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Decomposition of K, into k-circuits and Balanced
G-designs

J.C. Bermond

1. INTRODUCTION

Let K; be the complete directed gresph with n vertices, thsat
is, every ordered pair of vertices is joined by exactly one arc. By

g k-circuit we mean a directed elementary circuit of length k.

We zre interested in the fcllowing protlem: For which velues of
n is it possible to partition the srcs of K; into k=-circuits
(k€ n). A necessary condition for such a partition is that the num-
ber of arcs is a multiple of k, that is: n(n -1)=0 ({(mod k).
We conjecture that thie condition is sufficient except for n = 6,
k=3; n=4=%k snd n=6=%k. In [2], the case k =3 is sol-
ved comple*ely. In = joint paner with V. Taber [5], two methods are
developed: An ‘"oriented difference method" and & methcd of composi-
tion vsing complete directed bipartite graphs. These methods give ma-
ny results for k even end, in particular, sclve completely the ca-
ses k = 4, €, 8, 10. By usirg refinements of i1he "difference met-
hod" we have proved in [3] thzat the corndition is sufficient for
n = 2k, except k = 3.

In this paper, we develop a "ccmposition method" wusing lexico-
graphic products. This method gives the complete solutiorn for k = 3
(with a simpler proof than in [2]) and for k = 5.

Our problem is & special case of the problem of the existence of
balanced G-designs, introduced by FP. Hell and A. Rosa [10). Ilet
AKn (AK;) be the complete (complete directed) multigraph, with n
vertices, where twc vertices are Jjoined by exactly XA edges (arcs)
and let G be e graph (directed graph) with k *vertices; en (n,k,A)
G-design consists of a partiticn of the edges (arcs) of A Kn(AK;)
into partiel subgrsphs isororphic to G. Furthermore, if every ver-
tex of A Kn(AK;) belongs to the seme rumber of partiel sucgraphs,



the G-design is said to be balanced. If G is regular, that is, if
every vertex of G belongs to the same number of edges (arcs) of G,
then every G-design is balanced. In the case G = K, &n (n,k,A)Kk-
~-design 1is ncthing else than a B.I.B.D. (balasnced incomplete block
design) (see M. Hall [8] or H. J. Ryser . The particular case in
which G is a k-circuit 6£ corresponds to our original problem.
Other cases have also been studied: C,-design, C, & k-cycle (A.
Kotzig [17] and A.Rosa [19,20]), balanced Py-design, P, a k-chsin
(chein with k vertices), which is kncwn under the name cf "handcuf-
fed design" (P.Hell and A.Rosa [10], S.H.Y.Hung and N.3.Mendelsohn
(13}, J.F.Lawless [15,16]), G-design, where G 1is a bipartite graph
(C.Huang and A.Rose [12]), G-design, where G is the transitive
tournament with 3 vertices (S.H.Y.Hung and N.S.Mendelsohn [14]).

In [3] we have generalized the first two methods to the (-de-
sigrs, but the composition method usirg bipartite graphs applies cn-
ly in come cases (G an even cycle or circuit, G a chain or path)
The ccmposition method using the lexicographic product works for all
the grephs G. We will first give the general lemmras, but for the
applications we will restrict ourselves to the cases G = Ky P and
ék, with more emphasjs to this last case. (Fcr complements and ap-
plications of the methods to packing end covering prcblems see [3].

For the definitions rot given here see C. Berge [1].)

2. LEXTCOGRAPHIC PRODUCT AND BASIC LEMMAS

DEFINITICN. Let Hy = (X,,U;) end H, = (X,,U,) Dbe two (directed)
graphs; the lexicographic product (cslled also composition) of
Hy by Hy,
tesian product Xy # X2 as its set of vertices and in which

denoted H, ® H,, is the graph which has the car-

(X1,X2) is Jjoined to (y&,yz) if and only if x, y, is an ed-
ge (arc) of Hy, or x4 =y, and x, ¥, 1is an edge (arc) of
H2.
(H,
of Hy by a copy of H2).

EXAMPLE : d{iﬁiEEEb
I’I,l = C =

I Hy e Hy =

® H2 can be considered es formed by replacing each vertex

H2 = P2 =



NOTATIONS. We say that the graph H cen be decomposed into partial

subgraphs isomorphic to G, if we can pesrtition the edges (arcs) of

H into partisl subgraphs iscmorphic to G. S wil., dencte a graph
formed by n isolated (independent) vertices.

LEMMA 1. If H,, H, and G @& S/ (where n 1is the number of verti-

ces of H2) can be decomposed into partial subgraphs iscmorphic

to G, then H1 ® H2 cen also be decomposed into partial sub-
graphs isomorphic to G.

PROOF. Let m be the numter of vertices of H1 end n that of
H

S,® Hy. S ® H, is the edge (arc) disjoint union of m copies of

5" Then Hy @ H2 is the edge (arc) disjoint union of H, @ Sn and

H2 and can thus be decomposed into partial subgraphs isomorphic to
G if H2 can be. If Hy can be decompcsed into partial subgraphs
isomorphic to G, then H; ® Sn can be decomposed into partial sub-
graphs iscmorphic to G @ Sn end the lemms follows from the hypothe-

sis of the decomposition of G @ Sn‘

PROPOSITION 1. If there exist an (m,k,A) G-design, an (n,k,A)
G-design and if G ® Sn can be deccmposed into partial sub-

graphs isomorphic to G, then there exists an (mn,k,)) G-de-

sign.

PROOF. This result follows from ILemma 1 with H1 =AK or VK.
" m m
and H2 = AKn or A Kn‘
In order to apply Proposition 1, we will study the decomposition
of G ® Sn for some particular graphs G.

DEFINITION. (M.Hall [8], chap. 13). An orthogcnal array OA(n,k)
is a matrix with k rows, n° columns, whose elements, denoted
(i=1,cin,kd =4,...,n2), belong to a set E with n

8. .
1,3
eléments and suth that:
. .o 2 1.
Vl’l {(a L ai',j) with j=1, .., n° }=E x E.

It is known that an orthogonsl array OA(n,k) exists if and only if
there exist k - 2 mutually orthogonal Latin squares of order n.

LEMMA 2. K, ® & _can be decomposed into partial subgraphs iscmor-

vhiec to K, if and only if there exists an orthogonal array

h%

o o \
CAln. X ).
Bl it 15 P



FROOF. (We will only give a sketch of the proof. The reader can re-
fer to [3] or to the equivalence of transversal designs and orthocgo-
nal arrays (R.M.Wilson [21,22] or R.C.Bose and S.S.Shrikharde [6]),
the blocks of the transversal design playing the role of the sub-
graphs of the decompcsiticn). Let us identify the set E of the ver-
tices of OA(n,k) and the set of the vertices of S,; thus, the
vertices of K, ® S = e&re latelled (i,e) with 1 =1, ..., k and
e € E, The equivalence of the lemma can be obtained by associating
to each column j cf OA(n,k) the complete subgraph Gj’ iscmorphic
to K., containing the vertices (i,aj’j) and conversely. Orthogo-
nality is equivalent to the fact that each edge of Kk ® Sn helongs
to exsctly one Gj'

PROPOSITION 2., (R.C.30se and S.S.Shrikhesnde [7]): If there exist an
(m,k,A) B.I.B.D., an (n,k,A) B.I.B.D. and an orthogonal array

04(n,k), then there exists en (mn,k,A) B.I.B.D.

PROOF, Follows from Proposition 1 and Lemma 2.

Let Tk derote anv tournament with k vertices; ther by taking
an oriertation of K, that gives Ty, we obtuin the same result as
Lemma 2 or Proposition 2 for Tkmdesigns:

PROPOSITION 2 °. If there exigsts an (m,k,A) Tk—design, an  (n,k,A)
T, -design snd an __ OA(n, k) then there exists sn imn,k,A) T -

-dasign.

LEMMA 3. EK ® Sn can be decomposed into k-circuits.

PROOF, This lemma hss been proved in [4]. We give hare another

=» . & . N
proof. As the number of arcs cof Ck X Sn is kn, it suffices to
exhibit n2 mutually arc-disjoint k-circuits. Let the vertices of
- . : e} r
Cp be the elements of 2y and those of S, the elements of Lo

where Zp i1s the additive group of the integers moduils p. The fol-
~
lowing n® k-circuits:

(0,3) oov (1,J%i00) oue (k=2,j+(k=2)oc) (k=1,0¢) (G,]),

where ie 7 end o € 7 are arc-disjoint. Indcesd, suppsac Pfor

3] £ n n )
example that:

(1,5 +30c) (A+4, j+ (1+4)e) = (i, 4 +ie’) {i+1,

. . R4 . L 5 . . . ’ e
then gt 1= )+ 10 and  J o+ (i +4)oe o+ {1+ 4 e arvd by
r w5 (W

subtrac~tion o = o and 4= 3 .



From Lemma 1, Proposition 1 and Lemma 3 we deduce:

PROPOSITION 3. If Hy_ and H, can be decomposed into k-circuits,
then also H, ® H2. In particular, if there exist an (m,k,A)
Ek-design and an (n,k,\) ak—design then there exists an
(mn,k,A) C,-design.

Similar results can be obtained for the k-cycle Ck instead of
the k-circuit 5k.

LEMMA 4. P

k-chain P, is an elementary chain with k vertices.)

k@ S, _can be decomposed into k-chains. (Recall that a

PROOF. Let the vertices of Py (resp. Sn) be the elements of 2,
(resp. Zn). Then we have a partition of the edges of Pp ® Sn into
the following n? edge-disjoint k-chains: (O30 wewe (L j+idd) ae
eo (k=41,j+(k-1)x) where J € Z, end o € Z .

PROPOSITION 4. If there exist an (m,k,A) P,-design and an (n,k,A)
Pk-design, then there exists en (mn,k,)) P, —design.

REMARK. In the proof of Lemms 4, we nctice that the end-vertices of
the chains of the decomposition cf Py ® Sn are the vertices (0, j)

and (k-1,j3), Jez, and O and k -1 are the end-vertices of
Py« Thus we obtain:

PROPOSITION 4 °. (P.Hell and A.Rosa [10], J.F.lawless [16].) If the-
re _exist a balanced (m,k,A) Py -design &and a balanced (n,k,})
Pk-design, then there exists a balsnced (mn,k,A) Pk—design.

Similar results can also be obtained for k-paths fk.

3. GENERALIZATION

We shall now consider a generalization of the lexicographic pro-
duct which we heve introduced in [4]. It is obtained by identifying,
in H,® H2, h points of each copy of H2. The exact definition is:

DEFINTITION. Let m, n, h be three integers.’ Let Hy = (X4,U1) be

a graph (directed or not) anda Hy = (Xé U X3, U2) be a graph



(directed or not) with IXél = n and |X§I = he The vertices
of Xé are labelled from 1 to n and thcse of Xg from n + 1
to n + h. Let Hé be the subgraph generated by Xé and  Hj
the subgraph generated by XE. We define a new graph H;(HZ,Hé)
as follows: Its vertex set is (X1 x X ') U X2; the vertices are
labelled (i1,i2) with i, =1, ..., m, i, =1, «es, n if they
belong to X{ x xé and (k) with k = n+1, .., nth if they
belong to XE. Two vertices are Jjoined if and only if they are
of the form:
- (i1,i2) and (j4,j2) with i, J, . an edge (arc) of H,
or iy = jy and i, j2 an edge (arc) of H2,
- (i,,i,) and (k), (i,,k) being an edge (arc) of Hy s
- (k) ana (x7), kk® being an edge (arc) of HY .

EXAMPLE: Hy = Cy = d{fiiib (2) (3)

(1,2)
(1,1) (13)
Hy = o Hj = o—0 Hq(Hz,H2)

REMARKS . In the case h =0, we obtain the lexicographic product
H
Hy ® s, Hy and p copies of H, - HY (graph obtained from Hy
by deleting the edges (arcs) of Hg). In the particular case h =1

® H,. In general, H,(H,,H.) is the edge (arc) disjcint union of
1 2 ’ 12722772

]

that is H3 being reduced to one vertex, H:(Hz,Hé) is the edge
(arc)-disjoint union cf Hy® S end p copies of H, (because
there is no arc in - Hg). From this remsrk, we obtain exactly as in
Lemma 1 the following Jlemma:

LEMMA 5. If if Hy, Hg, G ® Srl (where n is the number of vertices
of H, ') __and H, = H5 (the graph obtained from H, by deleting
the arcs of H")

morphic to G, then H (Hy L H 2) can also be decomposed into

can be decomposed into partial subgraphs iso-

partisl subgrarhs isomorphlc to G

LEMMA 5 7. f Hy, H,, G ® S, (n + 1 Dbeing the rumber of vertices
of Hg) can be decomposed into partial subgraphs isomorphic to

G, then the same is true for HT£§2,{X})

¥ 4

By teking H, = K_ or kK, H s

- m? « 2
Kn and thus H2 Kh or K

h,

. Kn+h

we obtain:

or K

il



PROPOSITION 5. If there exists an  (m,k,A) G-design, an (h,k,2)

G-design end if G e S end X K cr g#h - K* can be

n+h—-—n n
decomposed into partial subgraphs iscmorphic to G, then there

exists an (mm + h, k, A ) G-design.

PROPOSITION 5°.  If there exists an (m,k,)) G-design, an (n+1,k,A)
G-design and if Ge S, can be decomposed into partial sub-
graphs isomorphic to G, then there exists an (mn+1,k,A) G-de-
gien-

In the case G = K, by using Lemma 2 we obtain:

PROPOSITION 6. If there exists an ({(m,k,A) B.I.B.D., an (h,k,})
B.I.B.D., en orthogonal array OA(n,k) and if X , - X, _cen

be decomposed into partisl subgrarhs isomorphic to Kk’ then
there exists an (mnth,k,A) B.I.B.D.

PROPOSITION 6. (R.C.Bose and S.S.Shrikhande ([7].) If there exist
an (m,k,)) B.I.B.D., an (n+1,k,A) B.I.B.D. and an orthogonal
array OA(n,k), then there exists an (mn+41,k,A) B.I.B.D.

Proposition 6 seems to be new and mey yield new B.I.B.D. s. An
interesting case of application is the case h = kj there always
exists a (k,k,A) B.I.B.D. and the existence of a decomposition of
Kosr = X into K, is equivalent to the existence of an (n+k,k,A)
B.I.B.D. (it suffices to take as K, one of the blocks of the BR.I.
B.D.). Thus we have

COROLLARY . If there exists an (m,k,A) B.I.B.D., an (n+k,k,A) B.
I.B.D., an orthogonal array 0A(n,k), then there exists an
(mn+k,k,A) B.I.B.D.

As an éxemple we have the following B.I.B.D.’s that cannot be
obtaired in [7]) (they are known from the work of H.Hansni [9]:
(285:5.4) BuI«BuD. by taking m =5, k=5, n =5, n+k
(232;4,;%) B.I1.B.D. by teking m = 4, k =4, n =57, n+ k

>
—

In the case G = C,, by using Lemma 3 we obtain:

"

61,
61.

il

¥* 3
PROFOSITION 7. If K , K. oend K., - K ci#n be decomposed into

k-circuits, then K;n+h can be decomposed into k-circuits.

PROPOSITION 7°. It Kg anc K;+1 can he deccmposed into k-cir-

. i % . . .
cuits, thern K__ . 4 can be decomposed into k-circuits.




We cen also obtain similar theorems with G =Ck’ Py ﬁk instead
of Ck' We shall apply Propositions 3, 7 and 7  to solve ccmpletely
the case k=3 and 5 of the decomposition of K; into k-circuits,

4. DECOMPOSITION OF K INTO 3-CIRCUITS

We shall prove the following theorem which solves completely the
problem cf lhe existence of a decomposition of. K; into 32-circuits
(case k=23 of the conjecture of the introdvction). This problem
was solved in [2] as well as in N.S.Mendelsohn [12], but the proof gi-
ven here is simpler.

THEOREM 1. Let n be an integer, n=0 or 4 (mod 3), n # 4,6;

then there exists s decomposiiion of K: into 3-circuits, con-

taining two opposite 3-circuits (that is =a partial subgraph
. o e
iscmorphic to K3>'

FROOF, We prove the theorem by induction on n. The theorem is true
for n = 3. For n = 4 there exists a decomposition of KZ into
J=circuits, but nc decomposition contsining = K;. For n = 6 the-
re eyists no deccmposition of Kg into 3-circuits (see [2]). Tor
rr = 13, 16, 18 we can find 2 decomposition ccntaining a K;: For
n = 13 by using the (13,3,1) B.I.B.D.; for n =16 and 18 Ly
applying the method of [2] with & solution of Kirkman’s schcolgirl:

i1

problem for only n = 15, suppose thst n is an integer, n, = 0
or 4 (mod 3) and thst the theorem is true for all n < n, (n#4,6)
with n=0 or 41 (med 3). We bresk the proof in four cases depen-

ding on the congruences modulen 9.

Case 1: n, =3t with t=0 or 1 (med 3).

¥

Ei: can be deccmposed by Proposition 3, with m

(@]

noticing thst KJ; cor:tains a K; if at least K* (or K% Con-
1

i

3, n =1 and by

m T
tains a K;. The case t = 6, n, = 18 1is solved above.
Case 2: n, =3t + 1 with t=0 or 1 (med 3).

K; can be decomposed into 3-circuits by Proposition 77 with m = g
n=3 (n+1 =14). This works except if t =4 or 6. If t = 4,
n, = 13 has been solved above. If t = G n, = 19 and the theorem
follows from Preposition 7° with m = 9, n = 2,

Case 3: fg, = 9k + 7 = 3(3k + 2) + 1.

The theorem results from Proposition 7° with n = 24 n = 3k + 2,



n+1 =3k +3; except if k =4, but in this case n_ =16 (sol-

ved above).

Case 4: n, = 9k + 6 =3Bk +1) +3 with k # 0.

The theorem follows from Proposition 7 with m=3, h=3, n=3k+1,
»*

n+ h =3k + 4 and by the induction hypothesis that K§k+4 - Kﬁ can
be decomposed into 3-circuits.

REMARKS. The theorem gives a new proof of the existence of an
(n,3,2) B.I.B.D. If we want to prove the existence of an (n,3,2)
B.I.B.D. or an (n,3,4) TT,-design (called directed triple systems
by S.H.Y.Hung and N.S.Mendelsohn [14] ), the proof is quite the same as
the proof of Theorem 1 but simpler because there exists a solution
for n = 6. Indeed, we do not need as induction hypothesis that the

decomposition contains a Kg: this was used only in Case 4. In this
case if k = 2p, that is n = 18p + 6 = 6(3p + 1), the result fol-
lows from Propositions 2° or 3 with m = 6 end n =3p+ 1. If
k =2p+ 1, that is n = 18p + 15 = 2(9p + 7) +1, the result fol-
lows from Proposition 5" with m=9p + 7, n=2, n+ 41 =3, And
we need only to start the induction to have the decomposition for
n =3, 4, 6. Thus we have: '

THEOREM 2. If n
B.D. and an

=0 or 4 (mod 3) there exists an (n,3,2) B.I.
(n,3,1)'TT3-design [14]7.

The same method has been used by A.J.W.Hilton [11] +to obtain a
proof of the existence of an (n,3,1) B.I.B.D. or Steiner triple
systems. The method can be used also to have the existence of an
(n,3,)) B.I.B.D. for any A , or other G-designs where G has 3
vertices.

5. DECOMPOSITION OF K; INTO 5-CIRCUITS

We shall prove the following theorem:

THEO REM 3. K; can be decomposed into S5-circuits if and only if
n=0 or 41 (mod 5).

PROOF. To prove the theorem we shsll use the Propositions 3, 7“,7
called here respectively A, B, C and scme lemmas Di’ whose proofs
use the difference method, but are long (the reader can find all the-
se proofs in [3]).



* ¥
If K, end K, can be decomposed into 5-circuits, then
Kgn can be decomposed as well.
i »* % . o g
Be IT Km and Rn+4 can be decomposed into S-circuits, then
K;n+4 can be decomposed as well.
% - * R 5 .
c: If K;, Kn and Kn+h - Kh can be decomposed 1nto 5S-cir-
cuits, then K£n+h can be decomposed as well.
D: There exists a decomposition into S-circuits of:
. %, . ® . R % . g ¥
Dl . I\E 9 ) D2 o Kg 5 . D3 % .h.lo I\i-) 5 DA . ]\]O K6 °
D=t Kis=Ko3 D,: KI.-K~: Dey KE_; : PR o SRR
5¢ 117853 6" *117% Pt Bsi Dgi Rig=Rig
Dg: 167KE 3 Dig: K35-Kin: Dyq: Kjn=Kiqs D45 }-;3:5—}5:3‘_._3
a ¥ - * eagna The ops bl gl ron ¢ v oo -
(Recall that Kitn — X, means the graph obtained from KX, = by de

leting the arcs of a Kﬁ).
With all these lemmss we can prove the thecren

a

shall indicate which propositions or leimzs ere used

spcnding values.

The theorem is true for

=5 (D)5 mn=6 (Dy); n=10 (D3 or D4); n
n = 18 (D7); n =16 (D8 or D9) and n =20 (D
Suppose that n =0 or 1 {(mod 5) and that th

for gll n < ng with n=0 or 41 (mod 5). We b

many cases depending on the congruences modulo 300.

Case 1: n, = 10t +41, 't 22.

l.a t=2p (p21), n =20p+1, B: m=5p,

lab E=3p (p 21), n =30p+1, B m=6,

l.c t=3p+1 (p21), n =30p+ll, C,Dg: m=5p+1,

1.d it remsains =5 (mod 6)
t=30k+5, n,=300k+51,  B: m=60k+10,
t=30k+11, no=300k+lll, B m=30k+11,
t=30k+17, no=300k+l7l, B m=5,
£=30k+23, ,=300k+231, * B:  m=60k+46,
t=30k+29, O=3OOK+291, B m=10,
Case 2: n, = 10t + 5, t 2 2.

2.a t=2p (p21), n =20¢+5, B: m=5p+1,

2.b t=3p (p2>1), n =30p+5, C,D5: m=5p,

2«¢ t=3p+2, 1. =30p+2%, Bt m=9,

2.4 it remains t =1 (mod 6)

We
, with the corre-

by induction.

e theorem 1s true

reak the proof in

n=4.
n=5p.
n=6, h=5.
n=5%.

n=10.

n=60k+34.

n=5h,

n=30k+29.



t?jdk+4, no:300k+l5, A m=15, rn=20k+1,
t=30k+7, n,=300k+75, A: m=15, . n=20k+5 .
t=30k+13. n,=300k+135, C,Dy: m=60k+26, n=5, h=5,
t=30k+19, nO=3OOk+l95, C,DJQ: m=10k+6, =30, h=1%.
L30%425), n_=300k+255,  A: m=5, n=G0k+51.
Case 2 n, = 10t + 6, t 2 2.
3.2 t=2p (p21), n, =20p+6, C,D4: m=5p, n=4, h=6,
3.b t=3p (p 21), n =30p+6, A: m=6, n=5p+ 1.
J.c t=3p+1 (p 21), =30y 16, ¢y Dyt m=5p+1, n=6, h=10.
3.d it remaine t =5 (mod 6)
t=30k+5, n,=300k+56, B m=60k+11, n=5.
t=30k+11, n,=300k+116, C,Dg:  m=30k+1l, n=10, h=6.
t=30k+17, n_=300k+176,  B: m=60k+35, n=5.
t=30k+23, 5 =3 00k+236 , C,D6: n=60k+46, n=5, h=6.
t=30k+29, n0:300k+P96, B: m=5, n=60k+59,
Case 4: n, = 10t + 10, £ 22
d.a t=2p (p2>1), 1, =20p+ 10, CyDy: m=5p+4,  n=4, h=6.,
4.b t=3p (p>1), n,=30p+10, C,Dg: m=5¢, n=6, h=10.
4.c t=3p+2, n,=30p+30, A m=6, n=5p+5,
4.4 it remains t =1 (mod 6)
t=30k*1, nQ:3OQk$26, A: m=20, n=15k+1,
t=30k+7, n,=300k+80, A m=5, n=60k+16.
t=30k+13, n,=300k*140, C,Dyq: m=15k+6, n=20, h=20.
t=30k+19, n =300k+200,  A: m=5, n=60k+40.,
=30k~ 25, n =200k+260, 4 m=10, n=30k+26.,
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