t

0

e−λs
∫

Ω

∫
YB

(
−I0(v0 + αφ) + Iion(v0 + αφ, h0 + αθ)αφ

+κ(−g0(h0 + αθ) + g(v0 + αφ, h0 + αθ)αθ
)
dy dx ds ≥ 0.
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Finally, we use the equality (54), and divide every term by α 6= 0, to obtain

α

∫
Ω

[
e−λt

2

(
φ2 + κθ2

)
+

∫ t

0

e−λs
(λ

2

(
φ2 + κθ2

)
+ σi(∇φ)2

)
ds

]
dx

+

∫ t

0

e−λs
∫

Ω

(Iion(v0 + αφ, h0 + αθ)− I0)φdx ds

+

∫ t

0

e−λs
∫

Ω

κ(g(v0 + αφ, h0 + αθ)− g0)θ dx ds ≥ 0.

Then letting α go to zero, we obtain for any functions θ(x), φ(x)∫ t

0

e−λs
∫

Ω

(
(Iion(v0, h0)− I0)φ+ κ(g(v0, h0)− g0)θ

)
dx ds ≥ 0.

Thus, we conclude I0 = Iion(v0, h0) and g0 = g(v0, h0).

5.4. Main theorem.

Theorem 5.4. For any time t ∈ (0, T ) let (vε, uε, hε) be the sequence of solu-
tions to the problem (34). Having the two–scale convergences given in Remark 6,
then (v0, u0, h0, v1, u1) is the unique solution of the following two–scale homogenised
system

∂th0(t, x) + g(v0, h0) = 0,

|YB | (∂tv0(t, x) + Iion(v0, h0))

−∇x ·
[∫

YB

σi(∇v0(t, x) +∇yv1(t, x, y))dy

]
−∇x ·

[∫
YB

σi(∇u0(t, x) +∇yu1(t, x, y))dy

]
= 0,

−∇x ·
[∫

YB

(σi + σe)(∇u0(t, x) +∇yu1(t, x, y))dy

]
−∇x ·

[∫
YD

σd(∇u0(t, x) +∇yu1(t, x, y))dy

]
−∇x ·

[∫
YB

σi(∇v0(t, x) +∇yv1(t, x, y))dy

]
= 0,

given in (0, T )×Ω×Y , with the initial conditions on h0(t, x) and v0(t, x), given as

h0(0, x) = h0
0(x), v0(0, x) = v0

0(x), in Ω,

with the correction equations given on a unit cell Y as

−∇y ·
[
σi(∇v0(t, x) +∇yv1(t, x, y)) + σi(∇u0(t, x) +∇yu1(t, x, y))

]
= 0, in YB ,

−∇y · [σe(∇u0(t, x) +∇yu1(t, x, y))] = 0, in YB ,

−∇y ·
[
σd(∇u0(t, x) +∇yu1(t, x, y))

]
= 0, in YD,

and with the boundary and transmission conditions(
σi(∇v0(t, x) +∇yv1(t, x, y)) + σi(∇u0(t, x) +∇yu1(t, x, y))

)
· nYB = 0, on Γ,(

(σe − σd)(∇u0(t, x) +∇yu1(t, x, y))
)
· nYB = 0, on Γ,

y → u1(t, x, y) and y → v1(t, x, y) are Y -periodic.



MODIFIED BIDOMAIN MODEL WITH HETEROGENEITIES 23

Furthermore, we can recover the classical homogenised and cell equations if we use
the relation

v1(t, x, y) =

N∑
k=1

∂v0(t, x)

∂xk
wvk(y),

u1(t, x, y) =

N∑
k=1

∂u0(t, x)

∂xk
wk(y).

Proof of Theorem 5.4. To find the homogenised equations we choose the test func-
tion φ(t, x)+εφ1(x, x/ε), φ(t, x) ∈ D((0, T )×Ω) and φ1(x, y) ∈ D(Ω;C∞# (Y )). Then
by the partial integration and passing to the two–scale limits, using the assumptions
on the nonlinear parts, we derive the homogenised system of equations.

Remark 7. Note that the homogenised problem given in the main theorem is the
parabolic–elliptic version of the homogenised problem we have derived formally in
Section 3, for uiε := vε + uε|ΩBε , and then ui0 = v0 + u0, and ui1 = v1 + u1.

Remark 8. The existence and uniqueness of the solution of the homogenised (bido-
main) model has been proved in [4]. It is not necessary from conductivity tensors
to be symmetric definite positive, although in practice it is assumed.

6. Numerical convergence. In this section we want to observe numerically the
convergence of the mesoscopic problem to the derived homogenised equations, and
to find the rate of convergence. In order to do this we simulate the mesoscopic
problem (6) for several values of ε, and the homogenised problem.

To be sure that we observe the change with respect to ε, we run all simulations
with the same mesh and time steps. The parameters for the bidomain problem and
for the Mitchell–Schaeffer model are set as in [29]. For all simulations we use the
semi–implicit numerical time scheme with the finite element approach for the space
discretisation. More precisely, we use the SBDF2 scheme as in [12]. The details of
the algorithms for both cases are in the appendix.

We use a square–shaped domain Ω, with the side length of 30mm. It is meshed
with the mesh step dx = 0.3mm. For the time scheme we use dt = 0.5ms. We
assume that the diffusive inclusions are circular and that they occupy 20% of the
total volume, i.e. |YB | = 0.8.

We simulate the mesoscopic problems for several sizes of periodic cell. Namely,
ε ∈ {1/10, 1/15, 1/20, 1/25, 1/30, 1/35, 1/40}. The solutions (vε, hε) are obtained
on domains ΩBε and saved at the time T = 10ms.

The solution to the homogenised macroscopic problem (v, h) is given on the full
domain Ω and is saved at the same time T = 10ms.

To find the rate of convergence we compute the L2 errors of vε with respect to
v, and of hε with respect to h, respectively defined as

EL2(vε) =
‖vε − v‖L2(ΩBε )

‖v‖L2(Ω)
and EL2(hε) =

‖hε − h‖L2(ΩBε )

‖h‖L2(Ω)
.

We use the log–log scale to fit the results with the linear functions. We have obtained
approximately linear rates of the convergence. More precisely, we have the rate of
convergence 1.39 for vε, and 0.63 for hε, as shown in Figure 2.
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Figure 2. The convergence study for L2 errors of vε and hε in
log-log scale. Observed convergence rates are 1.39 for vε, and 0.63
for hε.

7. Conclusions. We proposed a model for the electrophysiology of the cardiac
tissue that extends the standard bidomain model with periodic diffusive inclusions.
In a rigorous and practical way it links structural disease of the cardiac tissue to
macroscopic electrical conductivities of the bidomain model.

There are several limitations of the proposed model. The inclusions that we
address are purely diffusive while we can expect to have different types of cells in
these non–excitable regions. Hence, we neglected the effect we might have from the
ionic activity due to the cells’ membrane. Another question that could be addressed
is the choise of the transmission conditions on the interface of the inclusions. We
used the same ones as in the heart–torso problem. While it is not clear if these
are the appropriate transmission conditions for our case, the debate on which ones
would be more suitable is open.

Finally, this study gives an additional insight to the electrical behaviour of the
cardiac tissue in pathological states. It can be practiacally applied for numerical
studyies of many structural diseases of the heart such as fibrosis, scars’ border zones
etc.

Acknowledgments. The authors would like to thank to S. Imperiale and A. Collin
for the fruitful discussions on nonlinear two–scale convergence and energy function-
als.

Appendix A. Numerical algorithms.

A.1. Mesoscale problem. In order to simulate the mesoscopic problem we create
a mesh of the domain with diffusive inclusions, as in Figure 1. The uiε, vε and hε
are defined on ΩBε , while uε is defined everywhere on Ω. For the convergence study
we will mind only for the values of vε and hε. The full SBDF2 numerical scheme is
given in Algorithm 1. The term 0 < η � 1 is used to impose the Gauge condition
on ueε, given in (5). The software used for simulation is FreeFem++ [16].
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A.2. Homogenised problem. In order to simulate the macroscopic problem, we
need to solve the cells problems first, on the unit cell Y = YB ∪YD, and to compute
the modified conductivities. Then we use these to solve the modified bidomain
model on the whole domain Ω, without distinguishing ΩBε and ΩDε , i.e. without
including the boundary Γε.

The cell problems (24) - (25) are static problems, that are solved in order to
obtain the modified conductivities σi∗ and σe∗, (28) and (32). The FreeFem++
algorithm for the cell problems is given in Algorithm 2.

The FreeFem++ algorithm, using SBDF2 numerical scheme (see [12]) for the
homogenised problem (27), (31) and (33) is given in Algorithm 3. For simplicity,
we omit the 0 subscripts in terms of ε−expansion.

Algorithm 1 The mesoscale problem.

1: Define meshes on Ω and ΩBε . Define T and N = T
∆t .

2: Define var. form. spaces H1(Ω), H1(ΩBε ) with P1 elements.
3: Declare uiεn, vεn, hεn, φi, φ ∈ H1(ΩBε ) and ueεn, φe ∈ H1(Ω), for n = 0, .., N.
4: Define vε0 := v0, hε0 := h0.
5: Solve the coupled system to obtain uiε1, u

e
ε1:∫

ΩBε

(uiε1 − u
e
ε1)(φi − φe) +

∫
Ω

ηueε1φe

+∆t

[∫
ΩBε

(
σi∇uiε1

)
∇φi +

∫
Ω

(σ∇ueε1)∇φe

]
=∫

ΩBε

(vε0 −∆tIion(vε0, hε0)) (φi − φe).

6: Solve the ODE to obtain hε1:
∫

Ω
hε1φ =

∫
Ω

(hε0 + ∆tg(vε0, hε0))φ.

7: Define vε1 := uiε1 − ueε1|ΩBε .
8: for n = 1 to N do
9: Solve the coupled system with SBDF2 to obtain uiεn+1, u

e
εn+1:∫

ΩBε

3

2

(
uiεn+1 − u

e
εn+1

)
(φi − φe) +

∫
Ω

ηueεn+1φe

+∆t

[∫
ΩBε

(
σi∇uiεn+1

)
∇φi +

∫
Ω

(
σ∇ueεn+1

)
∇φe

]
=∫

ΩBε

(
(2vεn −

1

2
vεn−1) + ∆t (2Iion(vεn, hεn)− Iion(vεn−1, hεn−1))

)
(φi − φe).

10: Solve the ODE to obtain hεn+1:∫
ΩBε

3

2
hεn+1φ =

∫
Ω

(
2hεn −

1

2
hεn−1 + ∆t (2g(vεn, hεn)− g(vεn−1, hεn−1))

)
φ.

11: Define vεn+1 := uiεn+1 − ueεn+1|ΩBε .
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Algorithm 2 Static cell problems
1: Define meshes on Y , and YB .
2: Define periodic var. form. spaces H1(Y ), H1(YB) with P1 elements.
3: Declare wik, φi ∈ H1(YB) and wek, φi ∈ H1(Y ), for k = 1, 2, or k = 1, 2, 3.
4: Solve for wik:

∫
YB

(σi∇wik) · ∇φi +
∫

Γ
(σiek) · nΓφi = 0

5: Solve for wk:
∫
YB

(σ∇wk) · ∇φ+
∫

Γ
((σe − σd)ek) · nΓφ = 0

6: Compute derivatives: ∂wik and ∂wk, and conductivities σi∗ and σe∗ using (28)-
(32).

Algorithm 3 Homogenised problem

1: Define mesh on Ω, T and N = T
∆t .

2: Define var. form. space H1(Ω) with P1 elements.
3: Declare uin, un, vn, hn, φi, φe, φ ∈ H1(Ω), for n = 0, .., N.
4: Define v0 := v0, h0 := h0.
5: Solve the coupled system to obtain uiε1, u

e
ε1:

|YB |
∫

Ω

(ui1 − u1)(φi − φe) +

∫
Ω

ηu1φe

+∆t

[∫
Ω

(
σi∗∇ui1

)
∇φi +

∫
Ω

(σe∗∇u1)∇φe
]

=

|YB |
∫

Ω

(v0 −∆tIion(v0, h0)) (φi − φe).

6: Solve the ODE to obtain h1:
∫

Ω
h1φ =

∫
Ω

(h0 + ∆tg(v0, v0))φ.

7: Define v1 := ui1 − u1.
8: for n = 1 to N do
9: Solve the coupled system with SBDF2 to obtain uin+1, un+1:

|YB |
∫

Ω

3

2

(
uin+1 − un+1

)
(φi − φe) +

∫
Ω

ηun+1φe

+∆t

[∫
Ω

(
σi∗∇uin+1

)
∇φi +

∫
Ω

(σe∗∇un+1)∇φe
]

=

|YB |
[∫

Ω

(
(2vn −

1

2
vn−1) + ∆t (2Iion(vn, hn)− Iion(vn−1, hn−1))

)
(φi − φe)

]
.

10: Solve the ODE to obtain hεn+1:∫
Ω

3

2
hn+1φ =

∫
Ω

(
2hn −

1

2
hn−1 + ∆t (2g(vn, hn)− g(vn−1, hn−1))

)
φ.

11: Define vn+1 := uin+1 − un+1.
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