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Generic Primitive Detection in Point Clouds
Using Novel Minimal Quadric Fits

Tolga Birdal, Benjamin Busam, Nassir Navab, Slobodan llic, Peter Sturm, Members, IEEE

Abstract NWe present a novel and effective method for detecting 3D primitives in cluttered, unorganized point clouds, without axillary
segmentation or type specibcation. We consider the quadric surfaces for encapsulating the basic building blocks of our environments -
planes, spheres, ellipsoids, cones or cylinders, in a unibed fashion. Moreover, quadrics allow us to model higher degree of freedom
shapes, such as hyperboloids or paraboloids that could be used in non-rigid settings.

We begin by contributing two novel quadric bts targeting 3D point sets that are endowed with tangent space information. Based upon
the idea of aligning the quadric gradients with the surface normals, our Prst formulation is exact and requires as low as four oriented
points. The second bt approximates the prst, and reduces the computational effort. We theoretically analyze these bts with rigor, and
give algebraic and geometric arguments. Next, by re-parameterizing the solution, we devise a new local Hough voting scheme on the
null-space coefbcients that is combined with RANSAC, reducing the complexity fromO(N #) to O(N 3) (three points). To the best of our
knowledge, this is the brst method capable of performing a generic cross-type multi-object primitive detection in difbcult scenes without
segmentation. Our extensive qualitative and quantitative results show that our method is efbcient and Rexible, as well as being accurate.

Index Terms NQuadrics, Surface Fitting, Implicit Surfaces, Point Clouds, 3D Surface Detection, Primitive Fitting, Minimal Problems
|

1 INTRODUCTION

urface btting and detection enjoys a rich history in computeplines and nurbs surfaces debned by several control points, or
Svision and graphics communities. The problem is found paguadrics the three dimensional, nine-DoF, quadratic forms.
ticularly important because of the power of 3D surfaces to explain Thanks to their power to embody the most typical geometric
generic man-made structures omnipresent in every day life. Mapgmitives, such as planes, spheres, cylinders, cones or ellipsoids,
of the constructed or manufactured objects and architecture thatdrics themselves were of huge interest since [80s [2]. Some
surrounds us are results of careful computer aided design (CAB¥emplary studies involve recovering 3D quadrics from image
Some of the primary concerns of 3D computer vision, mappirmgojections [[3], btting them to 3D point sels| [4], or detecting
and reconstruction, try to associate the visual cues acquired dpecial cases of the quadratic forms [5]. A majority of those
various 2D / 3D sensors with those idealized CAD models, thatrks either put emphasis on btting to a noisy, but isolated point
are used in the assembly of our environments. set [4], [€], [7], or restrict the types of shapes under consideration
One family of approaches tries to bnd a direct rigid associati¢ihereby reduce the DoF) to devise detectors robust to clutter and
between those CAD models and 3D scerés [1], trying to soleeclusions|[8],[[9],[[10].
the six degree of freedom (DoF) pose estimation problem. While In this work, our aim is to unite the btting and detection
these approaches are quite successful as the only parametemordds and present an algorithm that can simultaneously estimate
discover are rotations and translations, they require a huge numdkkparameters of a generic nine DoF quadric, which resides in a
of CAD models to generically represent the real scenarios. B® cluttered environment and is viewed potentially from a single
overcome this limitation, inspired by the fact that all CAD model8D sensor, introducing occlusions and partial visibility. We craft
are designed using a similar set of tools, a different line of reseaittis algorithm in three stages: (1) First, we devise a new quadric
attempts to bnd common bases explaining a broad set of 3D ##- Unlike its ancestors, this one uses the extra information about
jects, and tries to detect these bases instead of individual mod#is. tangent space to increase the number of constraints instead
Such bases that are the common building blocks of our worlef, regularizing the solution. This bt requires only four oriented
and typically termedyeometric primitivesWhile the approaches points. We show that such construction also has a regularization
using bases, signibcantly reduce the database size, usually,effect as a by-product. (2) We then thoroughly analyze its rank
bases undergo higher dimensional transformations comparedpi@perties and devise a novel null-space Hough voting mechanism
for instance, rigid ones. Examples of the geometric primitives ai@ reduce the four point case to three. Three points stands out to
be the minimalist case developed so far. (3) We propose a variant
of RANSAC that operates on our local bases, which are randomly
0FSOSited. Per each local basis, we show how to make use of the

¥ T. Birdal, B. Busam, N. Navab and S. llic are with the Department
Informatics, Technical University of Munich, Germany

E-mail: tolga.birdal@tum.de, navab@cs.tum.de bt and the voting to hypothesize a likely quadric. Finally, we use
¥ T.Birdal and S. llic are with Siemens AG, Munich, Germany. simple clustering heuristics to group and strengthen the candidate
E-mail: tolga.birdal@siemens.com, slobodan.ilic@siemens.com solutions. Our algorithm works purely on 3D point cloud data
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¥ P. Sturm is with INRIA, Grenoble, France makes assumptions neither about the type of the quadric that is
E-mail: peter.sturm@inria.fr present in the scene nor how many are visible.
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by providing additionally the following: 2.3 Quadric btting
1) qualitative and quantitative experiments to better grasp tfénce the 1990s generic quadric btting is cast as a constrained
behavior of the proposed bt, optimization problem, where the solution is obtained from a

2) algebraic and geometric theoretical analysis of the quadric ®eneralized Eigenvalue decomposition of a scatter matrix. Pio-
3) improved elaborate descriptions of the method as well &€ering work has been done by Gabriel Taubih [4] in which a
accompanying pseudocode. Taylor approximation to the geometric distance is made. This
work has then been enhanced by 3L [7], btting a local, explicit
ribbon surface composed of three-level-sets of constant Euclidean
distance to the object boundary. This bt implicitly used the local
surface information. Later, Tasdizern [6] improved the local surface
properties by incorporating the surface normals as regularizers.
This allows for a good and stable bt. Recently, Bestlal [33]
Quadrics appear in various domains of vision, graphics afmiroduced the use of a Bayesian prior to regularize the bt.
robotics. They are found to be one of the best local surfaddl of these methods use at least nine or twelje| [33] points.
approximators in estimating differential propertiés|[12]. Thudyloreover, they only use surface normals as regularizers - not as
point cloud normals and curvatures are oftentimes estimated wattiditional constraints and are also unable to deal with outliers
local quadrics[[1], [[IB]. Yaret alpropose an iterative methodin data. There are a few other studies [8],|[34], improving these
for mesh segmentation by btting local quadratic surfaces [14jandard methods, but they involve either non-linear optimization
Yu presented a quadric-region based method for consistent pd@fi] or share the common drawback of requiring nine independent
cloud segmentatiorf [15]. Kukelova uses quadric intersections @onstraints and no outlier treatment.
solve minimal problems in computer visign [16]. Uzbal. [17] as
well as Pas and Plaft 18] use quadrics to localize grasp poses 2aml Quadric detection

In grasp plannieg. Quadrics have also been a signibcant Cemeﬁ%overing general quadratic forms from cluttered and occluded
attention in projective geometry and reconstruction) [3]/ [19] Qcenes is a rather unexplored area. A promising direction was to

estimate algebraic properti_es of apparent eontours. Finally, Ypébresent quadrics with spline surfacés|[36], but such approaches
and Zhang|[20] used them in feature extraction from face data.must tackle the increased number of control points, i.e. 8 for

spheres, 12 for general quadrics|[37],|[38]. Segmentation is one
o _ way to overcome such difbculties [36], [39]. Besl and Jain sug-
2.2 Primitive detection gested a variable order segmentation-based surface btting. They,

Finding primitives in point clouds has kept the vision researche_t&o' use an iterative procedure where the primitive order is raised

busy for a lengthy period of time. Works belonging to thidcrementally [[40]. This is not very different from performing
category treat the primitive shapes independefitly [10], giving riér(;)ollv_ldual primitive detectlo_n. Va_lskevmlus et.al. |.41]_ developed
to specibc btting algorithms for planes, spheres, cones, cylindér&0ise-model aware quadric btting and region-growing algorithm
etc. Planes, as the simplest forms, are the primary targets of (il Segmented noisy scenes. However, segmentation, due to its
Hough-family [21]. Yet, detection of more general set of primitive§ature, decouples the detection problem in two parts and intro-

made RANSAC the method of choice as shown by the prosper es undesired errors especially under occlusions. Other works
Globbt [22]: a relational local to global RANSAC aIgorithm.eXplOit genetic algorithms [42] but have the obvious drawback

Schnabekt al [23] and Tranet al. [24] also focused on reliable of inefbciency. QDEGSAC [43] proposed a six-point hierarchical

estimation using RANSAC. Monszpart et al. [25] proposed %ANS_A_C’ but the paper misses out an evaluation or metho_d
greedy heuristic improving upon its randomized counterparts qirescrlptlon for a quad_rlc bt_. Petitjegn [12] stressed the neces_sny
plane detection. Oesaat al. [26] proposes a tandem scheme fon out_ller aware quadric btting however only ends up suggesting
plane detection (by region-growing) and regularization to corretd-€stimators for future research.

the imperfections of the hypotheses. The latter two improve upon Finally, the remarkable performance of deep neural networks
Globbt by simultaneously extractdng the planes and the primitf\l%NN) for learning in 2D image dOfT]aln [44], [45] have recently
relations. The plane detection has recently been lifted to structuP§EN €xtended to 3D point clouds [46], [47]. While 3D-PRINN [48]
scales[[27],[28]. An interesting application of primitives is give@"d PCPNet[[49] are tailored for biting 3D shape primitives
by Qui et.al. who extract pipe runs using cylinder bttifig| [29 and _ext_ractlng differential surface_ propertles respe_c_tlvely, their
The local Hough transform of Drost and Ilic [30] showed how thapplication to our problem of detecting nine-DoF primitives in real

detection of primitives can be made more efbcient by consideriﬁﬁenes containing noise, clutter and occlusions is not immediate.

the local voting spaces. Authors give sphere, cylinder and pla-ﬁ% the best of our knowledge, this remains to be open challenge.

specibc formulations targeting point clouds. Lopezal. [31] We WOUld elee like to stress that the comm'unit.y lacks compre-
devise a robust ellipsoid btting based on iterative non-linear opie"SVe primitive detection datasets and this gives the learning

mization. Sveieet al. [32] suggest a conformal geometric algebréllgorithms a hard time to grasp all the shape variations of quadrics.

to spot planes, cylinders and spheres. AndrewsO approach [5] deals
with paraboloids and hyperboloids in CAD models. Even though PRELIMINARIES

this is slightly more generalized, paraboloids or hyperboloids afgspnition 1. A quadric in 3D Euclidean space is a hypersurface

not the only geometric shapes described by quadrics. debned by the zero set of a polynomial of degree two:
Methods in this category are quite successful in shape detection,

yet they handle the primitives separately. This prevents automatic | (X,¥,2) = Ax?+ By?+ Cz?+2Dxy +2Exz (1)
type detection, or generalized modeling of surfaces. +2Fyz+2Gx +2Hy +21z + J =0.

2 RELATED WORK

2.1 Quadrics
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. . TN — : .
Alternatively, the vector notatiom' g =0 is u§ed, where: #Pri. #Dual #Pri. #Dual VS

T

!
A B CDEFGHIJ ) PDO 9 0 Plane 1 1 0

= %2 v2 722 2%y 2xz 2 2 27 17 PD-1 7 1 2-Planes 2 2 0
v ¥z y S PD-2 5 2 Sphere 2 2 1
Using homogeneous coordinates, quadrics can be analyzed uniPD-3 4 3 Spheroid 2 2 3

formly. The pointx = (x,y,z) ! R® lies on the quadric,

if the projective algebraic equation ov&P® with dg(x) :=
T T17T = @ 1 R4l 4

_[X 1Q[x " 1] 0 hO.IdS true, Wher_e the matriQ ! R Figure 1. (&) Number of constraints for a minimal bt in Primal(P) or

is dePned by re-arranging the coefbpcients: Dual(D) spaces. PD-i refers to i combination. (b) Number of minimal

@ (b)

# & constraints and voting space size for various quadrics.
# &
ADES, ADE S
Q=% Fc | (- "Q=2BFH(. (@
GHI J EFCI 4 QUADRIC FITTING TO 3D DATA

dq(x) can be viewed as an algebraic distance function. Similar fol A NeW perspective to quadric btting

the quadric equation, the gradient at a given point can be writtgfate of the art direct solvers for quadric btting rely either solely
as” Q(x) := " Q[x' 1]". Quadrics are general implicit surfacesyn point sets/[4], or use surface normals as regularizérs [6]. Both
capable of representing cylinders, ellipsoids, cones, planes, hyRg§proaches require at least nine points, posing a strict requirement
boloids, paraboloids and potentially the shapes interpolating agy practical considerations, i.e. using nine points bounds the
two of those. All together there are 17 sub-types [50]. OQcB  possibility for RANSAC-like btting algorithms as the space of
given, this type can be determined from an eigenvalue analysisgfiential samples ibl 2 whereN, is the number of points. Here,

Q and its subspaces [51], [52]. Note that quadrics have constgp opserve that typical real life point clouds make it easy to

second order derivatives and are practically smooth. compute the surface normals (tangent space) and thus provide an
Debnition 2. A quadric whose matrix is of rank 2 consists ofdditional cue. With this orientation information, we will now
the union of two planesQ = ! 1! I + 1 ,1 T where! ; and explain a closed form Ptting requiring only four oriented points.

| , are the homogeneous 4-vectors representing the two planedhilar to gradient-one biting [6]; [53], our idea is to align the

A quadric whose matrix is of rank one consists of a single plangradient vector of the quadrit Q(x;) with the normal of the
Q=11 T. point cloudn; ! R2. However, unlike" 1 [53], we opt to use

N ) ) a linear constraint to increase the rank rather than regularizing
Depnition 3. The polar plane!  of a pointp with respect to a the solution. This is seemingly non-trivial as the vector-vector
quadricQ is! = Qp. Reciprocallyp is called the pole of plane zjignment brings a non-linear constraint either of the form:

I,

Note that ifQp = 0, then the polar plane does not exist for & %n; =0 or &
also note that for a point that lies on the quadric, the polar plane $" Qxi)$ $" Q(xi)$
is the tangent plane in that point.

ani = 1. (4

The non-linearity is caused by the normalization as it is hard to
Debnition 4. A quadric is called central if it possesses a bnitknow the magnitude and thus the homogeneous scale in advance.
genter pointc_that is the pole of the plane at inPnitdc # We solve this issue by introducing a per normal homogeneous
000 17 e.g. ellipsoids, hyperboloids. scale! ; among the unknowns and write:

DePnition 5. A dual quadricQ” # Q¥ is the locus of all planes " Ne v yTo= 1.1 5
{1 i} satisfying! TQ*11 ; =0. Qki)="vig=tin ®)

Quadric dual space is formed by the Legendre transformatidstacking this up for alN pointsx; and normalsy; leads to:

mapping points to tangent planes as covectors. Given a hypersur- # &
o . )# o & p

face, the tangent space at each point gives a family of hyperplanes, ¥ vl 0 0 4&44a o '

and thus debnes a dual hypersurface in the dual space. Every dual 3 vy 0 0 4aa o - B '

point represents a plane in the primal. Many operations such as % v . . . ] . o

btting can be performed in either of the spades [3]; or in the % f : : : : eI

primal space using constraints of the dual. The latter forms@d sy vy 0 0 &aaa 0%+ _, ®)
approach, involving tangency constraints. Note that, knowing a S "vi %n; 03 4daéa 03 P

point lies on the surface gives one constraint, and if, in addition, +3R" v; 03 %n, aaa 0s. g, 1:

one knows the tangent plane at that point, then one gets two more Ni 7 : : . : ( ' _2'
constraints. In this paper, we will use the extra dual constraints to s T 0 0 s e( 7% (

increase the rank of a linear system that solves for the quadric Vi 3 3 aaa ® h
coefpcients. This will in return allow us to perform pts with

reduced number of points and thereby to lower the minimumwhere"” v = " v(x;)T, Oz is a3 & 1 column vector of
number of required points. In Fif. I[a), we provide combinatioreeros,A®is 4N & (N + 10) and! = {!;} are the unknown

of primal and dual constraints each of which leads to a minimabmogeneous scales. The solution containing quadric coefbcients
case. Note that, if we have four points, and associated tangantl individual scale factors lies in the null-space Af, and
planes, a bt can be formulated. can be obtained accurately via Singular Value Decomposition.
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Figure 2. lllustration of the geometric intuition. (left) Visualizations on a sample quadric: the selected basis (three-oriented points); the data-plane;
the conic of intersection between data-plane and the quadric; the lines on the data-plane that are tangent to the quadric. (right) Exemplary drawing
that shows that the tangent planes to the basis points meet at the pole (see text).

Algorithm 1 Quadric btting, full version. Theorem 1. Three-oriented point quadric btting, as formulated,
Require: Unit normalized point seftx, y, z}, Corresponding surface possesses a trivial solution besides the true solution, namely the
normals{nx, ny, Nz}, A weight coefcient , plane spanned by the three data points. The btting problem thus
Er}zlé;g.rs(lpuadncq =[A/B,C, 2D, 2E, 2F, 2G,2H, 2,J ', Scale ;g gt least a one-dimensional linear family of solutions, spanned
n = nume(x) by the true quadric and this trivial solution.
(1) z ggreo$$nr1, 11)) Proof. In the following, let us caldata-plane, the plane spanned
Omsn = Zer(’)$n,'n); by the thr_ee data points (coordinates onI_y, _i.e. not considering
X =[x2%,y%, 2%, x'y,x! z,y! 2,X,¥,Z,1,0nn I; the associated normals). We illustrate this in Hip. 2 (left). As
N = [diagnx); diag(ny); diag(n,)]; mentioned ina[4.] above, any rank-1 quadric consists of a single
dX =[2x,0,0,y,2,0,1,0,0,0;... plane! andcanbewritena® = !! T . Hence, for any point
8' Syzoé)( 0.2, 8 (1) (1) 8 U on the plane and thus on the quadric, we h@k = 0. In our
A =[X ) ,é[czzl’x X,\Bl/]] ' 1,05; formulation of the btting problem, this amountsitg = O .
[#.#,V]= svdA), N refers to all the gradient-normal correspondence equations,
q=V(1:10,n +10); stacked together (lower part of Eq. 6). We also hisiep = 0. due
I =V(@A1:(n+10),n +10); to the point lying on the quadric. This means that the following

vector is a solution of the equation system: coefpciénte J are
those of the rank-1 quadric and the three scalarare zero. In

Alg. [I] provides a MATLAB implementation of such bt. For sother words, the trivial solution is identiPed as the rank-1 quadric
non-degenerate quadric, the following rank (rk) relations hold: consisting of the data-plane. Hence, the estimation problem admits
at least a one-dimensional linear family of solutions, spanned by

N=1" rk(A)=4,N=2" rk(A)=7 (7) the true quadric and the rank-1 quadric of the data-plane. In some
N=3"' rk(A)=9,andN > 3' rk(A)=10 (8) Ccases, the dimension of the family of solutions may be higher
’ ' (such as when the true quadric is a plane). O

We will now further investigate on this interesting behavior.
4.2.1 A geometric explanation of the fact that the three-
oriented-point problem is always under-constrained

Despite the analytical proof, it is puzzling that nine constraints
The problem of estimating a quadric from three points and assm nine unknowns are never sufpcient in our problem. Moreover,
ciated normals seems initially to be well-posed: when countivge may wonder if the existence of a trivial solution is due to our
constraints and degrees of freedom, one obtains nine on eéiwbar problem formulation or if it is generic. It turns out that this
side (each point gives one constraint, each normal two, wheréageneric and can be explained geometrically. To make it easier
a quadric has nine degrees of freedom). Yet, it turns out that darimagine, our description will closely follow the Figurgs 2(a)
linear equation system always has a trivial solution besides thed[2(b). Let us decompose the estimation of the quadric in
true one. This is summarized in Hd. 8 by providing the ranks fowo parts, the brst part being the determination of the quadricOs
different cardinalities of bases. We now give further intuition anihtersection with the data-plane. The intersection of any quadric
proof for this behavior: with any plane is in general always a conic (shown as black

4.2 Existence of a trivial solution for three-point case
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curve), be it real or imaginary (the only exception is when th@lgorithm 2 MATLAB 10-liner for approx. quadric btting.
quadric itself contains the data-plane entirely, in which case tRequire: Unit normalized point setx, y, z}, Corresponding surface
OintersectionO is the entire plane). normals{ny, ny,nz}, A weight coefbcient ,

Let us examine which constraints we have at our disposal fgSure: Quadricq =[A,B,C, 2D, 2E, 2F, 2G, 2H, 21,J ]

. . . . . - . 1 = onegnume(x), 1);
estimate the intersection conic. First, the three data points lie or}, _ zerognume(x), 1);
the conic. Second, we know the tangent planes at the data pointS¢ = [x2 y2 722 x Iy x ! z,y ! z,x,y,z, 1];
to the true quadric. Let us intersect the three tangent planes witlyx =[2x,0,0,y,z,0,1,0,0,0; ...
the data plane b the resulting three lines (shown in purple) must 0,2y,0,x,0,z
be tangent to our conic (the only exception occurs when one or 0,0,22,0,x,y,
more of these tangent planes are identical to the data plane). ~ A =[X;! adX];

Hence, we know three points on the conic and three tangen :—[[Oljxl,g'y\l,]rjz],
lines B the problem of estimating the conic is thus in generalq - A}B; '
overdetermined by one DoF. In other words, six of the nine
constraints at our disposal for estimating the quadric are dedicated
to estimating the bve degrees of freedom of its intersection with

i i = i | .
the data plane. Hence, the remaining three constraints are Wg{dlents, and thus, can writg = 1 or equwalently. (o
sufbcient to complete the estimation of the quadric. one common factor. Thisoft constraint will try to force zero

What are these three remaining constraints? They refer to %%t 0 f th? po_Iync_>m|aI respect the _Iocal continuity of the data.
. . . imilar direction is also taken by [54], for the case of spheres.
orientation of the tangent planes: each of the tangent planeﬁ_"s . -
- - . However, there, authors follow a two-step btting process, solving

debned by an angle expressing the rotation about its |ntersectl|30n . o .
rst the gradient and then the positional constraint, whereas we

line with the data plane. This angle gives one piece of informati(¥(r)1rmulate a single svstem solving for all the shape parameters
on the quadric; for three oriented points we thus have our three ge sy 9 pe p

o . simultaneously. Such regularization also saves us from solving the
remaining constraints.

Note that the three tangent planes to the quadric intersethr!]erlgsrllglgfehgoﬁ;?g:(:r;efglrJr;SyS_teLn. [20], and lets us re-write the system
the quadricOs pole to the data plane (sed Fid. 2(b)). Hence, we can P q '

determine this pole which, as shown in appendix, lies on the line _ _ !0 0 nl nl nl n2 n2 n2 T
joining the centers of the possible solutions for the quadric. n= X Ty T X Ty Tz

Let us also note that the fact that six pieces of information ! "
(three data points and three tangent lines to a conicinthedata q= A B C D E F G H 1| J
plane) only constrain bve degrees of freedom means that these six
pieces of information are not independent from one another:inthe 4 . &
absence of noise or other errors, they must satisfy a consistency X% y% Z% 2X1y1 2X1Zy 2y1Zy 2X1 2y1 273 1'
constraint (the fact that they debne a conic). In the presence X3 Y2 Z3 2Xo¥2 oZp 2Y2Zr 2Xp 2Yp 22 L.
of noise, the input information will not satisfy this constraint, : '
meaning that a perfect bt will not exist. This is different in most so- 2 0 0 2 221 0 2 0 00
called minimal estimation problems in geometric computer vision 0 2 0 2 0 2227 0 2 00
(such as three-point pose estimation - P3P), where the computed = 0 024 O % 21 0 0 20
solution is perfectly consistent with the input data. In our case, we 2 0 0 2 2z 0 2 0 0 0
can expect that the computed quadric will not satisfy all constraints 0 2 0 2 0 22, 0 2 0 O
exactly, i.e. will not necessarily be incident with all data points or %0 0 2, 0 % 2, 0 0 2 O(

be exactly tangent to the given tangent planes.

This gives room to different formulations for the problem, :
depending on how one quantibes the quality of bt. For instance, 9)
one possibility would be to impose that the quadric goes exactly
through the data points, but that the tangency is only approfl only 4N & 10, is similar to theA *in af4.1 and gets full rank
mately fulblled by computing the intersection conic in the dafi@r four or more oriented points. In fact, it is not hard to show

plane and minimizing some cost functions over the tangent line§1at the equations in rows are linearly dependent, which is why
we get diminishing returns when we add further constraints. Note

. . . that by removing the scale factors from the solution, we also solve
4.3 Regularizing with gradient norm the sign ambiguity problem, i.e. the solution to [E§. 6 can result
Quadric btting problem, like many others (e.g. calibration, projet® negated gradient vectors. To balance the contribution of normal
tive reconstruction) is intrinsically of non-linear nature, meaningduced constraints we introduce a scalar weighteading to the
that a OtrueO Maximum Likelihood Estimation or Maximum fen-liner MATLAB implementation as provided in Alp] 2.
Posteriori solution, minimizing a geometric distance, cannot be In certain cases, to obtain a type-specibc bt, a minor redesign
achieved by a linear bt. However, our main objective in this stagé A tailored to the desired primitive sufpces (s¢6.3.4). If
is a sufbciently close and computationally efbcient bt, using astliers corrupt the point set, a four-point RANSAC could be used.
few points as possible and upon which we can build our votirtgowever, below, we present a more efbcient way to calculate a
scheme. Despite its sparsity, for such purpose, formulatioffid  solution to Eq[P rather than using a naive RANSAC on four-tuples
still remains suboptimal since the unknowns in[Hg. 6 scale linealy analyzing its solution space. The next section can also be used
with N, leaving a large system to solve. In practice, analogous & a generic method to solve any btting problem formulated as a
gradient-one btting [53], we could prefer unit-norm polynomidinear system, more efpciently.
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5 QUADRIC DETECTION IN POINT CLOUDS Proof. Let g be a quadric solution for the point sgtq, ..., Xm)

nd let(Ag, ng) represent thelk quadric constraints for thk
oints X = (Xm+1,---,Xm+k) in form of @) with the same
parameterg]. As X; ! X by debnition lies on the same quadric
Debnition 6. A basisb is a subset composed of a bxed numbey, it also satisPes\ = ny. Inserting Eq[ 1D into this, we get:
of scene pointsl) and hypothesized to lie on the sought surface. Aw(p+ Na")= ny (12)

Our algorithm operates by iteratively selecting bases from an (AN )" = ng %Ap (13)
input scene. Once a basis is bxed, an under-determined quadric
bt parameterizes the solution and attached to this basis, a localSolving Eq[1B for" requires a multiplication of &k & 10
accumulator space is formed. All other points in the scene dratrix with a10& m one and ultimately solving a system 4
then paired with this basis to vote for the potential primitiveequations irm unknowns. Oncé& o andp are precomputed, it is
To discover the optimal basis, we perform RANSAC, iterativeljnuch more efbcient to evaluate Eq] 11 kox m rather than re-
hypothesizing different basis candidates and voting locally féelving the systenj {9). This resembles updating the solution online
probable shapes. Subsequent to such joint RANSAC and votifigf;, a stream of points. For our case, the amount of streamed points
we verify resulting hypotheses with efbcient two-stage clusteriigll depend on the size of the basis, as explained below.
and score functions such that multiple quadrics can be detected
without repeated executions of the algorithm. We will now de5.2 Local voting for quadric detection

scribe, in detail, the voting and the bases selection, respectiveI)Given a bxed basis composed lafpoints (b > 0) as in Fig.
[3, a parametric solution can be described. The actual solution

5.1 Parameterizing the solution space can then be found quickly by using Prdg. 1 by incorporating

. . . lierf | ; new points lying on the same quadric as the basis. Thus, the
Linear system in ECD,6 describes an °‘,’“er‘ ree closed orm lf)rroblem of quadric detection is de-coupled into 1) bnding a
To treat the clutter in the scene, a direct RANSAC on nin

) vial  h k‘?{roper basis and 2) searching for compatible scene points. In this
DoF quadric appears to be trivial. Yet, it has two drawbac Section, we assume the basis is correctly found and explain the

1) evaluating the error function many times is challenging, a3,,ch by voting. For a Pxed badis on a quadric, we form
it involves a scene-to-quadric overlap calculation in a geometrlj,rqe null-space decomposition of the under-determined system
meaningful way. 2) even with the proposed bptting, selectir]giq = n;. We then sample further points from the scene and
random four-tuples from the scene might be slow in practice. compute the required coefbciertts Thanks to Progf]1, this can

~ An alternative to RANSAC is Hough voting. However,has he gone efbciently. Sample points lying on the same quadric
nine DoFs and is not discretization friendly. The complexity angy ihe pasis (inliers) generate the samevhereas outliers will
size of this parameter space makes it hard to construt_:t a Vo"mduce different values. Therefore we propose to construct a
space. Instead, we will now devise a local search. For thig, bt | ing space off attached to basis; and cast votes to maximize
a solution to the linear system {nl (9) apde a particular solution. ¢ consensus, only up to the locality of the basis.[Rig. 3 illustrates
q can be expressed by a linear combination of homogeneqyss .onpguration. The size of the voting space is a design choice

solutions; as: and depends on the size of the basis/s. the DoFs desired to be

We now factor in clutter and occlusions into our formulation ana
explain a new pipeline to detect quadrics in 3D data. P

dn recovered (see Fifj. I{b)).
g=p+ "iM (10) While many choices for the basis cardinality are possible (and
i the formulation ina(5.7 allows for all), we bnd from Fig). 1(a) that

=p+ !Lll o éélué!l" 1"y éé"g =p+Np". using a _three-point basis _is advantageous fo_r a generic quadric
bt - having three dual points, reduces the minimum number of

The dimensionalityd,, of the null spacéN o depends on the rank required primal (incidence) constraints to only four. And by the

of A, which is directly inRuenced by the number of points usedank analysis given in Ef] 8, we see that it is possible to trade one

dn, =10 %rk (A). The exact solution could always be computeg@oint off to 1D local search as opposed to two-point vs 3D search

by including more points from the scene and validating them, i.tar the Pve-point case.

by a local search. For that reason, the btting can be split into

distinct parts: pPrst a parametric solution is computed, such as5if3  Efpcient computation of voting parameters for a 1D

Eq., using a subset of poirtts= {X1,...,Xm} which lie on a voting space

guadric. We refer to §ubsd=.t as thebas!s Next, the coe;fbments Adding a fourth sample point,

", and thus the solution, can be obtained by searching for ot

point(S)(Xm+1 , ---» Xm+ k) Which lie on the same surface bs

completesrk (A) = 10 and
rhe'imique solution can be computed, as described above. Yet, as
we will select multiplex, candidates per basis, hypothesized in a
Proposition 1. If two point setsb = (Xq,...,Xm) andX = RANSAC loop, an efbcient scheme is required, i.e. once again, it
(Xm+1 s oes Xm+ k) lie on,the same quadric with parameters is undesirable to re-solve the system in Eg. 9 for each incoming
then the coefbcients = "; ", &&4 of the solution space X4 tied to the basis. It turns out that the solution can be obtained
(I0) are given by the solution of the system: directly from Eq[10:

Proposition 2. If the null-space is one dimensional (with only 1
unknown) it holds' N = " 11 and the computation in Pro@ 1
whereA , ny are the linear constraints of the latter b&in form reduces to the explicit form:

of (9, p is a particular solution andll 5 is a stacked null-space } AiNa

basis as in[(10), obtained from 17 SANAH a(n1 %A 1p) (14)

(AkNA)" = nx %Ap (11)
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Algorithm 3 Combined RANSAC & Local Voting.

Require: Unit normalized point seP, Corresponding surface nor-
malsN, A weight coefbcient , Minimum vote threshol@min
Ensure: QuadricsQ = {q;}
(S5,N) $ Sample scenéP,N).
while !satisbeddo " seek the best global candidates
bi $ Pick a random 3 point-basis fro(s, N ).
(A,n) $ Form system in eq. (4) usirgy
(p,n) $ Perform null space decomposition - eq.7.
V $ Initial voting space of lengt# bins

I ${}
for all p; in P do " local voting
Compute#; by includingp; using eq. 11.
Figure 3. Once a basis is randomly hypothesized, we look for the points if 1" % ani <$ then " goodness of bt
on the same surface by casting votes on the null-space. The sought Quantize%$ tan' (#;) (using atan2).
pilates ball (likely quadric) is marked on the image and below that lies V[%++ " accumulate
the corresponding Plled accumulator by KDE [55]. L[S ! [%%#
end if
. . end for
Proof. Let us re-write Eq[ I3 in terms of the null space vectors:  of.$ argmax Vi " best candidate in quantized space
"1(A1p1) = n1 %A 1p. A solution"; can be obtained via if A [98]1#>8mn then # #
Moore-Penrose pseudoinverseas= (Ai1l1)" (N1 %A 1p). Hoest$ ! [9B1IK]/ 1 [98]# " bestlocal coefbcient
Because for one-dimensional null spacés;p; is a vector g% p+ #oesid " best local solution
(v), for which the* operator is debned as:* = v/ (v'v). Q${ Q,q}
Substituting this in Eq. 11 gives Eg.|14. O ende\?vﬂi:;

Prop.[2 enables a very quick computation of the parameterQ $ mean of the clusters i@ using distancelciose
hypothesis in the case of an additional single oriented point. AQ $ mean of the clusters iQ using distancel
MATLAB implementation takes ca30us per " . Note that for _ Q $ sori(scoreQ))
the minimal system we propose, four incidence (primal) and
three tangent plane alignment (dual) constraints are sufpcient.
This means that the normal of the fourth sample point does rigentiped unambiguously. Nevertheless, thanks to the local voting,
contribute to the set of constraints fomainimal bt. Hence, we the case that one distribution is noisy misty will be handled
use this piece of information for the veribcation of the bt. wwhen other random bases are selected. It is more likely that the
only accept to vote a candidate quadric if the gradient of the pttegaks coming from different bases are concentrated around the

surface agrees with the surface normal of the fourth point: same mode, rather than a single peak of one accumulator. Besides,
. we have empirically observed that in many real cases, even when
Q(x4) an(x the distribution is amodal, a single peak is prominent when the
—_ 4) > #p. (15) ) gle p p
$" Q(x4)$ sampled fourth is in a reasonable vicinity of the basis.

We typically set#, ) 0.85in order to tolerate certain noise.
5.5 Hypotheses aggregation

5.4 Quantizing " for voting Up until now, we have described how to bnd plausible quadrics
Unfortunately,” is not quantization-friendly, as it is unboundedyiven local triplet bases. As mentioned, to discover the basis lying
and has a non-linear effect on the quadric shape [Fi@. 5.2). Thos, the surface, we employ RANSAC [56], where each triplet
we seek to bnd a geometrically meaningful transformation tongight generate a hypothesis to be veribed. Many of those will
bounded and well behaving space so that quantization would lgasl similar as well as dissimilar. Thus, the Pnal stage of the
to little bias and artifacts. From a geometric perspective, eaglyorithm aggregates the potential detections to reduce the number
column of N 5 in Eq.[10 is multiplied by the same coefPcienbf candidate surfaces and to increase the per quadric conbdence.
", corresponding to the slope of a high dimensional line in theot to sacribce further speed, we run an agglomerative clustering
solution space. Thus, it could as well be viewed as a rotation. Fgmilar to [1] in a coarse to Pne manner: First a beleg but fast

1D null-space, we set: distance measure helps to cluster the obvious hypotheses. Second,
: %y, ! a coarsefér) one is executed on these cluster centers.
$ = atan2 y2070y1 (16)
X2 %0X1 Debpnition 7. Our distance computation is two-fold: Whenever
where [x1,y1,44R = p and [Xp,y>44R is obtained by two quadrics are close, we %quximate_ their distances as in
moving in the directiorN o from the particular solutiop by an EQ- Ociose ), wherel ! R* “ is the identity matrix and

offset” [ This new angl&is bounded and thus easy to vote for. As - R * { 0,1} the indicator function. We use the pseudoinverse
the null-space dimension grows starts to represent hyperplanesjust to handle singular conbgurations. If the shapes are far, such

still preserving the geometric meaning, i.e. fbr> 1, different manifold-distance becomes erroneous and we use a globally con-
# = {$} can be found. sistent metric. To do so, we dePne a more geometric-meaningful

Even thoug!$ behaves better thanfor voting, we still can not distance using the points on the scene itself():
guarantee a unimodal distribution such that a single peak can b%close(Qly Q2):= (891 %% < #) AR1Q% %I%

1. Simpletan' *(!') could work but would be more limited in the range. Oiar (Q1,Q2) = a7
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\4

Figure 4. Effect of ! on the surface geometry. We compute null-space decomposition for a Pxed basis and vary! from -75 to 75 to generate different
solutions g along the line in the solution space. The plot presents the transition of the surface controlled by ! .

1-K . / . /
1%? IxTQuxi|<# & [|x/Quxi|<# 4&
i=1
(1%n; a"Qu(xi) <#n)a (1%n; a"Qa(xi) <#n).

degenerate conbgurations, we skip the basis if it does not result
in a rank-9 matrixA . In addition, to reducing the bias towards
repeating bases, we hash the seen triplets and avoid duplicates.

{xi} denote thek scene samples. 6.2 Synthetic tests of btting and ablation studies
Note that, algebraic but efpciedyiose lacks geometric mean- 1, 455es the accuracy of the proposed btting, we generate a

ing, while slowerdra, can, to a certain extent, explain the geomsy nhetic test set of multitudes of random quadrics and compare

etry. Finally, the quadrics are sorted w.r.t. their scores, evalualgg method with the btting procedures of Taubin [4], Tasdizén [6],
pseudo-geometrically by point and normal-gradient compatibility,yrews [5], and Beald [33]. We propose two variai@strs full

according to Def 8: will refer to Alg. 1, wherea®urs is the regularized one (Alg. 2).
Debpnition 8. The score of a quadric is debned to be:
K / 6.2.1 Quantitative assessments
Sox = — IXTQxi|<# (1%n; &"Q(x;) <#,) Prior to run, we add Gaussian noise to the ground-truth vertices
Ko with % = [0% % 5%] relative to the sizes of the quadric. At

While other distance metrics, such as spectral decompositidich noise level, ten random quadrics are tested. We perform

are possible, we found these to be sufbcient in our experiment8t single but twenty bts per set. For the constrained btting
The Pnal algorithm is summarized in Alg. 3. method|[5] we pre-specibed the type, which might not be possible

in a real application. We then record and report the average point-
to-mesh distance and the angle deviation as well as the runtime
] _ performances in Fid.]5. Although, our bt is designed to use a
6.1 Implementation details minimal number of points, it also proves robust when more points
Prior to operation, we normalize the point coordinates to lie in@e added and is among the top btters for the distance and angle
unit ball to increase the numerical stability [57]. Next, we downerrors. In addition, Fig.]5c shows that the errors on the gradient
sample the scene using a spatial voxel-grid enforcing a minimumagnitudes obtained by our quadrics. We achieve the least errors,
distance ofty, adiam(X) between the samplegs(= 0.03) [58]. showing that gradient norms align well with the ground truth,
The required surface normals are computed by the local plaflagoring the validity of our approximation/regularization. Next,
btting [59]. As planes are singular quadrics and occupy larg@oking at the noise assessments, we see that our full method
spaces of 3D scenes, we remove them. To do so, we convert paerforms the best on low noise levels but quickly destabilizes.
algorithm to a type specibc plane detector, which happens to b&lds is because the system might be biased to compute correct
similar algorithm to[[3D]. Next, inBuenced by the smoothness obrms rather than the solution and it has increased parameters.
quadrics, we use Difference of Normals (DoN)[[60] to prune thé/e believe the reason for our compact bt to work well is the
points not located on smooth regions. What follows is an iteratig®ft constraint where the common scale factor acts as a weighted
selection of triplets to conduct the three-point RANSAC: We brsegularizer towards special quadrics. When this constraint cannot
randomly draw the initial point of the baskg. Oncex; is bxed, be satisPed, the solution settles for a very acceptable shape.

we query the points in a large enough vicinity, whose normals In a further test, we include the six neighboring points of each
differ enough to form the three-point bafisThe rest of the points of seven query points to perform a standard Taubin-bt. We call
are then randomly selected respecting these criteria. To avtiés Taubin-42 Fig.[8a shows that while the error of our method is

6 EXPERIMENTAL EVALUATION AND DISCUSSIONS
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Figure 5. Synthetic evaluations. The plot depicts mean geometric errors on points (a) and mean angular errors (b) for different quadric btting
methods. The per point error is measured as the average point-to-mesh distance from every ground truth vertex to the btted quadric. The angular
error (dashed) is computed as the negated dot product between quadric gradient and the ground truth normal. Moreover, (c) shows the average
error of the gradient norm compared to the ground truth and (d) gives speed and detection rate on synthetic data.

A magnitudes recovered by our method are compatible to the ground

rEOSE B & M B H @ W %

1" truth. Such improvement without sacribcing gradient quality vali-

N Ty - '_;_'%ffgs dates the regularizing nature of our approach.
g | | e )
Es ,f—:::-:--'--f=---w—----==-'-'-'-‘-'-"’;""/ < 6.2.3 Is atan2 a valid transformation for "
i e To assess the practical validity of the quantization, we collect a
oo E set of 2.5 million oriented point triplets from several scenes and
AR AR A RN e el yse them as bases to form the underdetermined sySteme

Relative Noise Level BOOH O He b HS M K K e AL

then sample the fourth point from those scenes, compuied

establish the probability distributige(" ) for the whole collection
Figure 6. a (left). Effect of extended point neighborhood to the btting.  tg calculate the quantiles, mappihgo bins via the inverse CDF.
b (right). Statistical distribution of the solution-space coefbcient and our . . o
quantization function: PDF (red curve) and inverse CDF (dashed blue- A similar prqcedure has be(_:"n applied to CI’F)SS _rat'(_)" in [61]. We
curve) of | over collected data, and tan' ! function (green-line). Note ~ plot the Pndings together with tfetan2 function in Fig[§b and
that our quantization function is capable of explaining the empirical data. ~ show that the empirical distribution aratan2 follow similar

trends, justifying that our quantizer is well suited to the data.

on par withTaubin-42 we are more robust at higher noise valueg » 4 Effect of weighting on the bt

and more efbcient with a runtime advantage of22f4 . . R
. . . . We now investigate the effect of weighting parameteion the
Since for for a visually appealing bt, the normal alignment i : - . . .
. o . t. For a selection of eight noisy points, located on three different
crucial, we next present a qualitative evaluation. . . R .
synthetic quadrics, we vany and plot, in Fig[ Ba, the geometric
errors attained by Alg. 2, against the ground truth and Taubin pt.

6.2.2 Qua!ltatwe assessments ) While too low ofw hurts our bt, there is a large range of values
We synthesized a random saddle quadric and performed a randgm [0.08, 1.0], where we can outperforr|[4].

point sampling over its surface. Next, we added Gaussian noise
on the sample points and computed the normals. To resolve #12.5 How do voting spaces look like?

sign ambiguity, each normal is Bipped in the_dire_ction of groung, provide insights on the local voting spaces of the angles
truth gradient. We plot the results of the btting in Fig. 7. Evelye ‘sample different random bases on four synthetic quadrics
in presence of little noise only some methods fail to estimate the empedded in Fig] 8b, and collect the votes along with the
correct geometry, mostly due to the bias towards certain shape Rlantized bins. These accumulators are shown in the same Pgure,
[33]. Our approach is able to recover the correct surface evendg.y, yith a different color. It is observed that, the voting spaces are
presence of a severe noise. Also the effect of our regglanzahowst_free and a only single mode emerges, thanks to the maximum
visible on the last column, which possesses the best visual qualifittance threshold selected between the basis and the paired point.
It is still possible to obtain multiple modes if the threshold is

Itis of interest to see whether our regularized Pt can estimafgrejistically picked. The consensus votes correspond to the true
correct surface normals as well as direction. Thus, a second Eqsr‘épe and erroneous votes spread randomly.

was performed to qualitatively observe the gradient properties in
more detail. For this, a series of randomly generated quadrics._i . . .
btted by Taubin®s and our method and the gradients are anal)§z d Real experiments on quadric detection

both in terms of magnitude and phase, as shown in[Fig. 9. DBesides synthetic tests where self evaluation was possible, we
to our explicit treatment of the gradients, it can be clearly se@gsess the quality of generic primitive detection, on 3 real datasets:
that the gradient direction is recovered better. Moreover, the right) Our Dataset First, because there are no broadly accepted
side of Fig[9 also shows that our approximate approach yields the datasets on quadric detection, we opt to collect our own.
expected results, while the full method could sometimes generate To do so, we use an accurate phase-shift stereo structured
inconsistent gradient signs, as the scale factors are estimated light scanner and capture 35 3D scenes of 5 different objects
individually. Finally, it is qualitatively visible in Fig[]9 that the within clutter and occlusions. Our objects are three bending
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