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Abstract. Fibonacci numbers appear in numerous engineering and com-
puting applications including population growth models, software engi-
neering, task management, and data structure analysis. This mandates
a computationally efficient way for generating a long sequence of suc-
cessive Fibonacci integers. With the advent of GPU computing and the
associated specialized tools, this task is greatly facilitated by harnessing
the potential of parallel computing. This work presents two alternative
parallel Fibonacci generators implemented in TensorFlow, one based on
the well-known recurrence equation generating the Fibonacci sequence
and one expressed on inherent linear algebraic properties of Fibonacci
numbers. Additionally, the question of using lookup tables in conjunc-
tion with spline interpolation or direct computation within a parallel
context for the computation of the powers of known quantities is ex-
plored. Although both parallel generators outperform the baseline serial
implementation in terms of wallclock time and FLOPS, there is no clear
winner between them as the results rely on the number of integers gener-
ated. Additionally, replacing computations with a lookup table degrades
performance, which can be attributed to the frequent access to the shared
memory.

Keywords: Fibonacci sequence · Linear recurrence equations · Finite
differences · Google TensorFlow · GPU computing · Parallel computing.

1 Introduction

The sequence of Fibonacci integers 〈fk〉 appears often in a broad spectrum of
engineering applications including coding theory, cryptography, simulation, and
software management. Additionally, Fibonacci numbers are very closely tied to
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the golden ratio ϕ which is frequently encountered in nature, such as in popula-
tion growth models and in botanics. Moreover, in architecture ϕ is almost con-
sidered synonymous to harmony. Thus, Fibonacci integers are arguably among
the most signifiant sequences. Although their defining linear recurrence equation
is simple, serially generating a long sequence of consecutive Fibonacci integers
is by no means a trivial task.

However, with the advent of GPU computing, the efficient parallel generation
of 〈fk〉 has been rendered feasible. Indeed, by exploiting known properties of
the Fibonacci integers it is possible to build parallel generators which exploit
the underlying hardware potential to a great extent, achieving low response
times. This requires specialized scientific software such as TensorFlow which not
only contains very efficient libraries, but also facilitates the development of high
quality custom source code.

The primary research contribution of this work is twofold. First, it lays the
groundwork for two parallel Fibonacci integer generators, one based on a closed
form for each number in the sequence and one based on certain linear algebraic
properties of Fibonacci integer pairs. The performance of the two proposed gen-
erators developed in TensorFlow for Python is evaluated in terms of both total
turnaround time and FLOPS against a serial implementation with the same
software tools. Second, it explores the question whether it is worth substituing
the computation of known quantities with a lookup table.

This conference paper is structured as follows. Section 2 reviews current scien-
tific literature regarding the computational aspects of Fibonacci numbers. Their
fundamental properties are described in section 3. The TensorFlow implemen-
tation is presented in section 4, whereas future research directions are outlined
in section 5. Table 1 summarizes the notation of this work. Concerning nota-
tion, matrices and vectors are depicted with boldface uppercase and boldface
lowercase respectively, whereas roman lowercase is reserved for scalars.

Table 1. Notation of this conference paper.

Symbol Meaning
4
= Definition or equality by definition
‖x‖ Norm of vector x
det (A) Determinant of matrix A
tr (A) Trace of matrix A
ϕ Golden ratio
〈sn〉 Sequence of integers sn

2 Previous Work

The Fibonacci sequence of integers, examined among others in [6] and [30], has
perhaps the most applications not only in computer science and in engineering
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but in science as a whole. Closed forms for the spectral norms of circulant matrics
whose entries are either Fibonacci or Lucas integers are derived in [21]. In data
structure analysis the Fibonacci heap [19] and the associated pairing heap [18]
have efficient search and insertion operations with numerous applications such
as network optimization. A pair of successive Fibonacci numbers are known to
be the worst case in Euclidean integer division algorithm as shown in [9] as well
as in [29]. Fibonacci numbers play a central role in estimating task duration
and, consequently, task difficulty in scrum based software engineering method-
ologies [28][27], including inaccurate estimation discovery [25] and using agile
methodologies to predict student progress [26]. Moreover, Fibonacci numbers
are very closely linked to the golden ratio ϕ6 as well as to symmetry of many
geometric shapes, the latter having important implications in group theory [16].
Many identities in combinatorics regarding Fibonacci numbers can be found in
[31] as well as in the most recent works [5] and [23]. Finally, the Lucas sequence
〈`k〉 is closely associated with the Fibonacci sequence 〈fk〉 since the two integer
sequences constitute a Lucas complementary pair and share similar properties
such as growth rate and generation mechanism [3][4].

TensorFlow, originally developed by Google for massive brain circuit simula-
tion, is an open source computational framework whose algorithmic cornerstone
is the dataflow paradigm as described in [2], [1], or [20]. A library for generating
Gaussian processes in TensorFlow is presented in [24]. For a genetic algorithm
implementation in TensorFlow for heuristically discovering community structure,
a problem examined in [10], in large multilayer graphs, such as those presented
in [12] and in [11], see [15]. In [14] the ways insurance and digital health markets
can benefit from blockchain and GPU computing are explored. For a path and
triangle based graph resilience metric in TensorFlow see [13]. A very popular
front end for the low level TensorFlow is keras, which allows the easy manip-
ulation of neural network layers, including connecticity patterns and activation
functions [8]. Model training and prediction generation is done also easily in
keras in four stages [22]. Convolutional kernels whose lengths depend on their
relative location inside the neural network architecture for computational vision
purposes implemented in keras are introduced [7].

3 Fibonacci Numbers

The n-th integer in the Fibonacci sequence 〈fn〉 is defined as:

fn = fn−1 + fn−2, f0 = 0, f1 = 1 (1)

Theorem 1. The n-th Fibonacci number fn has the closed form:

fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
=

ϕn + (1− ϕ)
n

√
5

(2)

6 OEIS sequence A001622
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Proof. The characteristic polynomial of (1) is:

z2 = z + 1 ⇔ z2 − z − 1 = 0 (3)

And its two real and distinct roots are:

r0,1 =
1±
√

5

2
(4)

Therefore, it follows that:

fn = α0r0 + α1r1 =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
(5)

The constants α0 and α1 are computed using the initial conditions derived
by the first two Fibonacci numbers as follows:

α0 + α1 = f0 = 0

α0r0 + α1r1 = f1 = 1 (6)

The above conditions yield:

α0 =
1

r0 − r1
=

1√
5

α1 = −α0 =
1

r1 − r0
= − 1√

5
(7)

ut

Another way to prove theorem 1 is the following:

Proof. Another way to directly compute the n-th Fibonacci number fn is to
rewrite the Fibonacci definition of equation (1) and the identity fn = fn com-
bined in matrix-vector format as follows:[

fn
fn−1

]
=

[
1 1
1 0

] [
fn−1

fn−2

]
= A

[
fn−1

fn−2

]
= Afn−2 (8)

The eigenvalues λ1 and λ2 (recall that det (A) = λ1λ2 and that tr (A) = λ1+λ2)
and the corresponding eigenvectors e1 and e2 are:

λ1 =
1 +
√

5

2

4
= ϕ λ2 =

1−
√

5

2
= 1− ϕ (9)

e1 =
1√

1 + λ21

[
λ1
1

]
e2 =

1√
1 + λ22

[
λ2
1

]
(10)

Notice that ‖e1‖2 = 1 and ‖e2‖2 = 1 and, additionally, eT1 e2 = 0. From
the spectral decomposition of A it follows that:

A = λ1e1e
T
1 + λ2e2e

T
2

An = λn1e1e
T
1 + λn2e2e

T
2

Anf0 = fn−1 = λn1
(
eT1 f0

)
e1 + λn2

(
eT2 f0

)
e2 (11)
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Observe that the first element of vector fn−1 is fn and it is equal to:

fn = λn+1
1

1 + λ1
1 + λ21

+ λn+1
2

1 + λ2
1 + λ22

(12)

Finally, the structure of An can be shown by induction to be:

An =

[
fn fn−1

fn−1 fn−2

]
(13)

ut

Despite form (5), Fibonacci numbers as evident by the initial conditions and
their generation mechanism. Another way to see this is the following theorem:

Theorem 2. Fibonacci numbers are integers.

Proof. Applying the Newton binomial theorem to (5) yields:

fn =
1√
5

n∑
k=0

(
n

k

)
2−n

(√
5
k
−
(
−
√

5
)k)

︸ ︷︷ ︸
γk

(14)

When k ≡ 0 (mod 2) then γk is zero, whereas if k ≡ 1 (mod 2) then γk equals

2 · 5 k+1
2 . Therefore:

fn =
∑
k

(
n

k

)
21−n5

k
2 , k ≡ 1 (mod 2) (15)

ut

4 TensorFlow Implementation

As stated earlier, TensorFlow relies on the dataflow algorithmic paradigm, which
essentially utilizes a potentially large operations graph in order to break down
the desired computational task to smaller manageable components. Dataflow
graphs have the following properties:

– Vertices represent a wide array of mathematical operations including ad-
vanced ones such as eingenvector computation, singular value decomposition,
and least squares fitting.

– Edges describe the directed data flow between operation results.
– The operands between the various graph operations are tensors of aritrary

dimensions as long as they are compatible.

TensorFlow r1.12 was installed to Ubuntu 18.04 LTS for Python 3.6 using the
pip package installer. An NVIDIA Titan Xp GPU based on Pascal architecture
was available in the system and was successfully discovered by TensorFlow as
gpu0.
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Three Fibonacci generators were implemented in total. Each such generator
yields a batch consisting of the first n consecutive Fibonacci integers. In the
experiments, n ranged from 2 to 1024 with an exponentially increasing distance
between two successive batch sizes. Since the particular GPU has 3840 CUDA
cores, the parallelism potential is high. The generators are:

– A serial implementation which consists of a single loop which adds one new
Fibonacci number with each pass.

– A parallel implementation which directly computes the k-th element of the
sequence 〈fk〉 based on equation (11).

– A second implementation which relies on the slightly simpler closed expres-
sion of equation (2).

Figure 1 shows the total number of floating point operations which were re-
quired for each batch size. The values are the arithmetic mean of ten executions
for each batch size. Preceding each such execution there was a trial run not
taken into consideration in the final results which served the single purpose of
loading the data into system cache. Since the serial implementation is a loop,
the number of additions is linear in terms of n. On the contrary, the parallel
implementations require a number of auxiliary floating point operations, most
notably the exponentiation of certai parameters. Thus, they require more op-
erations whose number is a polynomical function, approximately quadratic, of
batch size, with the second generator clearly always being more more expensive
in terms of operations.

However, the fact that a generator requires more floating point operations
does not necessarily makes it slower in terms of total execution time. Instead,
the results shown in figure 2 indicate that both parallel generators achieve con-
siderably lower wallclock execution time in milliseconds. Since the computation
of 〈fk〉 is GPU-bound process and the design of both parallel generators entail
very low communication across the memory hierarchy, ordinary wallclock time
in this case consists almost entirely of time spent to actual computations.

Notice that, unlike the previous figure, no parallel implementation appears to
be ideal for every batch size. Specifically, the second implementation is better for
lower sized batches, whereas the first one becomes more preferable as batch size
grows despite its more complex formula. This can be attributed to the fact that
the second generator achieves more locality as certain parameters are common
across each batch size.

This difference in performance can be also seen by dividing the number of
floating point operations to the wallclock time, yielding an approximation of the
FLOPS for each generator as seen in figure 3. Although by no means a single
absolute benchmark, especially within a parallel computation context, FLOPS
are in this case indicative since the algorithmic core is purely computational.
The difference from the serial implementation is now obvious, as is also the fact
that the second generatorfor large batches performs better.

Notice that in both parallel implementations appear many consecutive pow-
ers of known quantities. In order to save floating point operations, a lookup table
could have been used according the design principles found for instance in [17].
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Fig. 1. Number of operations vs batch size of Fibonacci numbers.

In order to evaluate the impact of relying on a lookup table to the total FLOPS
for the two parallel generators, two variants of each were also implemented. The
first version used locally half the known quantities required, whereas the second
only only one quarter of them. In both cases, and in order to achieve compa-
rable result accuracy for fairness reasons, spline interpolation was used. As it
can be seen from figure 4, the introduction of a lookup table for both generators
downgraded their FLOPS counter. This can be explained from the facts that
TensorFlow has an efficient multipication algorthm especially for large numbers
and that frequently accessesing the shared GPU memory eventually slowed com-
putations down.

5 Conclusions And Future Work

This conference paper presented two parallel Fibonacci integer generators for
TensorFlow running over Python 3.6 and an NVIDIA Titan Xp GPU and dis-
cussed certain implementation aspects. Both generators yield batches of n inte-
gers, with n ranging from 2 to 1024. The maximum batch size is smaller than
the number of cores in the GPU, increasing thus parallel potential. The baseline
was a serial implementation for TensorFlow consisting of a single loop generating
one new Fibonacci integer in each pass.
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Fig. 2. Wall clock time (msec) vs batch size of Fibonacci numbers.

The primary finding of the experiments is the superior performance of parallel
generators. Although requiring more floating point operations in total, both
parallel implementations outperform the baseline in terms of wallclock time and
of FLOPS. This is attributed to the efficient use of parallelism. A secondary
finding was that replacing actual computations with frequent accesses to a shared
lookup table led to lower FLOPS values. This can be explained by the latency
caused by a large number of threads asking for the same information.

Concerning future research directions, there is a number of options which can
be followed. Experiments with larger batch sizes should be conducted, especially
with sizes which exceed the number of GPU cores. Additionally, more algorithmic
schemes should be tested, such as those constructing Fibonacci integers bitwise,
as they may led in generators with higher parallelism. Finally, the performance
of the proposed algorithms to other parallel architectures can be evaluated, in
order to understand whether a given hardware architecture is more appropriate
for particular algorithmic principles.
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21. İpek, A.: On the spectral norms of circulant matrices with classical Fibonacci and

Lucas numbers entries. Applied Mathematics and Computation 217(12), 6011–
6012 (2011)

22. Ketkar, N.: Introduction to keras. In: Deep learning with Python, pp. 97–111.
Springer (2017)

23. Koshy, T.: Fibonacci and Lucas numbers with applications. Wiley (2019)
24. Matthews, D.G., et al.: GPflow: A Gaussian process library using TensorFlow. The

Journal of Machine Learning Research 18(1), 1299–1304 (2017)
25. Raith, F., Richter, I., Lindermeier, R., Klinker, G.: Identification of inaccurate

effort estimates in agile software development. In: APSEC. vol. 2, pp. 67–72. IEEE
(2013)
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