M. Bertoni, F. Kiefer, M. Biasini, L. Bordoli, and T. Schwede, Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology, Scientific Reports, vol.7, issue.1, 2017.

M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Research, vol.42, pp.252-258, 2014.

S. Bliven, A. Lafita, A. Parker, G. Capitani, and J. M. Duarte, Automated evaluation of quaternary structures from protein crystals, PLoS Computational Biology, vol.14, issue.4, 2018.

J. R. Bock and D. A. Gough, Predicting protein-protein interactions from primary structure, Bioinformatics, vol.17, issue.5, pp.455-460, 2001.

L. Bordoli, F. Kiefer, K. Arnold, P. Benkert, J. N. Battey et al., Protein structure homology modeling using swiss-model workspace, Nature Protocols, vol.4, issue.1, pp.1-13, 2008.

C. N. Cavasotto and S. S. Phatak, Homology modeling in drug discovery: current trends and applications, Drug Discovery Today, vol.14, issue.13, pp.676-683, 2009.

H. Chen, F. Gu, and Z. Huang, Improved chou-fasman method for protein secondary structure prediction, BMC Bioinformatics, vol.7, issue.4, 2006.

P. Y. Chou and G. D. Fasman, Empirical predictions of protein conformation, Annual Review of Biochemistry, vol.47, issue.1, pp.251-276, 1978.

J. Garnier, J. F. Gibrat, and B. Robson, Gor method for predicting protein secondary structure from amino acid sequence 266, pp.540-553, 1996.

M. Ito, Y. Matsuo, and K. Nishikawa, Prediction of protein secondary structure using the 3d-1d compatibility algorithm, Computer Applications in the Biosciences, vol.13, issue.4, pp.415-424, 1997.

J. Janin, R. P. Bahadur, and P. Chakrabarti, Protein-protein interaction and quaternary structure, Quarterly Reviews of Biophysics, vol.41, issue.2, pp.133-180, 2008.

M. A. Jiménez-montaño, C. R. De-la-mora-basáñez, and T. Pöschel, The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro, BioSystems, vol.39, issue.2, pp.117-125, 1996.

D. Jones, W. Taylor, and J. Thornton, A new approach to protein fold recognition, Nature, vol.358, pp.86-89, 1992.

R. P. Joosten, T. A. Beek, E. Krieger, M. L. Hekkelman, R. W. Hooft et al., A series of PDB related databases for everyday needs, Nucleic Acids Research, vol.39, pp.411-419, 2011.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.10, issue.6, p.845, 2015.

T. A. Kumar, Cfssp: Chou and fasman secondary structure prediction server, Wide Spectrum, vol.1, issue.9, pp.15-19, 2013.

A. Meier and J. Söding, Automatic prediction of protein 3d structures by probabilistic multi-template homology modeling, PLoS Computational Biology, vol.11, issue.10, 2015.

K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima et al., Crystal structure of rhodopsin: A g proteincoupled receptor, Science, vol.289, issue.5480, pp.739-745, 2000.

S. Perticaroli, J. D. Nickels, G. Ehlers, H. O'neill, Q. Zhang et al., Secondary structure and rigidity in model proteins, vol.9, pp.9548-9556, 2013.

S. Rani and K. Pooja, Elucidation of structural and functional characteristics of collagenase from pseudomonas aeruginosa, Process Biochemistry, vol.64, pp.116-123, 2018.

F. Sanger, The arrangement of amino acids in proteins, Advances in Protein Chemistry, vol.7, pp.1-67, 1952.

T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Research, vol.31, issue.13, pp.3381-3385, 2003.

Y. Shen and A. Bax, Homology modeling of larger proteins guided by chemical shifts, Nature methods, vol.12, issue.8, pp.747-750, 2015.

R. Siman and J. C. Noszek, Excitatory amino acids activate calpain i and induce structural protein breakdown in vivo, Neuron, vol.1, issue.4, pp.279-287, 1988.

M. Torrisi, M. Kaleel, and G. Pollastri, Porter 5: fast, state-of-the-art ab initio prediction of protein secondary structure in 3 and 8 classes, 2018.

H. B. Vickery, The history of the discovery of the amino acids ii. a review of amino acids described since 1931 as components of native proteins, Advances in Protein Chemistry, vol.26, pp.81-171, 1972.

H. B. Vickery and C. L. Schmidt, The history of the discovery of the amino acids, Chemical Reviews, vol.9, issue.2, pp.169-318, 1931.

I. Wagner and H. Musso, New naturally occurring amino acids, Angewandte Chemie International Edition in English, vol.22, issue.11, pp.816-828, 1983.

J. Xie and P. G. Schultz, Adding amino acids to the genetic repertoire, Current Opinion in Chemical Biology, vol.9, issue.6, pp.548-554, 2005.

B. C. Yavuz, N. Yurtay, and Ö. Özkan, Prediction of protein secondary structure with clonal selection algorithm and multilayer perceptron, IEEE Access, vol.6, pp.45256-45261, 2018.

Z. Zhou, B. Yang, and W. Hou, Association classification algorithm based on structure sequence in protein secondary structure prediction, Expert Systems with Applications, vol.37, issue.9, pp.6381-6389, 2010.