
HAL Id: hal-02365739
https://inria.hal.science/hal-02365739

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning Principles and the Secure Programming Clinic
Matt Bishop, Melissa Dark, Lynn Futcher, Johan Van Niekerk, Ida Ngambeki,

Somdutta Bose, Minghua Zhu

To cite this version:
Matt Bishop, Melissa Dark, Lynn Futcher, Johan Van Niekerk, Ida Ngambeki, et al.. Learning Princi-
ples and the Secure Programming Clinic. 12th IFIP World Conference on Information Security Edu-
cation (WISE), Jun 2019, Lisbon, Portugal. pp.16-29, �10.1007/978-3-030-23451-5_2�. �hal-02365739�

https://inria.hal.science/hal-02365739
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Learning Principles and the Secure
Programming Clinic

Matt Bishop1[0000−0002−7301−7060], Melissa Dark2, Lynn
Futcher3[0000−0003−0406−8718], Johan Van Niekerk3,4[0000−0003−1739−4563], Ida

Ngambeki2, Somdutta Bose1, and Minghua Zhu1

1 University of California at Davis, USA {mabishop,sombose,mhzhu}@ucdavis.edu
2 Purdue University, USA {dark,ingambek}@purdue.edu

3 Center for Research in Information and Cyber Security, Nelson Mandela University,
South Africa {lynn.futcher,johan.vanniekerk}@mandela.ac.za

4 Noroff University College, Norway
johan.vanniekerk@noroff.no

Abstract. Several academic institutions have run a clinic on robust and
secure programming. Each time a clinic was run, it was associated with
a specific class. Using pre- and post-class evaluation instruments, it is
clear that the effect of the secure programming clinic on students’ un-
derstanding of secure programming was generally positive. However, in
some instances the clinic was underutilized, and in other cases it could
not be run at other institutions. The goal of this paper is to examine
the structure of the clinic in light of five basic learning principles, and
provide information about when a clinic will not improve students’ un-
derstanding, and when it will. We validate this by examining an instance
of the secure programming clinic, and show how the learning principles
explain the improvement in student grades, or lack thereof. From this,
we draw conclusions about ways to make the clinic more effective, and
when it will not be effective.

Keywords: Secure programming clinic · learning principles · robust pro-
gramming.

1 Introduction

The problem of nonsecure code is widely recognized as a major source of secu-
rity problems. Indeed, of the vulnerabilities in the U.S. National Vulnerability
Database in the last 5 years, over 19,000 are identified as injection and buffer
overflow vulnerabilities, exemplars of poor programming practices [14]. Some,
such as Heartbleed, have impacts throughout the Internet [7]. Industries, gov-
ernment, and many other organizations want programmers who can write secure,
robust code. The problem is how to teach this material.

Computer-related majors, and many other majors, teach programming. In-
troductory classes typically teach good programming style, error checking, and
other aspects of programming summarized by the word ”robust”. Being intro-
ductory, their focus is not on security as such, but simply on producing good



2 Bishop, Dark, et al.

programmers who understand both the strengths and limitations of the lan-
guage they learn. Future classes expect the students to apply what they have
been taught, and rather than focusing on style and robustness, the emphasis is
upon correctness. Hence style and robustness is a minimal part of the grade, if
they are included at all, giving students the impression that security and qual-
ity of programming is less important than required functionality. Students have
no reason to apply what they learned in introductory programming. Further,
advanced security issues such as programming to avoid race conditions is not
taught in introductory classes, so the students lack knowledge of all the aspects
of secure coding. The atrophying of this practice, and the lack of knowledge,
leads to programmers who do not write robust, secure code.

This problem is exacerbated by the richness of the current curricular guide-
lines for computer science programs. The ACM Computing Curricula [23] is
laden with more material than can be taught in a typical major program, so
faculty and program developers choose which parts to emphasize. Given this,
creating a required class on secure programming would require something else
to be dropped from the curriculum. Further, most faculty do not know all the
aspects of secure coding, so many institutions would need to find the instructors
for these courses. Thus, few schools have any courses on secure programming,
let alone required ones.

An alternative to additional classes is the Secure Programming Clinic [2,
3]. This clinic works analogously to an English writing clinic, and is discussed
in detail in Section 3, below. Like any other aspect of education, its success
depends upon a host of factors. The contribution of this paper is to use results
from running several instances of this clinic, and basic educational principles,
to identify characteristics of an environment in which the Secure Programming
Clinic will enable students and instructors to ensure that students program in
a robust and secure style, and that instructors who are not experts in this can
have the clinic provide feedback about submitted programs that the faculty can
take into account when assigning grades. The paper is structured as a Case
Study according to guidelines for such studies provided by [6]. The next section
provides a brief overview of the case study’s layout and how it reflects in the
structure of the remainder of this paper.

2 Methodology

The following structure is often used for the presentation of Case Study re-
search [6]:

– Entry vignette
– Introduction
– Description of the case and its context
– Development of issues
– Detail about the selected issues
– Lessons Learned and Assertions
– Closing vignette



Learning Principles and the Secure Programming Clinic 3

In the context of this paper, the abstract and introduction to the paper re-
spectively serves as the case study’s entry vignette and introduction. Section
3 describes the Secure Coding Clinics and serves as a description of the case
and its context. The context is further supported by Section 4, which provides
a review of relevant literature relating to the teaching of secure programming.
The issues of concern in this paper are the identified educational principles, and
how these were used in past secure programming clinics. These principles are
identified in Section 5 and the relevance/adherence of the three variations of
past clinics to the learning principles are mapped in Section 6 which elaborates
on the selected issues of concern for this case study. These issues will be used
to inform the authors’ design intention for future secure programming clinics,
which will be presented in the form of lessons learned in Section 6.2.

The closing vignette will take the form of our concluding remarks

3 Description of the Secure Programming Clinics

The basic form of a secure programming clinic is a physical or logical space where
clinicians are available to students. As students complete homework assignments
and other programs, they bring them to the clinic. The clinicians review the
programs, and point out examples of code that create security problems or, more
generally, are non-robust. They do not identify all such problems, but instead
simply point out examples. They do not examine the program for correctness
or whether it meets the requirements of an assignment. The students, on their
own, correct the problems. The clinicians do not check that the program meets
the requirements of the assignment; indeed, the clinic is not associated with any
class, and is available on a drop-in basis. In this way, it resembles a writing
clinic. Students can bring papers to the clinic, where clinicians will review the
grammar and structure of the paper and offer suggestions on how to improve
both. They do not examine the content for accuracy or credibility; they simply
look at the form.

Several variations of the clinic are possible.
The first major set of variations comes from associating the clinic with a

particular class. Here are possible approaches, any combination of which may
meet the goals:

1. The instructor may apportion some part of the program grade to robustness.
The clinicians would then assist by grading that part of the homework,
and providing an appropriate score. The class graders would then grade the
program with respect to the assignment’s requirements.

2. After #1, the instructor can have the students correct the robustness prob-
lems, and then regrade that portion, giving the student some percentage of
the points they corrected.

3. The clinicians can act as assistant instructors, helping the students develop
threat models for how an attacker might use their program to violate desired
security properties. As “security” is defined in terms of requirements, the
threat model is critical to knowing the types of security problems that might



4 Bishop, Dark, et al.

arise. On the other hand, robustness issues are independent of threats, in the
sense that they are common to all threats.

The functions of the clinic can be extended beyond simply reviewing pro-
grams. It can also provide information to help the students fix the problems.
This typically requires collecting examples of poor programming and how to fix,
or (better) avoid, them. It can also provide remote assistance, where the clini-
cians are not at the institutions. There is a salutary effect for this. If some of the
clinicians are volunteers who work in the software industry or for government
agencies, their presence and activities will convey the importance that future
employers place in high-quality code. This provides incentives for students to
learn the material.

The clinic can also be shared among universities. One implementation of
the clinic provides a common shared appointment calendar, so students from
any of the academic institutions could sign up for appointments even when
the local clinicians were not available. The clinicians from the institutions co-
ordinated their times so that one was always available during the day. Were this
to be extended internationally, clinicians would probably be available for most
of the evening and night (when many students of computer science and related
disciplines develop their programs).

The above discussion provides insight into the specific secure programming
clinic format of concern to this paper. However, for the sake of comprehensive-
ness, the next section will briefly highlight other such approaches, and challenges,
relating to the teaching of secure programming.

4 Teaching Secure Programming

Secure programming is about writing secure code. The focus of many program-
ming courses, however, is to write code that works with a lack of focus on writing
code securely. A developers unintentional ignorance of known vulnerabilities and
insecure coding practices can generate insecure software. Besides the potential
financial loss, the successful exploitation of insecure software can impact the con-
fidentiality, integrity and availability (CIA) of critical information. Undetected
exploitation can also lead to the embedding of malicious software within an or-
ganization, giving the malicious attacker the ability and potential to attack any
time [18]. Secure programming should therefore include the basic principles of
robust coding to guard against unexpected inputs and events [15].

The challenges of teaching and integrating secure programming into com-
puting curricula have been around for many years, and some of these challenges
which are still evident today [13]. These include:

– Lack of faculty buy-in
– Competition with other topics for inclusion into the curriculum
– Computing curricula already full
– Failure of students to grasp other important programming concepts
– Lack of secure programming expertise of faculty members



Learning Principles and the Secure Programming Clinic 5

Much research has been conducted to address some of these challenges. A
recent study [21] investigates a Java proof-of-concept plug-in for Eclipse, ES-
IDE (Educational Security in the IDE), that provides vulnerability warnings
and secure programming education in the IDE while students write code. It
works by scanning a selected project for code patterns that match predefined
heuristic rules of security vulnerabilities. In this way, secure programming knowl-
edge can be introduced early and reinforced throughout a students education.
Generally, ESIDE was found to increase students awareness and knowledge of se-
cure programming. However, almost no students actually modified their code to
mitigate the detected vulnerabilities as they were most concerned with complet-
ing functionality and did not want to impact that functionality with additional
security-oriented code. In addition, carefully timing the introduction of concepts
and skills as well as incentivising such learning is important [21].

ESIDE was compared to the Secure Programming Clinic by running each
approach with two separate groups of students, one group assigned to ESIDE
and the other to the clinic [21]. Each group of students were asked to report
on how likely they would use the recommended changes in their code during
the session. The likelihood results for the Secure Programming Clinic were sig-
nificantly better than for ESIDE. However, the clearest difference between the
clinic and ESIDE were the number of specific vulnerabilities covered. Where
ESIDE marked on average 42 lines of code per participant, the technical assis-
tants running the clinic pointed out approximately two specific lines of code per
participant.

One response to the need to teach students to program more securely was
to introduce a serious game for teaching secure coding practices and principles
to novice programmers [1]. Initial findings showed the game to be usable and
engaging, with the majority of students being able to make clear correlations
between the game levels and corresponding security concepts. Similarly, con-
structing secure coding duels [24] in Code Hunt, a high-impact serious gaming
platform released by Microsoft Research, was proposed to instill gaming aspects
into the education and training of secure coding. Secure coding duels proposed
in this work are coding duels that are carefully designed to train players secure
coding skills, such as sufficient input validation and access control. Using serious
games for teaching secure coding could alleviate some of the challenges faced by
faculty members in this regard.

Furthermore, scorecards and checklists provide a consistent means of eval-
uation and assessment [22] . They describe the use of security checklists and
scorecards which provide a quantifiable list of security criteria to aid in writing
secure code and further reinforce security principles. Checklists distributed to
students included:

– Sample code of errors to look for;

– Examples of correct ways of writing code; and

– Security mantras including a list of principles that form the basis for the
checklist, for example: All Input is Evil!



6 Bishop, Dark, et al.

Regardless of the approach used to teach secure programming, such ap-
proaches should take into account recognized learning principles, as discussed
in Section 5, to ensure that learning takes place.

5 Learning Principles

Systematic studies of human behaviour, including studies of how people learn, is
a relatively new field of scientific enquiry [17]. However, despite the youth of this
field, many studies have already been dedicated to investigating how learning
takes place. During such studies, researchers strive to identify recurring patterns
in the data and to make generalizations based on these patterns. Such gener-
alizations lead to the formulation of learning principles and learning theories.
Learning principles identify the factors that influences learning. For example,
the principle that a behaviour which is rewarded in some way is more likely to
re-occur in future than one which is not followed by a reward. A learning theory
on the other hand aims to provide an explanation of the underlying mechanisms
that are involved in learning. Thus, whilst a learning principle presents what
factors are important, a learning theory would explain why those factors are
important [17].

Learning principles do not change much over time, however, learning theories
have continually changed as understanding of human behaviour evolved [17]. Due
to the fact that learning principles are less changeable, and thus more ‘future
proof’ than learning theories, this research will seek to identify learning principles
that could be useful in the secure coding clinics, but will avoid subscribing to
any specific learning theory.

Educational literature provides many such learning principles. These princi-
ples have been identified, and their impact verified, in a variety of ways. One such
approach is the field of brain compatible education. This educational approach
stems from a combination of neuroscience and educational psychology and was
first made possible by advances in brain imaging during the 1990s [12].

Brain-compatible, or brain-based, learning is not a formalised education ap-
proach or ‘recipe for teachers’, instead it provides a “set of principles and a
base of knowledge and skills upon which we can make better decisions about
the learning process” [9, p xiii]. Brain research has shown that humans literally
grow new dendrites and neural connections every time they learn something.
Knowing which educational activities are the most effective in stimulating such
growth allows educational practitioners to create material that leverages the way
the brain naturally learns [10]. For the purpose of this research, it is not neces-
sary to understand how these natural learning processes work. One only needs
to understand that these principles were verified as being effective in promoting
real learning.

No single complete list of such principles exists. However, many principles are
presented and discussed in the literature [4,5,8,9,11,16,19,20]. The list presented
in Table 1 contains a subset of principles from those used in literature. The
principles included in Table 1 were restricted to those the authors specifically



Learning Principles and the Secure Programming Clinic 7

deemed most relevant to the context of the Secure Programming Clinic. Relevant
principles from literature were reworded and consolidated in cases where there
was significant overlap in meaning between those used in the literature and the
context for use in this study. Table 1 thus presents the authors’ adaption of
these principles. The following discussion briefly elaborates on each of the listed
principles:

– LP1 - According to [8,9,11] there is no long term retention without rehearsal.
The brain would prune new neural growth if it is not reinforced by being
used. It is vital to repeat lessons taught more than once, otherwise students
would be likely to forget these lessons. One should also allow enough time
for students to assimilate any new concepts. Several studies [4,8,11] explains
that the brain will reconsolidate new neural growth for several weeks after
learning using both conscious and unconscious (sleep) processes to decide
how to incorporate knowledge into existing neural structures.

– LP2 - If the new knowledge is too advanced for the target audience, learning
might be inhibited because the learners feel threatened instead of challenged
by the content [4,5,8,9]. Furthermore, new knowledge can only be assimilated
if it builds upon prior knowledge, since novel patterns can only form as
extensions of existing patterns [5, 11,19,20].

– LP3 - The process of learning consists of the brain recognizing patterns
[4, 5, 8, 9]. For these patterns to form the learners need to recognize and
connect patterns by themselves [5, 9, 11, 19]. This process works best if the
learners experience these patterns in contexts that are relevant to themselves
[5, 9] and their real-life experiences [11].

– LP4 - Humans naturally learn in social settings and through interaction with
others [4, 8]. Collaboration with others enhances learning [11].

– LP5 - Rehearsal will make learning permanent, however, this does not guar-
antee the rehearsed learning is in fact correct. Practice should be accom-
panied by feedback that is constant, consistent, and specific to ensure that
practice that is permanent is also correct [8, 16]. The effect of feedback is
also amplified if it is immediate [5, 9].

6 Mapping of Clinics to Selected Learning Principles

We begin by examining the instances of the secure programming clinic that have
been run, and how they reflect the learning principles. We then discuss how the
clinic might be improved by mapping the principles into various forms of the
clinic.

6.1 Experimental Secure Programming Clinics

The University of California at Davis, the California Polytechnic State University
at San Luis Obispo, the California State University at Sacramento, and Purdue



8 Bishop, Dark, et al.

Table 1. Learning Principles

Principle# Description

LP1 Lessons must be repeated at suitable intervals

LP2 Lessons must build upon the pre-existing knowledge of the target audience
and must be of an appropriate level of difficulty

LP3 Learning happens through the recognition of patterns. To recognize new
patterns, learning must be actively, personally, and specifically experienced
in a context the learner can relate to

LP4 Learning is enhanced through collaboration and interaction with others

LP5 Immediate feedback amplifies learning

University Northwest have run the Secure Programming Clinic over the past 4
years. These instances of the clinic were tied to particular classes such as net-
working, operating systems, computer security, and introductory programming
classes.The methodology was the same in all instances.

At the beginning of the term, students were asked to fill out an evaluation
form that tested how much they knew about secure programming. They received
class credit for beginning the questionnaire, and could indicate if they declined
to proceed after giving their name and student ID (so they could get credit). At
the end of the class, they filled out a similar questionnaire. The results of the
two questionnaires were compared to see how their knowledge of, and ability to
practice, secure programming changed. During the class, for each programming
assignment, students could go to the clinic before submitting the assignment,
and modify their programs based on the clinician’s feedback. When assignments
were submitted, they were given to the clinicians to check for the robustness
and quality of the programming; graders assigned to the class graded the sub-
mitted programs for correctness. Then the instructor combined the results to
give the program a grade. When the assignments were returned, students were
told they could correct the robustness and security problems, and get back a
large percentage of the points deducted for this (usually 75% or 80% of the
points). They had a week to do this and resubmit the assignment. The clinicians
would then review the changes, compare them with the original programs, and
inform the instructor about the changes. The instructor would change the grade
accordingly.

Institutional Review Boards (IRBs) at all institutions examined the experi-
mental protocols to ensure they complied with federal and state law, and with
the institutions’ own rules about gathering and retaining student data. At the
University of California at Davis, the principle investigator of the project was
also the instructor, which the UC Davis IRB saw as a conflict of interest. To keep
students anonymous to the instructor, student information (name and student
identification number) was coded with a 4-digit number, and all work relat-
ing to that student’s interaction with the clinic was recorded using that 4-digit
number. During the term, the clinicians kept track of each student’s 4-digit num-



Learning Principles and the Secure Programming Clinic 9

ber, and any analyses had the student names and other identifying information
redacted and replaced by the 4-digit number. When assignments were graded,
the clinicians were given everyone’s grade. This way, the instructor had no access
to a particular student’s pre- and post-questionnaires, nor to any information
recorded about grade improvement.

Data on students’ clinic usage and secure programming scores were collected
in 2017 in one class (see Table 2). Of 42 students enrolled, 36 visited the clinic
and 6 did not. Of the 36 students who visited the clinic, 14 students visited
the clinic before the assignment was due, which were called “proactive” clinic
users. Five visited the clinic before and after the assignment was due; they were
called “consistent” users. Seventeen only visited the clinic after the initial secure
programming assignment was submitted and graded; they were called “reactive”
users.

The average score for 12 of these 14 students on the secure programming
assignment was 77% and the standard deviation was 4%. These students did not
submit their assignment for a regrade. Two of the 12 proactive students (students
who visited the clinic before the assignment was due) submitted their original
assignment, received a grade, and then made changes to their assignment and
submitted their assignments for regrade. These two students differ notably. The
first student received an initial score of 9% and did not gain any additional points
when he/she submitted the assignment for regrade. The second student scored
78% on the initial assignment and 91% on the assignment that was submitted
for regrade.

Table 2. Statistics from the Secure Programming Clinic.

Initial clinic Grade Clinic Regrade
n visit mean stdev revisit mean stdev

Proactive; no regrade 12 yes 77% 22% no N/A N/A
Proactive; regrade 2 yes 44% 28% no 50%5 41%
Consistent; no regrade 2 yes 34% 22% yes N/A N/A
Consistent; regrade 3 yes 23% 10% yes 77% 19%
Reactive; no regrade 0 no N/A N/A no N/A N/A
Reactive; regrade 17 no 21% 17% yes 70% 10%
Never; no regrade 0 no N/A N/A no N/A N/A
Never; regrade 6 no 23% 98% no 48% 16%

When the learning results of the Secure Programming Clinic are interpreted
in the context of the 5 learning principles, there are several interesting findings.
In the context of individual student learning, the principles are intersectional.
For example, while lessons must be repeated at suitable intervals, what makes
an interval “suitable” is partly contingent upon the pre-existing knowledge of
the target audience, which is comprised of every student. Thus, pre-existing

5 These data are anomalous. There were only two students in the group. One student
scored 91% on the regrade and the other student remained at a score of 9%.



10 Bishop, Dark, et al.

knowledge levels and learning trajectories vary. Another intersection is between
LP1 and LP5. Immediate feedback (LP5) signals to learners the need for addi-
tional practice (LP1). When the learning setting provides for additional practice
(LP1), at an appropriate level of difficulty (LP2) and supported through inter-
action with others (LP4), learning is supported.

Interpreted in the context of the principles, the 12 proactive clinic users who
did not submit their assignments for regrade, visited the clinic. They then used
the specific and timely feedback they were given to practice more secure pro-
gramming. They submitted the assignment for feedback, and received timely
positive feedback via their scores. This signals to the student that they are on
track. In the case of the proactive student who received a high score and chose
to make modifications to his/her assignment and submit for regrade, the clinic
afforded the use of specific and timely feedback (LP5) in support of rehearsal
and mastery (LP1 and LP2). In the case of the proactive student who received
an initial score of 9% and did NOT improve, there are two considerations. If
the student does not care about learning, then most instructional attempts at
intervention will fail. However, if the student wants to learn, but is failing, then
it would be important to incentivize the student to visit the clinic again. Pro-
vided there is desire to learn, the deficiency is likely due to prior knowledge
(LP2) and/or lack of active, personally relevant experiences that afford pattern
formation (LP3). In this case, the clinic should provide suitable diagnostics.

The 5 students who visited the clinic before the assignment was due and then
after receiving an initial grade and before the reworked assignment was due are
also interesting. Three of the five received a score of 23% on the robustness of
their code for the assignment. It would seem as if the clinic was marginally useful
for these three students before they did the assignment, especially if you compare
them to the 12 proactive clinic users who scored 77% on the first assignment
submission after visiting the clinic. Upon receiving their grade and then revisiting
the clinic, these three students raised their grade to 77%. For these students,
the value of the clinic demonstrates all of the learning principles. The clinic
provided a venue for these students to repeat the exercises. The students seem
to have acquired useful knowledge through this rehearsal, even though the new
knowledge had to be built on wrong performance. Unlike their 12 peers in the
proactive group who were able to attend the clinic, get useful information and
submit the homework and earn a high grade, these students attended the clinic,
got the proactive information, applied it incorrectly (LP2), received a poor grade
(LP5), reattended the clinic (LP2, 3 and 4), learned about the same secure
programming practices in the context of marginal performance (LP1, 2), and
then succeeded. This is very encouraging.

The 17 students who were reactive users of the clinic are also interesting.
Upon receiving an initial grade (mean score for this group was 21%, standard
deviation 17%), learners had knowledge of what they did not know. The spe-
cific and timely feedback (LP5) acted as a spur to motivate students to use
the clinic. The feedback was diagnostic in that it showed students exactly where
their thinking was deficient, thereby allowing practice and rehearsal in correcting



Learning Principles and the Secure Programming Clinic 11

their insecure programming practices (LP1). In order for these students to con-
tinue expanding their secure programming practices, the clinic should support
multiple classes, so that lessons are repeated (LP1), in a manner that subse-
quent knowledge builds on prior knowledge (LP2), culminating in the formation
of patterns (LP3). When this is the case, learners will have robust knowledge of
robust programming practices.

6.2 Discussion and Lessons Learned

The preceding section shows how important the principles are to the clinic’s
success. Here we discuss more general lessons learned.

Principle LP2 suggests that students build on pre-existing knowledge to learn,
and LP3 says students learn by recognizing patterns. In the instance of the secure
programming clinic for an introductory programming class in C, few students
availed themselves of the clinic even though they were offered the chance to
resubmit work, as described above. The problem was that the students were
struggling to learn the language and techniques. Although all were supposed to
have programmed before, none had used C, C++, or Java, and so concepts like
pointers were new to them. They also had not mastered recursion and other
basics. Hence they had no pre-existing knowledge of many features of C, and so
they were unable to build on that pre-existing knowledge. Further, concepts of
security were too difficult, so the clinic focused on robustness (avoiding buffer
overflows, checking input, and so forth). Even these basics required the students
to recognize patterns in programming, and they simply did not have the back-
ground for this.

The clinics discussed above were tied to specific classes. The students who
went consistently (that is, before the assignment was due and again after the
grading) showed the greatest improvement. This accords with learning principle
LP1, that learning must be repeated at suitable intervals. Were the clinic not
tied to specific classes, and were faculty to have their students use the clinic,
this finding suggests that students would improve their robust and secure pro-
gramming skills.

The structure of the clinic had the clinicians interacting directly with the
students, sometimes in person privately, sometimes in a group, and sometimes
using remote technology such as Skype. They gave immediate feedback by iden-
tifying examples of robustness and security problems in the students’ programs,
and discussing them, and approaches to possible solutions, with the students.
The students then had not only to figure out the best solution and implement
it, but they also had to analyze their program looking for other instances of that
type of problem, because the clinicians did not point out all the problems. The
goal was to give the students the skills to find the problems themselves, and
learn how to avoid programming them in the future. This is an application of
LP5, immediate feedback amplifying learning. Its success is shown by the marked
increase in scores for the consistent and reactive students’ programs.

The clinic provided students interaction with others (the clinicians). Al-
though no formal statistics were gathered, the clinicians thought the group



12 Bishop, Dark, et al.

sessions were better because the students would explain problems to one an-
other and therefore learn from their peers as well as from the clinician. This is
an application of LP4, that collaboration and interaction with others enhances
learning.

Several lessons from this mapping are apparent:

– The secure programming clinic will not work well with beginners or those
who have little programming experience.

– The secure programming clinic will benefit students the most if it is available
throughout the students’ educational career, and they are required to use it
in all classes that require programming (except introductory programming
classes).

– The secure programming clinic must be tuned to the experience and back-
ground of the students, individually when possible, or taking into account
the educational environment of the students when not.

– The secure programming clinic should hold group meetings as well as indi-
vidual consulting sessions.

7 Conclusion

The secure programming clinic was developed to assist students in learning to
write robust, secure programs, and to reinforce this throughout their schooling.
A key question is to determine the conditions under which it will work well,
and under which it will not work well. The research presented above, and its
interpretation in light of the educational principles, provide general answers.

An interesting question would be to determine how to tailor the secure pro-
gramming clinic to take advantage of specific educational environments. As an
example, the clinic would probably be instantiated differently in South Africa
than in the U.S. due to the differences in the structure of the academic pro-
grams. How to take those differences into account, to make the clinic maximally
effective, is ripe for study. Similarly, could the clinic be adapted to a short, week-
long course designed to teach programming intensively, and if so, how would the
clinic operate to provide support after the course? Any analysis or development
of these clinics must examine how to apply the principles in light of the environ-
mental constraints.

Acknowledgements. This material is based upon work supported by the U.S.
National Science Foundation under Grant Number DGE-1303211 to the Univer-
sity of California at Davis and Grant Number DGE-1303048 to Purdue Univer-
sity. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of the U.S. National Science Foundation, the University of California at Davis,
and Purdue University.



Learning Principles and the Secure Programming Clinic 13

References

1. Adamo-Villaani, N., Oania, M., Cooper, S.: Using a serious game approach to
teach secure coding in introductory programming: Development and initial find-
ings. Journal of Educational Technology Systems 41(2), 107–131 (Dec 2012).
https://doi.org/10.2190/ET.41.2.b

2. Bishop, M.: A clinic for ‘secure’ programming. IEEE Security and Privacy 8(2),
54–56 (Mar 2010). https://doi.org/10.1109/MSP.2010.62

3. Bishop, M., Orvis, B.J.: A clinic to teach good programming practices. In: Pro-
ceedings of the 10th Colloquium on Information Systems Security Education.
pp. 168–174 (Jun 2006), https://www.cisse.info/resources/archives/file/68-s05p05-
2006?tmpl=component

4. Caine, R.N., Caine, G.: Making Connections: Teaching and the Human Brain.
Association for Supervision and Curriculum Development, Alexandria, VA, USA
(1991)

5. Craig, D.I.: Brain-compatible learning: Principles and applications in ath-
letic training. Journal of Athletic Training 38(4), 342–349 (Oct 2003),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC314395/

6. Creswell, J.W.: Qualitative Inquiry and Research Design: Choosing Among Five
Approaches. SAGE Publications, Thousand Oaks, CA, USA, third edn. (2012)

7. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., Halderman, J.A.: The matter of heartbleed.
In: Proceedings of the 2014 Conference on Internet Measurement Conference. pp.
475–488. IMC ’14 (Nov 2014). https://doi.org/10.1145/2663716.2663755

8. Fogarty, R.: Brain-Compatible Classrooms. Corwin, Thousand Oaks, CA, USA,
third edn. (2009)

9. Jensen, E.: Brain-Based Learning: The New Paradigm of Teaching. Corwin, Thou-
sand Oaks, CA, USA, second edn. (2008)

10. Lombardi, J.: Beyond learning styles: Brain-based research and english language
learners. The Clearing House: A Journal of Educational Strategies, Issues and Ideas
81(5), 219–222 (jun 2008). https://doi.org/10.3200/TCHS.81.5.219-222

11. Materna, L.E.: Jump-Start the Adult Learner: How to Engage and Motivate Adults
Using Brain-Compatible Strategies. Corwin, Thousand Oaks, CA, USA (20087)

12. McGeehan, J.: Brian-compatible learning. Green Teacher 64, 7–13
(2001), http://www.bbbforlearning.com/uploads/1/0/4/4/10446722/brain -
compatable learning.pdf

13. Nance, K., Hay, B., Bishop, M.: Secure coding education: Are we making progress?
In: Proceedings of the 16th Colloquium for Information Systems Security Edu-
cation. pp. 83–88 (2012), https://www.cisse.info/resources/archives/file/299-p13-
2012?tmpl=component

14. National Institute of Standards and Technology: National vulnerability database,
https://nvd.nist.gov

15. Ngambeki, I., Dark, M., Bishop, M., Belcher, S.: Teach the hands, train
the mind . . . a secure programming clinic. In: Proceedings of the 19th Col-
loquium for Information System Security Education. pp. 1–15 (Jun 2015),
https://www.cisse.info/resources/archives/file/359-p10?tmpl=component

16. van Niekerk, J., Webb, P.: The effectiveness of brain-compatibkew blended
learning material in the teaching of programming logic. Computers & Edu-
cation 103, 16–27 (Dec 2016). https://doi.org/10.1016/j.compedu.2016.09.008,
https://www.sciencedirect.com/science/article/pii/S036013151630166X



14 Bishop, Dark, et al.

17. Ormrod, J.E.: Human Learning. Pearson Education, Boston, MA, USA, sixth edn.
(2011)

18. Paul, M.: The need for secure software. Harvard Business Review (2012)
19. Smilkstein, R.: We’re Born to Learn: Using the Brain’s Natural Learning Process

to Create Today’s Curriculum. Corwin, Thousand Oaks, CA, USA, second edn.
(2011)

20. Sousa, D.A.: How the Brain Learns. Corwin, Thousand Oaks, CA, USA, fifth edn.
(2016)

21. Tabassum, M., Watson, S., Richter, L.H.: Comparing educational approaches
to secure programming: Tool vs. ta. In: Proceedngs of the 13th Symposium
on Usable Privacy and Security. SOUPS 2017, USENIX Association, Berke-
ley, CA, USA (2017), https://www.usenix.org/conference/soups2017/workshop-
program/wsiw2017/tabassum

22. Taylor, B., Azadegan, S.: Using security checklists and scorecards in cs curricu-
lum. In: Proceedings of the 11th Colloquium for Information Systems Security Ed-
ucation. pp. 82–87 (Jun 2007), https://www.cisse.info/resources/archives/file/85-
s05p01-2007?tmpl=component

23. The Joint Task Force on Computing Curricula: Computing curricula 2001 com-
puter science. Journal on Educational Resources in Computing 1(3es) (Fall 2001).
https://doi.org/10.1145/384274.384275

24. Xie, T., Bishop, J., Tillmann, N., de Halleux, J.: Gamifying software security ed-
ucation and training via secure coding duels in code hunt. In: Proceedings of the
2015 Symposium and Bootcamp on the Science of Security. pp. 26:1–26:2. HotSoS
’15, ACM, New York, NY, USA (2015). https://doi.org/10.1145/2746194.2746220,
http://doi.acm.org/10.1145/2746194.2746220


