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Abstract

Pedestrian detection is a specific instance of the more
general problem of object detection in computer vision. A
balance between detection accuracy and speed is a desir-
able trait for pedestrian detection systems in many appli-
cations such as self-driving cars. In this paper, we follow
the wisdom of “ and less is often more” to achieve this
balance. We propose a lightweight mechanism based on
semantic segmentation to reduce the number of anchors to
be processed. We furthermore unify this selection with the
intra-anchor feature pooling strategy adopted in high per-
formance two-stage detectors such as Faster-RCNN. Such a
strategy is avoided in one-stage detectors like SSD in favour
of faster inference but at the cost of reducing the accuracy
vis-à-vis two-stage detectors. However our anchor selec-
tion renders it practical to use feature pooling without giv-
ing up the inference speed.

Our proposed approach succeeds in detecting pedes-
trians with state-of-art performance on caltech-reasonable
and ciypersons datasets with inference speeds of ∼ 32 fps.

1. Introduction
Detection of pedestrians has important applications in-

cluding surveillance and autonomous vehicles. High detec-
tion accuracy and fast inference are defining expectations
from a pedestrian detection technique in the aforementioned
applications.

High inference speed is desirable in applications such as
autonomous vehicles for safety reasons. Essentially high in-
ference speed is a trade-off against high detection accuracy
[10]. High detection accuracy is usually associated with
two-stage detectors such as Faster-RCNN [24] and Mask-
RCNN [8] at the cost of inference speed. One-stage de-
tectors like YOLO [22] and SSD [15] provide high infer-

Figure 1. Speed/Accuracy scatter plot of various pedestrian detec-
tors categorized into one-stage(crossed) and two-stage (circles)
detectors for the caltech-reasonable testing set dataset.

ence speed at the cost of detection accuracy. In this work,
we propose an approach to pedestrian detection which bal-
ances the speed/accuracy trade-off in pedestrian detectors.
We achieve high detection accuracy while attaining a high
speed of detection as shown in figure 1.

What are the traits which describe the speed vs. accuracy
behavior of two-stage and one-stage pedestrian ? Faster-
RCNN [24] and SSD [15] are the two earliest representa-
tives of two-stage and one-stage detectors. Their compar-
ative illustration is shown in figure 2. We describe their
basic working below to pinpoint their characteristics which
are relevant for our work. It will be seen that their speed vs.
accuracy behavior stems from their feature handling mech-
anism.

The working of two-stage detectors follows the steps of
– a) proposal detection “first stage or proposal stage” and,
b) object class detection “second stage or detection stage”.



Figure 2. Processing of anchors by Faster-RCNN [24] (Top) and by SSD[15]/YOLO[22] (Bottom)

The first stage uses a convolutional kernel of fixed size over
a feature map to transform it to another feature map known
as the proposal map. Hypothetical bounding boxes (or an-
chors) are tiled over the proposal map. Usually multiple
anchors with varying scales and aspect ratios are centered
at each location in the proposal map. They are called con-
focal anchors. Feature vector at each proposal map location
is used for 2-class (object vs. no object) classification and
bounding box regression of anchors (regression done only
for anchors classified as objects. The anchors classified as
objects after regression are known as proposals. In this set-
ting, all confocal anchors share the same feature vector –
a major limitation as confocal anchors cover varying spa-
tial areas. The proposals are then processed by the second
stage. In the second stage, feature pooling from proposal
regions is employed for isolating feature map representing
each proposal region. Feature pooling refers to extraction of
features from a sub-region of a feature map. The pooled fea-
tures (after flattening) are fed to a dedicated classifier and
regressor to determine the final detected bounding boxes.
While the mechanism for generating feature vectors in the
first stage is inaccurate, it is adopted in favor of speed. The
more accurate but computationally heavier approach of fea-
ture pooling is reserved for the second stage, where only
object proposals (often a tiny fraction of total number of
anchors need processing.

One-stage detectors bypass the proposal region gener-
ation phase. However, their only stage (detection stage)
works very similar to the first stage of two-stage detec-
tors. For a C + 1 class detection problem (+1 for back-
ground), anchors (also called priors in SSD literature) are
represented by the feature vector at the location they are
centered on. Thus as in the first stage of two-stage de-
tectors, all confocal anchors share the same feature vector.
Multi-scale training and testing is used in one-stage detec-
tors where feature maps from multiple CNN layers are pro-

cessed as described above, followed by coalescing of final
detections. Unlike two-stage detectors, there is no proposal
detection phase and so number of sub-regions to be pro-
cessed for final detections is much higher in one-stage de-
tectors.

Despite having multi-scale processing and more sub-
regions to be processed, one-stage detectors have a higher
speed. Feature pooling is the major difference between the
two classes of detectors. This shows that, feature pooling
is a much slower operation than computing convolutions,
as the former involves performing copy operations in mem-
ory – an intense operation when the number of regions to be
processed is large. However, feature pooling is an operation
which utilizes the entirety of features within a sub-region of
a feature map and hence two-stage detectors deliver better
detection performance than one-stage detectors.

The time and space complexity of feature pooling scales
linearly with number of sub-regions to be processed. Thus,
to perform detection with high accuracy and high inference
speed, it becomes pertinent that the number of sub-regions
to be processed is decreased significantly, so as to minimize
the detrimental impact of feature pooling on computational
time. In this paper, we take cue from the aforementioned
observations and propose a pedestrian detection with fol-
lowing characteristics –

1. Selection of a sparse subset of anchors : We pro-
pose a lightweight mechanism using semantic segmen-
tation to select a small set of anchors in a given im-
age. The proposed semantic segmentation approach
requires only groundtruth bounding boxes as pseudo-
segmentation masks during training. The proposed
mechanism –

• ensures focus on the most probable pedestrian lo-
cations. This lowers the possibility of detection
of a background region as a false positive.



• Has∼ 3 times lesser training parameters than re-
gion proposal networks (RPN) [24], promoting
faster inference.

2. Feature pooling : We have noted that feature pool-
ing in two-stage detectors allows for better learning
thereby facilitating higher detection accuracy. By se-
lecting a sparse subset of anchors, our proposed ap-
proach ensures a low overhead of feature pooling com-
pared to two-stage approaches like Faster-RCNN,

3. Visible and Full pedestrian bounding box detection
: Our proposed approach uses both the visible and full
bounding boxes for selection of most relevant anchors.
When using only the full-body bounding boxes as in
most works, the same IoU can be achieved by sev-
eral anchors overlapping from different directions. We
constrain the criteria for positive pedestrian anchors by
involving overlaps with both full-body and visible part
of the bounding box. This ensures a relatively con-
sistent feature profile for anchors which includes the
relevant pedestrian parts.

We demonstrate the effectiveness of our proposed pedes-
trian detection system on 2 public datasets – caltech pedes-
trian dataset [5] and citypersons [29].

2. Related Work
We limit our focus to deep learning based pedestrian

detection systems. Most contemporary pedestrian detec-
tion systems are derived from Faster-RCNN [24], SSD
[15] or YOLO [22]. Of these, Faster-RCNN is most com-
monly used as the basis for building pedestrian detection
systems [28, 1, 2, 17, 19, 30, 13], on account of bet-
ter detection accuracy than one-stage detectors. Pedes-
trian detectors based on one-stage detection systems include
[27, 16, 6, 7, 23, 11, 21, 18]. Our treatment of related
work focuses on speed/accuracy trade-off in contemporary
pedestrian detectors and delineating details which offer the
cue for balancing this trade-off; thereby setting the basis of
our contributions. Figure 1 summarizes the relative perfor-
mance of various pedestrian detectors vis-à-vis speed and
accuracy.

Two-stage pedestrian detectors : Approaches extend-
ing Faster-RCNN to pedestrian detection include use of
tree-based classifiers [28, 25], use of multiple CNN layers
[2, 25], use of additional information such as optical flow,
segmentation and different color channels [17, 1], use of
different networks for processing different scales of pedes-
trians [13] and novel loss terms such as repulsion loss [26]
for improved localization. These extensions improve upon
the generic Faster-RCNN detector for pedestrians by an or-
der of 5 − 7%. However a comparable improvement in in-

ference speed is not observed. Often these extensions in-
voke increased system complexity thereby requiring more
floating point operations per second (FLOPs), which low-
ers the inference speed. Generally the performance of two-
stage detectors varies from 8− 14 fps, while that of generic
VGG16 based Faster-RCNN detector lies in the range of
7− 10 fps.

All two-stage pedestrian detectors use region proposal
network (RPN) for proposal generation. As mentioned be-
fore and illustrated in figure 2, the features for proposal
generation in RPN are generated without intra-anchor fea-
ture pooling. These proposals are often poorly localized
[28] and require a further classification and regression stage
[28, 1, 2] for improved performance. All the two-stage de-
tectors utilize intra-anchor feature pooling after the proposal
generation. These pooling operations are carried out over a
large number of proposals to minimize the miss-rate. As a
result, the inference speed of two-stage detectors are limited
by the number of processed proposals in addition to system
complexity.

One-stage pedestrian detectors : One-stage pedestrian
detectors are based on SSD [15] or YOLO [22]. The perfor-
mance of generic SSD and YOLO detectors on pedestrian
detection is significantly lower than that of Faster-RCNN.
Their extensions to pedestrian detection include multi-step
training of SSD [16], use of late fusion of multiple networks
to refine the pedestrian candidates generated by SSD [6],
recurrent networks for incorporating context [23] and use
of skip connections in YOLO [11]. These extensions have
improved their performance vis--̀vis their generic counter-
parts. The recently proposed ALF-net follows the ideas of
cascade-RCNN [3], but over SSD [15]. ALF-net achieves
an impressive 4.5% miss-rate on caltech-reasonable dataset
while operating at ∼ 20 fps. This performance is still lower
than the performance of generic SSD (48 − 60 fps). Other
one-stage pedestrian detectors [20, 11, 21, 18] report their
runtime performance in the range of 20 − 25 fps which is
substantially lower than their generic counterparts. This re-
duction is primarily the result of added system complexity.
For example [6] performs late fusion of multiple CNN net-
works, each of which operates upon the pedestrian candi-
dates generated by a SSD which is pre-trained to generate
pedestrian proposals. At the same time, one-stage detectors
share the lack of intra-anchor feature pooling which fails to
provide as relevant pedestrian features as two-stage detec-
tors.

Use of semantic segmentation for pedestrian detection :
The use of semantic segmentation in a deep learning set-
ting for pedestrian detection was used in F-DNN [6]. The
masks in [6] are predicted by a separate network trained for
semantic segmentation and then used as a post-processing



Figure 3. Overview of the proposed approach. Semantic segmentation layer is illustrated in figure 5 and the anchor classification layer is
shown in figure 7. T he various loss terms contributed by various components are shown besides the component blocks.

cue to remove invalid detections. This however makes it
difficult to tune F-DNN for datasets like caltech pedestri-
ans [5] which do not come with groundtruth segmenta-
tion masks. This deficiency is answered by SDS-RCNN
[1]. SDS-RCNN uses the pedestrian bounding box in the
training data to construct a pseudo-segmentation mask. A
pixel-wise cross entropy term to classify background from
pedestrian instances augments the standard loss function of
the RPN, thereby forcing the output feature map of RPN
to focus better on pedestrian instances. The RPN features
are then used for classification and regression by a second
network. This multi-task approach though very promising
suffers from the limitations discussed before for two-stage
pedestrian detectors. Furthermore, semantic segmentation
has been used with the objective of improving the detection
accuracy without any focus on utilizing it for improving the
inference speed. In contrast, our proposed approach shows
that the use of semantic segmentation based on pseudo-
segmentation masks naturally leads to a mechanism to re-
duce the number of anchors to be processed by as much as
97%. This is the key to invoke intra-anchor feature pooling
without suffering a runtime performance setback.

Use of visible and full body bounding boxes : Pub-
lic datasets for pedestrian detection, are often provided
with full-body as well as the visible-body bounding boxes
[5, 29]. Few pedestrian detectors utilize only the full body

bounding boxes for training. In [31]; a spatial attention
based work addressing detection under occlusionl; visible
bounding boxes are used in addition to full-body boxes and
body part annotations. Body part annotations are coarsely
defined based on the other two bounding boxes. The basic
idea to re-weight the intra-anchor feature maps with the 3
attention maps; one for each type of annotation. Though it is
outperformed by other detectors [1, 2] on caltech reasonable
subset, it indicates major improvements in cases with par-
tial or heavy occlusion. This suggests that the use of visible
part of bounding boxes aids in detection under occlusion.
Intuitively, an anchor box which overlaps sufficiently well
with both the visible and full body bounding box is a bet-
ter candidate for regression. Regression of such an anchor
box is easier owing to more complete information about the
pedestrian inherent in it. Comparatively, complete depen-
dence on full-body or visible bounding box may lead to a
wide variance in the information inherent in the anchor.

Our approach utilizes the ideas of SDS-RCNN [1] but
without using a RPN. We prune most of the anchors away
and use a combination of visible and full body bounding
boxes to select positive and negative anchors which are fea-
ture pooled for final classification and regression. This ap-
proach therefore leverages the best of both worlds – two-
stage (intra-anchor feature pooling favoring detection accu-
racy) and one-stage (reduced computations favoring infer-
ence speed).



Figure 4. (Top: Original images. bottom: OcpOcpOcp from spatial attention. OcpOcpOcp has been resized to original image size with bilinear interpolation
for better visibility.

3. Proposed Approach
The proposed approach consists of – a) an anchor se-

lection stage, called a 0.5-stage and, b) a detection stage,
called a 1-stage. The anchor selection stage, selects a set of
anchors for feature pooling. Unlike the first stage of Faster-
RCNN, our approach does not perform bounding box re-
gression when selecting anchors. Due to the absence of re-
gression, we illustrate our difference from Faster-RCNN by
referring to our first stage as a 0.5-stage. The 0.5-stage cou-
pled with the second stage of classification and bounding
box regression makes our approach a 1.5-stage pedestrian
detection.

For experiments outlined in this paper, we use ResNet-
50 [9] as base network, where we use à trous convolution
on the second, third and fourth resnet blocks to ensure that
the feature maps from these blocks are of the same dimen-
sion (with output stride of 16). Due to the large number of
feature channels in the concatenated map, we use depthwise
separable convolution on it to reduce the feature dimension-
ality. Depthwise convolution performs per channel process-
ing – a better strategy when processing feature maps from
multiple convolutional layers.

As outlined in section 1, our approach aims to minimize
the number of sub-regions to be processed for final detec-
tions. Feature pooling can then be employed over these sub-
regions for better feature handling vis-à-vis one-stage de-
tectors for high detection accuracy. There are two key ideas
in our work, which achieve this reduction in the number of
sub-regions to be processed. They form the basis for our

0.5-stage and are outlined in the following two subsections.

3.1. Pseudo-Semantic Segmentation

Given the bounding box of a pedestrian, all the pixels
lying within the rectangle can be thought to approximately
constitute a pseudo-segmentation mask. We utilize seman-
tic segmentation of this mask to reduce the number of an-
chors to be processed. This is significantly different from
other techniques using pseudo-segmentation mask such as
SDS-RCNN [1], MSDS-RCNN [12], GDFL [14] and PAD
[32], which limit the usage of pseudo-segmentation mask to
improve the feature maps and do not harness its usefulness
in improving the detection speed. From figure 3, we see that
during backpropagation, the gradients from semantic seg-
mentation impact the base network and the depthwise sepa-
rable convolutional layers. Thus, in our approach semantic
segmentation aids in improving feature maps for detection
and also detection speed by limiting number of anchors to
be processed.

Figure 4 shows some pedestrian probability maps (OcpOcpOcp

in figure 3) generated by a simple semantic segmentation
approach (figure 5), which is reminiscent of the à trous
spatial pyramid pooling (ASPP) module in deeplabv2 [4].
The high selectivity of ASPP for pedestrians indicates that
only high probability regions in OcpOcpOcp need be processed for
pedestrian detection. This can help eliminating false posi-
tive regions early in the pipeline.

Anchors are tiled across a feature map, with multiple
anchors centered at each location. For a N × N feature



Figure 5. The semantic segmentation layer used in the proposed
approach.

Figure 6. An occluded pedestrian with full-body bounding box
(green) and visible bounding box (blue). Red anchors are con-
focal with the magenta anchor. The red anchors do not overlap
well with both the full-body and visible bounding box, while the
magenta anchor has sufficient overlap with both.

map with NA anchors per location, the total number of an-
chor regions is N2NA. With a fraction θ (0 < θ < 1),
of N2 eliminated as low-probability regions in OcpOcpOcp, only
(1 − θ)N2NA anchors remain to be processed. In our ex-
periments we conclude that for most images in caltech and
citypersons, θ ≥ 0.7. However, not all NA confocal an-
chors optimally cover a pedestrian and hence a fraction of
them can be eliminated from final processing. We achieve
this using the anchor classification layer described next.

3.2. Anchor classification layer

To select a subset of NA confocal anchors at each lo-
cation; optimally covering a pedestrian, we perform a 2-
class anchor classification – positive anchors and negative
anchors. Only the positive anchors are subsequently set to
the detection stage for feature pooling. This classification
is performed over OhOhOh – the schur product of OcpOcpOcp and OdOdOd

Figure 7. The anchor classification layer. For illustration it is as-
sumed that all anchors have been generated by a base anchor of
size 64× 64 and have an aspect ratio of 0.41 (width/height). The
anchor at scale 1 then corresponds to a box of size ∼ 100 × 41.
For a feature stride of 16, a kernel of size 7 × 3 will cover the
corresponding area of this box in the feature map. For other scale
values, the kernel size can be similarly defined.

(broadcasted across the channel dimensions).
At this point, a total of N2NA anchors need to be classi-

fied. Instead of using costly feature pooling over theN2NA

anchors, we directly use convolutional kernels for classifi-
cation. A set of NA sibling classification branches are set
up. Each classification branch serves the classification of
anchors with a specific scale and aspect ratio. The ith clas-
sification branch is constituted of a convolutional layer with
32 filters of size hi × wi, followed by a 1 × 1 × 2 convo-
lutional layer, which is then followed by a softmax opera-
tion to determine the probability of an anchor to be positive.
hi×wi is determined by the configuration used for generat-
ing anchors. An example is shown in figure 7. The key idea
in our anchor classification layer is that of anchor specific
kernel sizes. The kernel corresponding to a classification
branch has a size which matches the size of the anchor cor-
responding to the branch. Thus the kernel is able to cover
the entirety of the anchor features. This shows that the idea
of using anchor specific kernel sizes is a key idea allowing
for fast and accurate anchor classification without using any
pooling operations.

An anchor overlapping well with both the full body and
visible part of the bounding box encapsulates information
about the pedestrian and the occlusion and is thus more
useful than other anchors. This is illustrated in figure 6,
where only the magenta anchor overlaps sufficiently well
with both full-body and visible part of the bounding box.
Thus, during training for an anchor ψ, its IoU with the full-
body bounding box BF and visible bounding box BV is
computed and the class of the anchor is determined as pos-



itive or negative as follows

class(ψ) =

{
positive, IoU(ψ,BV )≥ α; IoU(ψ,BF )≥ β
negative otherwise

Behavior during training and testing : During training,
we utilize both positively and negatively classified anchors,
while only positively classified anchors are used during test-
ing. Let npos be the number of positive predicted anchors
during training. Then the number of negative anchors used
is defined as follows :

nneg = min(5× npos,M − npos) (1)

where, M is a hyperparameter and is usually limited by
the memory limit of the computing device. During testing
phase, we use only the positive anchors for classification
and regression.

This difference in behavior is preferred so that during
training, a large range of samples encompassing positive
and negative examples are seen by classifier and regressor
for robust learning.

We implemented our proposed approach on top of ten-
sorflow object detection api [10]. We used stochastic gra-
dient descent (SGD) with a momentum value of 0.9 as an
optimizer. Our initial learning rate was set to 0.01 with
gradients clipped to a value of 10.0. This warm-up phase
lasted for 10K iterations after which the learning rate was
decreased by a factor of 10 after every 30K iterations. Data
augmentation was used for training in the form of – a) ran-
dom horizontal flipping, b) random brightness adjustment
and c) random contrast adjustment. We upscaled all images
using bilinear interpolation to a fixed size of 1024× 1024.

3.3. Loss Function

Our loss function can be written as

Ltotal , Lss + LA
cls + Lbbox

cls + Lbbox
reg + Lreg

2 (2)

where,

1. Lss : Average pixelwise cross entropy term for seman-
tic segmentation.

2. LA
cls

i : Cross entropy term for anchor classification. It
is a sum of NA cross-entropy terms, where NA is the
number of confocal anchors.

3. Lbbox
cls : Average cross entropy term for bounding box

classification.

4. Lbbox
reg : Average smooth L1-loss term as defined in

[24].

5. Lreg
2 : Average of regularization terms elsewhere in

the network.

4. Experiments, Results and Analysis
4.1. Datasets

We used caltech-reasonable [5] and citypersons [29] for
validating the performance of the proposed approach. In

Caltech-Reasonable CityPersons
Train Test Train Val

Images 42,782 4024 2,975 500
Table 1. Summary of dataset size of caltech-reasonable [5] and
citypersons [29] dataset.

the citypersons dataset’s evaluation protocol, there are 4 dis-
tinct categories of evaluation – pedestrian, rider, sitting per-
son and person (other). We cluster these 4 sub-categories
are into one and refer to it as pedestrians.

4.2. Hyperparameter settings

Unless and otherwise mentioned, we use parameter set-
tings as mentioned henceforth. Following [28, 1, 2], we
use anchors with an aspect ratio of 0.41 (average aspect ra-
tio of bounding boxes in caltech and citypersons datasets).
We use 6 anchor scales ({0.25, 0.5, 0.75, 1, 2, 4}), gener-
ated from a base anchor of size (64, 64). For anchor classi-
fication layer (sec 3.2), α = 0.3, β = 0.5, M = 2000.

4.3. Results and Analysis

Table 2 summarizes the LAMR of our proposed ap-
proach on caltech-reasonable and citypersons datasets. Ta-
ble 2 summarizes the comparative performance of our pro-
posed approach with other pedestrian detectors vis-á-vis
accuracy and speed on caltech-reasonable and citypersons
datasets. We achieve state-of-art performance on both
caltech-reasonable and citypersons datasets. Our best re-
sults on caltech-reasonable is obtained by first pre-training
our model on citypersons training set, followed by fine-
tuning it on caltech-reasonable training set. This amounts
to 0.77% improvement in LAMR. From table 2, we see that
our improvements on citypersons is much higher than on
caltech-reasonable. The input to our model is 1024× 1024,
which results in higher distortion for caltech-reasonable im-
ages (640 × 480) than citypersons images (2048 × 1024).
This lower distortion gives better training to our model and
explains higher improvements on the citypersons dataset.

With an optimized implementation, our approach per-
forms inference at ∼ 32 fps, on input images of size
1024× 1024, which is ∼ 1.5 times faster than the next best
speeds (∼ 20 fps) achieved by [16]. It is to be noted that we
report our inference speed only for the inference evaluation
and do not factor in the time for any display or disk access.
It is further notable that the speeds reported in [16] are for
images of size 480×640, while for us all images are of size
1024 × 1024. This shows a major speedup attained by our
approach vis-á-vis other competitive methods.



Method Stages LAMR Speed
caltech-reasonable

(test)
(w/o CP pre-training) (CP pre-trained)

citypersons
(val)

(trained only on CP)
Faster-RCNN [24] 2 12.10 15.4 7

SSD [15] 1 17.78 (16.36) 19.69 48
YOLOv2 [22] 1 21.62 (20.83) NA 60
RPN-BF [28] 2 9.6 (NA) NA 7
MS-CNN [2] 2 10.0 (NA) NA 8

SDS-RCNN [1] 2 7.6 (NA) NA 5
ALF-Net [16] 1 4.5 (NA) 12.0 20
Rep-Loss [26] 2 5.0 (4.0) 13.2 -

Ours 1.5 4.76 (3.99) 8.12 32
Table 2. Performance comparison of the proposed method with other methods for caltech-reasonable test set and citypersons validation set.
The speed figures are in frames per second.

The above improvements in inference speed are largely
possible through a conjunction of semantic segmentation
layer and anchor classification layer. The semantic seg-
mentation layer provides high quality segmentation maps,
which assist in selecting a small set of locations at which all
anchors are classified. The anchor classification layer then
further reduces this count by classification. As a result, the
number of anchors used during testing phase is proportional
to the number of pedestrians in the image.

5. Ablation Studies
5.1. RPN vs. 0.5-stage

LAMR
RPN 0.5-stage
15.18 8.12

Table 3. Ablation study of RPN vs. 0.5-stage on the cityper-
sons(validation) dataset.

To know the impact of our 0.5-stage, we replace it with
standard RPN layer of Faster-RCNN [24], with the same
anchor parameters as reported in section 4.2, and using top
300 proposals for processing. From table 3 shows that the
0.5-stage has a huge impact on performance. This perfor-
mance boost speaks jointly of the improvements brought
about by semantic segmentation and anchor classification
layer. Moreover, our 0.5-stage has computational advan-
tages over RPN as shown below.

In the RPN, for a feature map with 512 channels, and
6 confocal anchors, the classifier will admit 512 × 2 × 6
parameters for foreground/background classification. The
RPN regressor will admit 512×4×6 parameters for 4 quan-
tities regressed for each anchor box. This leads to a total of
512 × (4 + 2) × 6 = 18432 trainable parameters. This
does not include the parameter count of proposal filters and
feature projection layer in RPN [24]. In contrast, the union

of segmentation and anchor classification modules admit a
total of 7048 training parameters in our approach. Thus,
compared to a basic RPN with no extra proposal filter and
feature projection layers, our approach admits 2.61 times
less parameters than RPN. This makes learning easier for
our system on smaller pedestrian datasets like citypersons
[29] (2975 training images).

Impact of anchor classification layer : To quantify the
impact of anchor classification layer (sec 3.2), we removed
it from our pipeline and selected all anchors at top 300 lo-
cations inOcpOcpOcp (resulting in number of anchors as 300×6 =
1800). This led to a LAMR of 16.43% on citypersons val-
idation set. This major jump in LAMR is thought to be the
result of major class imbalance, which is caused when all 6
anchors at top 300 locations are selected, with very few of
them actually overlapping sufficiently well with the pedes-
trians.

6. Conclusion
We propose a novel pedestrian detection scheme with

an emphasis on achieving high detection accuracy and in-
ference speed simultaneously. Our approach relies on se-
mantic segmentation and selection of a small set of anchors
which enables intra-anchor feature pooling without sacri-
ficing inference speed and accuracy. Experimental anal-
ysis shows that our proposed approach achieves state-of-
art performance across caltech-reasonable and citypersons
datasets at an impressive inference speed of ∼ 32 fps.
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