G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, vol.23, pp.1482-1518, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01111805

A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol.374, 2011.

M. Boulakia, M. A. Fernandez, J. Gerbeau, and N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiograms modeling, Applied Mathematics Research eXpress, vol.2, 2008.

Y. Bourgault, Y. Coudiere, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, vol.10, pp.458-482, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00101458

P. Camelliti, T. K. Borg, and P. Kohl, Structural and functional characterisation of cardiac fibroblasts, Cardiovascular Research, vol.65, pp.40-51, 2005.

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, vol.13, 1998.

R. Clayton, O. Bernus, E. Cherry, H. Dierckx, F. Fenton et al., Models of cardiac tissue electrophysiology: progress, challenges and open questions, Progress in Biophysics and Molecular Biology, vol.104, pp.22-48, 2011.

A. Collin and S. Imperiale, Mathematical analysis and 2-scale convergence of a heterogeneous microscopic bidomain model, Mathematical Models and Methods in Applied Sciences, vol.28, pp.979-1035, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759914

Y. Coudière, A. Davidovi?, and C. Poignard, The modified bidomain model with periodic diffusive inclusions, Computing in Cardiology Conference (CinC), pp.1033-1036, 2014.

A. Davidovi?, Multiscale Mathematical Modelling of Structural Heterogeneities in Cardiac Electrophysiology, 2016.

A. Davidovi?, Y. Coudière, and Y. Bourgault, Image-based modeling of the heterogeneity of propagation of the cardiac action potential. example of rat heart high resolution mri, International Conference on Functional Imaging and Modeling of the Heart, pp.260-270, 2017.

M. Ethier and Y. Bourgault, Semi-implicit time-discretization schemes for the bidomain model, SIAM Journal on Numerical Analysis, vol.46, pp.2443-2468, 2008.

L. C. Evans, Partial Differential Equations, vol.19, 1998.

P. C. Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level, Evolution Equations, Semigroups and Functional Analysis, vol.50, pp.49-78, 2002.

D. B. Geselowitz and W. Miller, A bidomain model for anisotropic cardiac muscle, Annals of Biomedical Engineering, vol.11, pp.191-206, 1983.

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, pp.251-265, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01476313

O. Kavian, M. Leguèbe, C. Poignard, and L. Weynans, Classical" electropermeabilization modeling at the cell scale, Journal of Mathematical Biology, vol.68, pp.235-265, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00712683

P. Kohl, A. Kamkin, I. Kiseleva, and D. Noble, Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: Interaction with cardiomyocytes and possible role, Experimental Physiology, vol.79, pp.943-956, 1994.

P. Kohl, P. Camelliti, F. L. Burton, and G. L. Smith, Electrical coupling of fibroblasts and myocytes: Relevance for cardiac propagation, Journal of Electrocardiology, vol.38, pp.45-50, 2005.

W. Krassowska and J. Neu, Effective boundary conditions for syncytial tissues, Biomedical Engineering, vol.41, pp.143-150, 1994.

M. Leguebe, A. Silve, L. M. Mir, and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments, Journal of Theoretical Biology, vol.360, pp.83-94, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956017

K. A. Maccannell, H. Bazzazi, L. Chilton, Y. Shibukawa, R. B. Clark et al., A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts, Biophysical Journal, vol.92, pp.4121-4132, 2007.

W. T. Miller and D. B. Geselowitz, Simulation studies of the electrocardiogram. I. the normal heart, Circulation Research, vol.43, pp.301-315, 1978.

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of mathematical biology, vol.65, pp.767-793, 2003.

A. Muler and V. Markin, Electrical properties of anisotropic neuromuscular syncytia. I. distribution of the electrotonic potentia, Biofizika, vol.22, pp.307-319, 1977.

J. Neu and W. Krassowska, Homogenization of syncytial tissues, Critical Reviews in Biomedical Engineering, vol.21, pp.137-199, 1992.

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, vol.20, pp.608-623, 1989.

M. Pennacchio, G. Savaré, and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM Journal on Mathematical Analysis, vol.37, pp.1333-1370, 2005.

M. Rioux and Y. Bourgault, A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, pp.987-1016, 2013.

F. B. Sachse, A. P. Moreno, G. Seemann, and J. Abildskov, A model of electrical conduction in cardiac tissue including fibroblasts, Annals of Biomedical Engineering, vol.37, pp.874-889, 2009.

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Analysis: Real World Applications, vol.10, pp.849-868, 2009.

J. C. Weaver and Y. A. Chizmadzhev, Theory of electroporation: A review, Bioelectrochemistry and Bioenergetics, vol.41, pp.135-160, 1996.