
�>���G �A�/�, �?���H�@�y�k�j�e�3�N�j�k

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�k�j�e�3�N�j�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�3 �L�Q�p �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�:�2�M�2�`�B�+ �S�`�B�K�B�i�B�p�2 �.�2�i�2�+�i�B�Q�M �B�M �S�Q�B�M�i �*�H�Q�m�/�b �l�b�B�M�;
�L�Q�p�2�H �J�B�M�B�K���H �Z�m���/�`�B�+ �6�B�i�b

�h�Q�H�;�� �"�B�`�/���H�- �"�2�M�D���K�B�M �"�m�b���K�- �L���p���# �L���b�b�B�`�- �a�H�Q�#�Q�/���M �A�H�B�+�- �S�2�i�2�` �a�i�m�`�K

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�h�Q�H�;�� �"�B�`�/���H�- �"�2�M�D���K�B�M �"�m�b���K�- �L���p���# �L���b�b�B�`�- �a�H�Q�#�Q�/���M �A�H�B�+�- �S�2�i�2�` �a�i�m�`�K�X �:�2�M�2�`�B�+ �S�`�B�K�B�i�B�p�2 �.�2�@
�i�2�+�i�B�Q�M �B�M �S�Q�B�M�i �*�H�Q�m�/�b �l�b�B�M�; �L�Q�p�2�H �J�B�M�B�K���H �Z�m���/�`�B�+ �6�B�i�b�X �A�1�1�1 �h�`���M�b���+�i�B�Q�M�b �Q�M �S���i�i�2�`�M ���M���H�@
�v�b�B�b ���M�/ �J���+�?�B�M�2 �A�M�i�2�H�H�B�;�2�M�+�2�- �A�M�b�i�B�i�m�i�2 �Q�7 �1�H�2�+�i�`�B�+���H ���M�/ �1�H�2�+�i�`�Q�M�B�+�b �1�M�;�B�M�2�2�`�b�- �A�M �T�`�2�b�b�- �T�T�X�R�@�R�9�X
���R�y�X�R�R�y�N�f�h�S���J�A�X�k�y�R�N�X�k�N�y�y�j�y�N���X ���?���H�@�y�k�j�e�3�N�j�k��



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2018 1

Generic Primitive Detection in Point Clouds
Using Novel Minimal Quadric Fits

Tolga Birdal , Benjamin Busam , Nassir Navab , Slobodan Ilic , Peter Sturm, Members, IEEE

Abstract ÑWe present a novel and effective method for detecting 3D primitives in cluttered, unorganized point clouds, without axillary
segmentation or type speciÞcation. We consider the quadric surfaces for encapsulating the basic building blocks of our environments -
planes, spheres, ellipsoids, cones or cylinders, in a uniÞed fashion. Moreover, quadrics allow us to model higher degree of freedom
shapes, such as hyperboloids or paraboloids that could be used in non-rigid settings.
We begin by contributing two novel quadric Þts targeting 3D point sets that are endowed with tangent space information. Based upon
the idea of aligning the quadric gradients with the surface normals, our Þrst formulation is exact and requires as low as four oriented
points. The second Þt approximates the Þrst, and reduces the computational effort. We theoretically analyze these Þts with rigor, and
give algebraic and geometric arguments. Next, by re-parameterizing the solution, we devise a new local Hough voting scheme on the
null-space coefÞcients that is combined with RANSAC, reducing the complexity fromO(N 4) to O(N 3) (three points). To the best of our
knowledge, this is the Þrst method capable of performing a generic cross-type multi-object primitive detection in difÞcult scenes without
segmentation. Our extensive qualitative and quantitative results show that our method is efÞcient and ßexible, as well as being accurate.

Index Terms ÑQuadrics, Surface Fitting, Implicit Surfaces, Point Clouds, 3D Surface Detection, Primitive Fitting, Minimal Problems

!

1 INTRODUCTION

SUrface Þtting and detection enjoys a rich history in computer
vision and graphics communities. The problem is found par-

ticularly important because of the power of 3D surfaces to explain
generic man-made structures omnipresent in every day life. Many
of the constructed or manufactured objects and architecture that
surrounds us are results of careful computer aided design (CAD).
Some of the primary concerns of 3D computer vision, mapping
and reconstruction, try to associate the visual cues acquired by
various 2D / 3D sensors with those idealized CAD models, that
are used in the assembly of our environments.

One family of approaches tries to Þnd a direct rigid association
between those CAD models and 3D scenes [1], trying to solve
the six degree of freedom (DoF) pose estimation problem. While
these approaches are quite successful as the only parameters to
discover are rotations and translations, they require a huge number
of CAD models to generically represent the real scenarios. To
overcome this limitation, inspired by the fact that all CAD models
are designed using a similar set of tools, a different line of research
attempts to Þnd common bases explaining a broad set of 3D ob-
jects, and tries to detect these bases instead of individual models.
Such bases that are the common building blocks of our world,
and typically termedgeometric primitives. While the approaches
using bases, signiÞcantly reduce the database size, usually, the
bases undergo higher dimensional transformations compared to,
for instance, rigid ones. Examples of the geometric primitives are
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splines and nurbs surfaces deÞned by several control points, or
quadrics, the three dimensional, nine-DoF, quadratic forms.

Thanks to their power to embody the most typical geometric
primitives, such as planes, spheres, cylinders, cones or ellipsoids,
quadrics themselves were of huge interest since 80s [2]. Some
exemplary studies involve recovering 3D quadrics from image
projections [3], Þtting them to 3D point sets [4], or detecting
special cases of the quadratic forms [5]. A majority of those
works either put emphasis on Þtting to a noisy, but isolated point
set [4], [6], [7], or restrict the types of shapes under consideration
(thereby reduce the DoF) to devise detectors robust to clutter and
occlusions [8], [9], [10].

In this work, our aim is to unite the Þtting and detection
worlds and present an algorithm that can simultaneously estimate
all parameters of a generic nine DoF quadric, which resides in a
3D cluttered environment and is viewed potentially from a single
3D sensor, introducing occlusions and partial visibility. We craft
this algorithm in three stages: (1) First, we devise a new quadric
Þt. Unlike its ancestors, this one uses the extra information about
the tangent space to increase the number of constraints instead
of regularizing the solution. This Þt requires only four oriented
points. We show that such construction also has a regularization
effect as a by-product. (2) We then thoroughly analyze its rank
properties and devise a novel null-space Hough voting mechanism
to reduce the four point case to three. Three points stands out to
be the minimalist case developed so far. (3) We propose a variant
of RANSAC that operates on our local bases, which are randomly
posited. Per each local basis, we show how to make use of the
Þt and the voting to hypothesize a likely quadric. Finally, we use
simple clustering heuristics to group and strengthen the candidate
solutions. Our algorithm works purely on 3D point cloud data
and does not depend upon any acquisition modality. Moreover, it
makes assumptions neither about the type of the quadric that is
present in the scene nor how many are visible.

This journal paper extends our recent CVPR publication [11],
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by providing additionally the following:

1) qualitative and quantitative experiments to better grasp the
behavior of the proposed Þt,

2) algebraic and geometric theoretical analysis of the quadric Þt
3) improved elaborate descriptions of the method as well as

accompanying pseudocode.

2 RELATED WORK

2.1 Quadrics

Quadrics appear in various domains of vision, graphics and
robotics. They are found to be one of the best local surface
approximators in estimating differential properties [12]. Thus,
point cloud normals and curvatures are oftentimes estimated with
local quadrics [1], [13]. Yanet al.propose an iterative method
for mesh segmentation by Þtting local quadratic surfaces [14].
Yu presented a quadric-region based method for consistent point
cloud segmentation [15]. Kukelova uses quadric intersections to
solve minimal problems in computer vision [16]. Utoet al. [17] as
well as Pas and Platt [18] use quadrics to localize grasp poses and
in grasp planning. Quadrics have also been a signiÞcant center of
attention in projective geometry and reconstruction [3], [19] to
estimate algebraic properties of apparent contours. Finally, You
and Zhang [20] used them in feature extraction from face data.

2.2 Primitive detection

Finding primitives in point clouds has kept the vision researchers
busy for a lengthy period of time. Works belonging to this
category treat the primitive shapes independently [10], giving rise
to speciÞc Þtting algorithms for planes, spheres, cones, cylinders,
etc. Planes, as the simplest forms, are the primary targets of the
Hough-family [21]. Yet, detection of more general set of primitives
made RANSAC the method of choice as shown by the prosperous
GlobÞt [22]: a relational local to global RANSAC algorithm.
Schnabelet al. [23] and Tranet al. [24] also focused on reliable
estimation using RANSAC. Monszpart et al. [25] proposed a
greedy heuristic improving upon its randomized counterparts in
plane detection. Oesauet al. [26] proposes a tandem scheme for
plane detection (by region-growing) and regularization to correct
the imperfections of the hypotheses. The latter two improve upon
GlobÞt by simultaneously extractõng the planes and the primitive
relations. The plane detection has recently been lifted to structural
scales [27], [28]. An interesting application of primitives is given
by Qui et.al. who extract pipe runs using cylinder Þtting [29].
The local Hough transform of Drost and Ilic [30] showed how the
detection of primitives can be made more efÞcient by considering
the local voting spaces. Authors give sphere, cylinder and plane
speciÞc formulations targeting point clouds. Lopezet al. [31]
devise a robust ellipsoid Þtting based on iterative non-linear opti-
mization. Sveieret al. [32] suggest a conformal geometric algebra
to spot planes, cylinders and spheres. AndrewsÕ approach [5] deals
with paraboloids and hyperboloids in CAD models. Even though
this is slightly more generalized, paraboloids or hyperboloids are
not the only geometric shapes described by quadrics.
Methods in this category are quite successful in shape detection,
yet they handle the primitives separately. This prevents automatic
type detection, or generalized modeling of surfaces.

2.3 Quadric Þtting

Since the 1990s generic quadric Þtting is cast as a constrained
optimization problem, where the solution is obtained from a
Generalized Eigenvalue decomposition of a scatter matrix. Pio-
neering work has been done by Gabriel Taubin [4] in which a
Taylor approximation to the geometric distance is made. This
work has then been enhanced by 3L [7], Þtting a local, explicit
ribbon surface composed of three-level-sets of constant Euclidean
distance to the object boundary. This Þt implicitly used the local
surface information. Later, Tasdizen [6] improved the local surface
properties by incorporating the surface normals as regularizers.
This allows for a good and stable Þt. Recently, Bealeet al. [33]
introduced the use of a Bayesian prior to regularize the Þt.
All of these methods use at least nine or twelve [33] points.
Moreover, they only use surface normals as regularizers - not as
additional constraints and are also unable to deal with outliers
in data. There are a few other studies [8], [34], improving these
standard methods, but they involve either non-linear optimization
[35] or share the common drawback of requiring nine independent
constraints and no outlier treatment.

2.4 Quadric detection

Recovering general quadratic forms from cluttered and occluded
scenes is a rather unexplored area. A promising direction was to
represent quadrics with spline surfaces [36], but such approaches
must tackle the increased number of control points, i.e. 8 for
spheres, 12 for general quadrics [37], [38]. Segmentation is one
way to overcome such difÞculties [36], [39]. Besl and Jain sug-
gested a variable order segmentation-based surface Þtting. They,
too, use an iterative procedure where the primitive order is raised
incrementally [40]. This is not very different from performing
individual primitive detection. Vaskevicius et.al. [41] developed
a noise-model aware quadric Þtting and region-growing algorithm
for segmented noisy scenes. However, segmentation, due to its
nature, decouples the detection problem in two parts and intro-
duces undesired errors especially under occlusions. Other works
exploit genetic algorithms [42] but have the obvious drawback
of inefÞciency. QDEGSAC [43] proposed a six-point hierarchical
RANSAC, but the paper misses out an evaluation or method
description for a quadric Þt. Petitjean [12] stressed the necessity
of outlier aware quadric Þtting however only ends up suggesting
M-estimators for future research.

Finally, the remarkable performance of deep neural networks
(DNN) for learning in 2D image domain [44], [45] have recently
been extended to 3D point clouds [46], [47]. While 3D-PRNN [48]
and PCPNet [49] are tailored for Þtting 3D shape primitives
and extracting differential surface properties respectively, their
application to our problem of detecting nine-DoF primitives in real
scenes containing noise, clutter and occlusions is not immediate.
To the best of our knowledge, this remains to be open challenge.
We would also like to stress that the community lacks compre-
hensive primitive detection datasets and this gives the learning
algorithms a hard time to grasp all the shape variations of quadrics.

3 PRELIMINARIES

DeÞnition 1. A quadric in 3D Euclidean space is a hypersurface
deÞned by the zero set of a polynomial of degree two:

f (x, y, z) = Ax 2 + By2 + Cz2 + 2Dxy + 2Exz (1)

+ 2F yz + 2Gx + 2Hy + 2 Iz + J = 0 .
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Alternatively, the vector notationv T q = 0 is used, where:

q =
!
A B C D E F G H I J

"T
(2)

v =
!
x2 y2 z2 2xy 2xz 2yz 2x 2y 2z 1

"T

Using homogeneous coordinates, quadrics can be analyzed uni-
formly. The point x = ( x, y, z) ! R3 lies on the quadric,
if the projective algebraic equation overRP3 with dq(x) :=
[xT 1]Q[xT 1]T = 0 holds true, where the matrixQ ! R4! 4

is deÞned by re-arranging the coefÞcients:

Q =

#

$
$
%

A D E G
D B F H
E F C I
G H I J

&

'
'
( , " Q = 2

#

%
A D E G
D B F H
E F C I

&

( . (3)

dq(x) can be viewed as an algebraic distance function. Similar to
the quadric equation, the gradient at a given point can be written
as" Q(x) := " Q[xT 1]T . Quadrics are general implicit surfaces
capable of representing cylinders, ellipsoids, cones, planes, hyper-
boloids, paraboloids and potentially the shapes interpolating any
two of those. All together there are 17 sub-types [50]. OnceQ is
given, this type can be determined from an eigenvalue analysis of
Q and its subspaces [51], [52]. Note that quadrics have constant
second order derivatives and are practically smooth.

DeÞnition 2. A quadric whose matrix is of rank 2 consists of
the union of two planes:Q = ! 1! T

2 + ! 2! T
1 , where! 1 and

! 2 are the homogeneous 4-vectors representing the two planes.
A quadric whose matrix is of rank one consists of a single plane:
Q = ! ! T .

DeÞnition 3. The polar plane! of a pointp with respect to a
quadricQ is ! = Qp . Reciprocally,p is called the pole of plane
! .

Note that ifQp = 0, then the polar plane does not exist forp;
also note that for a point that lies on the quadric, the polar plane
is the tangent plane in that point.

DeÞnition 4. A quadric is called central if it possesses a Þnite
center pointc that is the pole of the plane at inÞnity:Qc #!
0 0 0 1

"T
e.g. ellipsoids, hyperboloids.

DeÞnition 5. A dual quadricQ" # Q# 1 is the locus of all planes
{ ! i } satisfying! T

i Q# 1! i = 0 .

Quadric dual space is formed by the Legendre transformation,
mapping points to tangent planes as covectors. Given a hypersur-
face, the tangent space at each point gives a family of hyperplanes,
and thus deÞnes a dual hypersurface in the dual space. Every dual
point represents a plane in the primal. Many operations such as
Þtting can be performed in either of the spaces [3]; or in the
primal space using constraints of the dual. The latter forms amixed
approach, involving tangency constraints. Note that, knowing a
point lies on the surface gives one constraint, and if, in addition,
one knows the tangent plane at that point, then one gets two more
constraints. In this paper, we will use the extra dual constraints to
increase the rank of a linear system that solves for the quadric
coefÞcients. This will in return allow us to perform Þts with
reduced number of points and thereby to lower the minimum
number of required points. In Fig. 1(a), we provide combinations
of primal and dual constraints each of which leads to a minimal
case. Note that, if we have four points, and associated tangent
planes, a Þt can be formulated.

# Pri. # Dual

PD-0 9 0
PD-1 7 1
PD-2 5 2
PD-3 4 3

(a)

# Pri. # Dual VS

Plane 1 1 0
2-Planes 2 2 0
Sphere 2 2 1
Spheroid 2 2 3

(b)

Figure 1. (a) Number of constraints for a minimal Þt in Primal(P) or
Dual(D) spaces. PD-i refers to ith combination. (b) Number of minimal
constraints and voting space size for various quadrics.

4 QUADRIC FITTING TO 3D DATA

4.1 A new perspective to quadric Þtting

State of the art direct solvers for quadric Þtting rely either solely
on point sets [4], or use surface normals as regularizers [6]. Both
approaches require at least nine points, posing a strict requirement
for practical considerations, i.e. using nine points bounds the
possibility for RANSAC-like Þtting algorithms as the space of
potential samples isN 9

x whereNx is the number of points. Here,
we observe that typical real life point clouds make it easy to
compute the surface normals (tangent space) and thus provide an
additional cue. With this orientation information, we will now
explain a closed form Þtting requiring only four oriented points.
Similar to gradient-one Þtting [6], [53], our idea is to align the
gradient vector of the quadric" Q(x i ) with the normal of the
point cloudni ! R3. However, unlike" 1 [53], we opt to use
a linear constraint to increase the rank rather than regularizing
the solution. This is seemingly non-trivial as the vector-vector
alignment brings a non-linear constraint either of the form:

" Q(x i )
$" Q(x i )$

%ni = 0 or
" Q(x i )

$" Q(x i )$
áni = 1 . (4)

The non-linearity is caused by the normalization as it is hard to
know the magnitude and thus the homogeneous scale in advance.
We solve this issue by introducing a per normal homogeneous
scale! i among the unknowns and write:

" Q(x i ) = " v T
i q = ! i ni (5)

Stacking this up for allN pointsx i and normalsni leads to:

A $

)
**************+

**************,

M

)
***+

***,

N

)
***+

***,

#

$
$
$
$
$
$
$
$
$
$
$
$
$
%

v T
1 0 0 á á á 0

v T
2 0 0 á á á 0
...

...
...

. . .
...

v T
n 0 0 á á á 0

" v T
1 %n1 03 á á á 03

" v T
2 03 %n2 á á á 03

...
...

...
. . .

...
" v T

n 03 03 á á á %nn

&

'
'
'
'
'
'
'
'
'
'
'
'
'
(

#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
%

A
B
...
I
J
! 1
! 2
...

! n

&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
(

= 0 (6)

where " v T
i = " v (x i )T , 03 is a 3 & 1 column vector of

zeros,A $ is 4N & (N + 10) and ! = { ! i } are the unknown
homogeneous scales. The solution containing quadric coefÞcients
and individual scale factors lies in the null-space ofA $, and
can be obtained accurately via Singular Value Decomposition.
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Figure 2. Illustration of the geometric intuition. (left) Visualizations on a sample quadric: the selected basis (three-oriented points); the data-plane;
the conic of intersection between data-plane and the quadric; the lines on the data-plane that are tangent to the quadric. (right) Exemplary drawing
that shows that the tangent planes to the basis points meet at the pole (see text).

Algorithm 1 Quadric Þtting, full version.
Require: Unit normalized point set{ x , y , z} , Corresponding surface

normals{ nx , ny , nz } , A weight coefÞcient!
Ensure: Quadricq = [ A, B, C, 2D, 2E, 2F, 2G, 2H, 2I, J ]T , Scale

factors!
n = numel(x )
1 = ones(n, 1);
0 = zeros(n, 1);
0nxn = zeros(n, n );
X = [ x 2, y 2, z2, x ! y , x ! z, y ! z, x , y , z, 1, 0nxn ];
N = [ diag(nx ); diag(ny ); diag(nz )];
dX = [2 x , 0, 0, y , z, 0, 1, 0, 0, 0; ...

0, 2y , 0, x , 0, z, 0, 1, 0, 0; ...
0, 0, 2z, 0, x , y , 0, 0, 1, 0];

A = [ X ; ! á[dX , " N ]];
[# , # , V ] = svd(A );
q = V (1 : 10, n + 10);
! = V (11 : (n + 10) , n + 10);

Alg. 1 provides a MATLAB implementation of such Þt. For a
non-degenerate quadric, the following rank (rk) relations hold:

N = 1 ' rk(A ) = 4 , N = 2 ' rk(A ) = 7 (7)

N = 3 ' rk(A ) = 9 , andN > 3 ' rk(A ) = 10 . (8)

We will now further investigate on this interesting behavior.

4.2 Existence of a trivial solution for three-point case

The problem of estimating a quadric from three points and asso-
ciated normals seems initially to be well-posed: when counting
constraints and degrees of freedom, one obtains nine on each
side (each point gives one constraint, each normal two, whereas
a quadric has nine degrees of freedom). Yet, it turns out that our
linear equation system always has a trivial solution besides the
true one. This is summarized in Eq. 8 by providing the ranks for
different cardinalities of bases. We now give further intuition and
proof for this behavior:

Theorem 1. Three-oriented point quadric Þtting, as formulated,
possesses a trivial solution besides the true solution, namely the
plane spanned by the three data points. The Þtting problem thus
has at least a one-dimensional linear family of solutions, spanned
by the true quadric and this trivial solution.

Proof. In the following, let us calldata-plane, the plane spanned
by the three data points (coordinates only, i.e. not considering
the associated normals). We illustrate this in Fig. 2 (left). As
mentioned in¤ 4.1 above, any rank-1 quadric consists of a single
plane! and can be written asQ = ! ! T . Hence, for any point
U on the plane and thus on the quadric, we haveQU = 0. In our
formulation of the Þtting problem, this amounts toNq = 0 .
N refers to all the gradient-normal correspondence equations,
stacked together (lower part of Eq. 6). We also haveMq = 0. due
to the point lying on the quadric. This means that the following
vector is a solution of the equation system: coefÞcientsA to J are
those of the rank-1 quadric and the three scalars! i are zero. In
other words, the trivial solution is identiÞed as the rank-1 quadric
consisting of the data-plane. Hence, the estimation problem admits
at least a one-dimensional linear family of solutions, spanned by
the true quadric and the rank-1 quadric of the data-plane. In some
cases, the dimension of the family of solutions may be higher
(such as when the true quadric is a plane).

4.2.1 A geometric explanation of the fact that the three-
oriented-point problem is always under-constrained

Despite the analytical proof, it is puzzling that nine constraints
on nine unknowns are never sufÞcient in our problem. Moreover,
we may wonder if the existence of a trivial solution is due to our
linear problem formulation or if it is generic. It turns out that this
is generic and can be explained geometrically. To make it easier
to imagine, our description will closely follow the Figures 2(a)
and 2(b). Let us decompose the estimation of the quadric in
two parts, the Þrst part being the determination of the quadricÕs
intersection with the data-plane. The intersection of any quadric
with any plane is in general always a conic (shown as black
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curve), be it real or imaginary (the only exception is when the
quadric itself contains the data-plane entirely, in which case the
ÒintersectionÓ is the entire plane).

Let us examine which constraints we have at our disposal to
estimate the intersection conic. First, the three data points lie on
the conic. Second, we know the tangent planes at the data points,
to the true quadric. Let us intersect the three tangent planes with
the data plane Ð the resulting three lines (shown in purple) must
be tangent to our conic (the only exception occurs when one or
more of these tangent planes are identical to the data plane).

Hence, we know three points on the conic and three tangent
lines Ð the problem of estimating the conic is thus in general
overdetermined by one DoF. In other words, six of the nine
constraints at our disposal for estimating the quadric are dedicated
to estimating the Þve degrees of freedom of its intersection with
the data plane. Hence, the remaining three constraints are not
sufÞcient to complete the estimation of the quadric.

What are these three remaining constraints? They refer to the
orientation of the tangent planes: each of the tangent planes is
deÞned by an angle expressing the rotation about its intersection
line with the data plane. This angle gives one piece of information
on the quadric; for three oriented points we thus have our three
remaining constraints.

Note that the three tangent planes to the quadric intersect in
the quadricÕs pole to the data plane (see Fig. 2(b)). Hence, we can
determine this pole which, as shown in appendix, lies on the line
joining the centers of the possible solutions for the quadric.

Let us also note that the fact that six pieces of information
(three data points and three tangent lines to a conic in the data
plane) only constrain Þve degrees of freedom means that these six
pieces of information are not independent from one another: in the
absence of noise or other errors, they must satisfy a consistency
constraint (the fact that they deÞne a conic). In the presence
of noise, the input information will not satisfy this constraint,
meaning that a perfect Þt will not exist. This is different in most so-
called minimal estimation problems in geometric computer vision
(such as three-point pose estimation - P3P), where the computed
solution is perfectly consistent with the input data. In our case, we
can expect that the computed quadric will not satisfy all constraints
exactly, i.e. will not necessarily be incident with all data points or
be exactly tangent to the given tangent planes.

This gives room to different formulations for the problem,
depending on how one quantiÞes the quality of Þt. For instance,
one possibility would be to impose that the quadric goes exactly
through the data points, but that the tangency is only approxi-
mately fulÞlled by computing the intersection conic in the data
plane and minimizing some cost functions over the tangent lines.

4.3 Regularizing with gradient norm

Quadric Þtting problem, like many others (e.g. calibration, projec-
tive reconstruction) is intrinsically of non-linear nature, meaning
that a ÒtrueÓ Maximum Likelihood Estimation or Maximum A
Posteriori solution, minimizing a geometric distance, cannot be
achieved by a linear Þt. However, our main objective in this stage
is a sufÞciently close and computationally efÞcient Þt, using as
few points as possible and upon which we can build our voting
scheme. Despite its sparsity, for such purpose, formulation in¤4.1
still remains suboptimal since the unknowns in Eq. 6 scale linearly
with N , leaving a large system to solve. In practice, analogous to
gradient-one Þtting [53], we could prefer unit-norm polynomial

Algorithm 2 MATLAB 10-liner for approx. quadric Þtting.
Require: Unit normalized point set{ x , y , z} , Corresponding surface

normals{ nx , ny , nz } , A weight coefÞcient!
Ensure: Quadricq = [ A, B, C, 2D, 2E, 2F, 2G, 2H, 2I, J ]T

1 = ones(numel(x ), 1);
0 = zeros(numel(x ), 1);
X = [ x 2, y 2, z2, x ! y , x ! z, y ! z, x , y , z, 1];
dX = [2 x , 0, 0, y , z, 0, 1, 0, 0, 0; ...

0, 2y , 0, x , 0, z, 0, 1, 0, 0; ...
0, 0, 2z, 0, x , y , 0, 0, 1, 0];

A = [ X ; ! ádX ];
N = [ nx ; ny ; nz ];
b = [ 0; ! áN ];
q = A /b;

gradients, and thus, can write! i = 1 or equivalently! i ( ø! ,
one common factor. Thissoft constraint will try to force zero
set of the polynomial respect the local continuity of the data.
Similar direction is also taken by [54], for the case of spheres.
However, there, authors follow a two-step Þtting process, solving
Þrst the gradient and then the positional constraint, whereas we
formulate a single system solving for all the shape parameters
simultaneously. Such regularization also saves us from solving the
sensitive homogeneous system [20], and lets us re-write the system
in a more compact formAq = n:

n =
!
0 0 . . . n1

x n1
y n1

z n2
x n2

y n2
z . . .

"T

q =
!
A B C D E F G H I J

"T

A =

#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
%

x2
1 y2

1 z2
1 2x1y1 2x1z1 2y1z1 2x1 2y1 2z1 1

x2
2 y2

2 z2
2 2x2y2 2x2z2 2y2z2 2x2 2y2 2z2 1

...
2x1 0 0 2y1 2z1 0 2 0 0 0
0 2y1 0 2x1 0 2z1 0 2 0 0
0 0 2z1 0 2x1 2y1 0 0 2 0

2x2 0 0 2y2 2z2 0 2 0 0 0
0 2y2 0 2x2 0 2z2 0 2 0 0
0 0 2z2 0 2x2 2y2 0 0 2 0

...

&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
(

(9)

A , only 4N & 10, is similar to theA $ in ¤ 4.1 and gets full rank
for four or more oriented points. In fact, it is not hard to show
that the equations in rows are linearly dependent, which is why
we get diminishing returns when we add further constraints. Note
that by removing the scale factors from the solution, we also solve
the sign ambiguity problem, i.e. the solution to Eq. 6 can result
in negated gradient vectors. To balance the contribution of normal
induced constraints we introduce a scalar weightw, leading to the
ten-liner MATLAB implementation as provided in Alg. 2.

In certain cases, to obtain a type-speciÞc Þt, a minor redesign
of A tailored to the desired primitive sufÞces (see¤. 6.3.4). If
outliers corrupt the point set, a four-point RANSAC could be used.
However, below, we present a more efÞcient way to calculate a
solution to Eq. 9 rather than using a naive RANSAC on four-tuples
by analyzing its solution space. The next section can also be used
as a generic method to solve any Þtting problem formulated as a
linear system, more efÞciently.
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5 QUADRIC DETECTION IN POINT CLOUDS

We now factor in clutter and occlusions into our formulation and
explain a new pipeline to detect quadrics in 3D data.

DeÞnition 6. A basisb is a subset composed of a Þxed number
of scene points (b) and hypothesized to lie on the sought surface.

Our algorithm operates by iteratively selecting bases from an
input scene. Once a basis is Þxed, an under-determined quadric
Þt parameterizes the solution and attached to this basis, a local
accumulator space is formed. All other points in the scene are
then paired with this basis to vote for the potential primitive.
To discover the optimal basis, we perform RANSAC, iteratively
hypothesizing different basis candidates and voting locally for
probable shapes. Subsequent to such joint RANSAC and voting,
we verify resulting hypotheses with efÞcient two-stage clustering
and score functions such that multiple quadrics can be detected
without repeated executions of the algorithm. We will now de-
scribe, in detail, the voting and the bases selection, respectively.

5.1 Parameterizing the solution space

Linear system in Eq. 6 describes an outlier-free closed form Þt.
To treat the clutter in the scene, a direct RANSAC on nine-
DoF quadric appears to be trivial. Yet, it has two drawbacks:
1) evaluating the error function many times is challenging, as
it involves a scene-to-quadric overlap calculation in a geometric
meaningful way. 2) even with the proposed Þtting, selecting
random four-tuples from the scene might be slow in practice.

An alternative to RANSAC is Hough voting. However,q has
nine DoFs and is not discretization friendly. The complexity and
size of this parameter space makes it hard to construct a voting
space. Instead, we will now devise a local search. For this, letq be
a solution to the linear system in (9) andp be a particular solution.
q can be expressed by a linear combination of homogeneous
solutionsµ i as:

q = p +
dn-

i

" i µ i (10)

= p +
!
µ 1 µ 2 á á á

" !
" 1 " 2 á á á

"T
= p + N A " .

The dimensionalitydn of the null spaceN A depends on the rank
of A , which is directly inßuenced by the number of points used:
dn = 10 %rk (A ). The exact solution could always be computed
by including more points from the scene and validating them, i.e.
by a local search. For that reason, the Þtting can be split into
distinct parts: Þrst a parametric solution is computed, such as in
Eq. 10, using a subset of pointsb = { x1, ..., xm } which lie on a
quadric. We refer to subsetb as thebasis. Next, the coefÞcients
" , and thus the solution, can be obtained by searching for other
point(s)(xm +1 , ..., xm + k ) which lie on the same surface asb.

Proposition 1. If two point setsb = ( x1, ..., xm ) and X =
(xm +1 , ..., xm + k ) lie on the same quadric with parametersq,
then the coefÞcients" =

!
" 1 " 2 á á á

"T
of the solution space

(10) are given by the solution of the system:

(A k N A )" = nk %A k p (11)

whereA k , nk are the linear constraints of the latter setb$ in form
of (9), p is a particular solution andN A is a stacked null-space
basis as in (10), obtained fromb.

Proof. Let q be a quadric solution for the point set(x1, ..., xm )
and let (A k , nk ) represent the4k quadric constraints for thek
points X = ( xm +1 , ..., xm + k ) in form of (6) with the same
parametersq. As x i ! X by deÞnition lies on the same quadric
q, it also satisÞesA k q = nk . Inserting Eq. 10 into this, we get:

A k (p + N A " ) = nk (12)

(A k N A )" = nk %A k p (13)

Solving Eq. 13 for" requires a multiplication of a4k & 10
matrix with a10& m one and ultimately solving a system of4k
equations inm unknowns. OnceN A andp are precomputed, it is
much more efÞcient to evaluate Eq. 11 fork < m rather than re-
solving the system (9). This resembles updating the solution online
for a stream of points. For our case, the amount of streamed points
will depend on the size of the basis, as explained below.

5.2 Local voting for quadric detection

Given a Þxed basis composed ofb points (b > 0) as in Fig.
3, a parametric solution can be described. The actual solution
can then be found quickly by using Prop. 1 by incorporating
new points lying on the same quadric as the basis. Thus, the
problem of quadric detection is de-coupled into 1) Þnding a
proper basis and 2) searching for compatible scene points. In this
section, we assume the basis is correctly found and explain the
search by voting. For a Þxed basisbi on a quadric, we form
the null-space decomposition of the under-determined system
A i q = ni . We then sample further points from the scene and
compute the required coefÞcients" . Thanks to Prop. 1, this can
be done efÞciently. Sample points lying on the same quadric
as the basis (inliers) generate the same" whereas outliers will
produce different values. Therefore we propose to construct a
voting space on" attached to basisbi and cast votes to maximize
the consensus, only up to the locality of the basis. Fig. 3 illustrates
this conÞguration. The size of the voting space is a design choice
and depends on the size of the basisbi vs. the DoFs desired to be
recovered (see Fig. 1(b)).

While many choices for the basis cardinality are possible (and
the formulation in¤ 5.1 allows for all), we Þnd from Fig. 1(a) that
using a three-point basis is advantageous for a generic quadric
Þt - having three dual points, reduces the minimum number of
required primal (incidence) constraints to only four. And by the
rank analysis given in Eq. 8, we see that it is possible to trade one
point off to 1D local search as opposed to two-point vs 3D search
for the Þve-point case.

5.3 EfÞcient computation of voting parameters for a 1D
voting space

Adding a fourth sample pointx4 completesrk (A ) = 10 and
a unique solution can be computed, as described above. Yet, as
we will select multiplex4 candidates per basis, hypothesized in a
RANSAC loop, an efÞcient scheme is required, i.e. once again, it
is undesirable to re-solve the system in Eq. 9 for each incoming
x4 tied to the basis. It turns out that the solution can be obtained
directly from Eq. 10:

Proposition 2. If the null-space is one dimensional (with only 1
unknown) it holds" N A = " 1µ 1 and the computation in Prop. 1
reduces to the explicit form:

" 1 =
A 1N A

$A 1N A $2 á(n1 %A 1p) (14)
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Figure 3. Once a basis is randomly hypothesized, we look for the points
on the same surface by casting votes on the null-space. The sought
pilates ball (likely quadric) is marked on the image and below that lies
the corresponding Þlled accumulator by KDE [55].

Proof. Let us re-write Eq. 13 in terms of the null space vectors:
" 1(A 1µ 1) = n1 % A 1p. A solution " 1 can be obtained via
Moore-Penrose pseudoinverse as" 1 = ( A 1µ 1)+ (n1 % A 1p).
Because for one-dimensional null spaces,A 1µ 1 is a vector
(v), for which the + operator is deÞned as:v+ = v/ (vT v).
Substituting this in Eq. 11 gives Eq. 14.

Prop. 2 enables a very quick computation of the parameter
hypothesis in the case of an additional single oriented point. A
MATLAB implementation takes ca.30µs per " . Note that for
the minimal system we propose, four incidence (primal) and
three tangent plane alignment (dual) constraints are sufÞcient.
This means that the normal of the fourth sample point does not
contribute to the set of constraints for aminimal Þt. Hence, we
use this piece of information for the veriÞcation of the Þt. We
only accept to vote a candidate quadric if the gradient of the Þtted
surface agrees with the surface normal of the fourth point:

" Q(x4)
$" Q(x4)$

án(x4) > #n . (15)

We typically set#n ) 0.85 in order to tolerate certain noise.

5.4 Quantizing " for voting

Unfortunately," is not quantization-friendly, as it is unbounded
and has a non-linear effect on the quadric shape (Fig. 5.2). Thus,
we seek to Þnd a geometrically meaningful transformation to a
bounded and well behaving space so that quantization would lead
to little bias and artifacts. From a geometric perspective, each
column of N A in Eq. 10 is multiplied by the same coefÞcient
" , corresponding to the slope of a high dimensional line in the
solution space. Thus, it could as well be viewed as a rotation. For
1D null-space, we set:

$ = atan2
. y2 %y1

x2 %x1

/
(16)

where [x1, y1, á á á]T = p and [x2, y2 á á á]T is obtained by
moving in the directionN A from the particular solutionp by an
offset" .1 This new angle$ is bounded and thus easy to vote for. As
the null-space dimension grows," starts to represent hyperplanes,
still preserving the geometric meaning, i.e. ford > 1, different
# = { $i } can be found.

Even though$ behaves better than" for voting, we still can not
guarantee a unimodal distribution such that a single peak can be

1. Simpletan ! 1(! ) could work but would be more limited in the range.

Algorithm 3 Combined RANSAC & Local Voting.
Require: Unit normalized point setP , Corresponding surface nor-

malsN , A weight coefÞcient! , Minimum vote thresholdsmin

Ensure: QuadricsQ = { qi }
(S, N ) $ Sample scene(P , N ).
while !satisÞeddo " seek the best global candidates

b i $ Pick a random 3 point-basis from(S, N ).
(A , n) $ Form system in eq. (4) usingbi

(p, µ ) $ Perform null space decomposition - eq.7.
V $ Initial voting space of length# bins
! $ {}
for all p i in P do " local voting

Compute#i by includingpi using eq. 11.
if

!
1 " " Q ( p i )

#" Q ( p i ) # án i < $
"

then " goodness of Þt
Quantize:%$ tan ! 1(#i ) (using atan2).
V [%] + + " accumulate
! [%] $ ! [%] %#i

end if
end for
%$ $ argmaxj V j " best candidate in quantized space
if

#
#! [%$]

#
#> s min then

#best $
$

k ! [%$][k] /
#
#! [%$]

#
# " best local coefÞcient

q $ p + #bestµ " best local solution
Q $ { Q, q}

end if
end while
Q $ mean of the clusters inQ using distancedclose
Q $ mean of the clusters inQ using distancedfar
Q $ sort(score(Q))

identiÞed unambiguously. Nevertheless, thanks to the local voting,
the case that one distribution is noisy ormisty will be handled
when other random bases are selected. It is more likely that the
peaks coming from different bases are concentrated around the
same mode, rather than a single peak of one accumulator. Besides,
we have empirically observed that in many real cases, even when
the distribution is amodal, a single peak is prominent when the
sampled fourth is in a reasonable vicinity of the basis.

5.5 Hypotheses aggregation

Up until now, we have described how to Þnd plausible quadrics
given local triplet bases. As mentioned, to discover the basis lying
on the surface, we employ RANSAC [56], where each triplet
might generate a hypothesis to be veriÞed. Many of those will
be similar as well as dissimilar. Thus, the Þnal stage of the
algorithm aggregates the potential detections to reduce the number
of candidate surfaces and to increase the per quadric conÞdence.
Not to sacriÞce further speed, we run an agglomerative clustering
similar to [1] in a coarse to Þne manner: First a Þne (close) but fast
distance measure helps to cluster the obvious hypotheses. Second,
a coarse (far) one is executed on these cluster centers.

DeÞnition 7. Our distance computation is two-fold: Whenever
two quadrics are close, we approximate their distances as in
Eq. 17 (dclose ), where I ! R4! 4 is the identity matrix and

: R * { 0, 1} the indicator function. We use the pseudoinverse
just to handle singular conÞgurations. If the shapes are far, such
manifold-distance becomes erroneous and we use a globally con-
sistent metric. To do so, we deÞne a more geometric-meaningful
distance using the points on the scene itself (dfar ):

dclose (Q1, Q2) := ($q1 %q2$1 < # ) á $Q1Q+
2 %I $F

dfar (Q1, Q2) := (17)
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Figure 4. Effect of ! on the surface geometry. We compute null-space decomposition for a Þxed basis and vary! from -75 to 75 to generate different
solutions q along the line in the solution space. The plot presents the transition of the surface controlled by ! .

1 %
1
K

K-

i =1

.
|xT

i Q1x i | < #
/

á
.

|xT
i Q2x i | < #

/
á

(1 %ni á " Q1(x i ) < #n ) á (1 %ni á " Q2(x i ) < #n ) .

{ x i } denote theK scene samples.

Note that, algebraic but efÞcientdclose lacks geometric mean-
ing, while slowerdfar can, to a certain extent, explain the geom-
etry. Finally, the quadrics are sorted w.r.t. their scores, evaluated
pseudo-geometrically by point and normal-gradient compatibility
according to Def. 8:

DeÞnition 8. The score of a quadric is deÞned to be:

SQ ,X =
1
K

K-

i =1

.
|xT

i Qx i | < #
/

(1 %ni á " Q(x i ) < #n )

While other distance metrics, such as spectral decompositions
are possible, we found these to be sufÞcient in our experiments.
The Þnal algorithm is summarized in Alg. 3.

6 EXPERIMENTAL EVALUATION AND DISCUSSIONS

6.1 Implementation details

Prior to operation, we normalize the point coordinates to lie in a
unit ball to increase the numerical stability [57]. Next, we down-
sample the scene using a spatial voxel-grid enforcing a minimum
distance of#s ádiam(X ) between the samples (#s = 0 .03) [58].
The required surface normals are computed by the local plane
Þtting [59]. As planes are singular quadrics and occupy large
spaces of 3D scenes, we remove them. To do so, we convert our
algorithm to a type speciÞc plane detector, which happens to be a
similar algorithm to [30]. Next, inßuenced by the smoothness of
quadrics, we use Difference of Normals (DoN) [60] to prune the
points not located on smooth regions. What follows is an iterative
selection of triplets to conduct the three-point RANSAC: We Þrst
randomly draw the initial point of the basisx1. Oncex1 is Þxed,
we query the points in a large enough vicinity, whose normals
differ enough to form the three-point basisb. The rest of the points
are then randomly selected respecting these criteria. To avoid

degenerate conÞgurations, we skip the basis if it does not result
in a rank-9 matrixA . In addition, to reducing the bias towards
repeating bases, we hash the seen triplets and avoid duplicates.

6.2 Synthetic tests of Þtting and ablation studies

To asses the accuracy of the proposed Þtting, we generate a
synthetic test set of multitudes of random quadrics and compare
our method with the Þtting procedures of Taubin [4], Tasdizen [6],
Andrews [5], and Beale [33]. We propose two variants:Ours full
will refer to Alg. 1, whereasOurs is the regularized one (Alg. 2).

6.2.1 Quantitative assessments

Prior to run, we add Gaussian noise to the ground-truth vertices
with % = [0% % 5%] relative to the sizes of the quadric. At
each noise level, ten random quadrics are tested. We perform
not single but twenty Þts per set. For the constrained Þtting
method [5] we pre-speciÞed the type, which might not be possible
in a real application. We then record and report the average point-
to-mesh distance and the angle deviation as well as the runtime
performances in Fig. 5. Although, our Þt is designed to use a
minimal number of points, it also proves robust when more points
are added and is among the top Þtters for the distance and angle
errors. In addition, Fig. 5c shows that the errors on the gradient
magnitudes obtained by our quadrics. We achieve the least errors,
showing that gradient norms align well with the ground truth,
favoring the validity of our approximation/regularization. Next,
looking at the noise assessments, we see that our full method
performs the best on low noise levels but quickly destabilizes.
This is because the system might be biased to compute correct
norms rather than the solution and it has increased parameters.
We believe the reason for our compact Þt to work well is the
soft constraint where the common scale factor acts as a weighted
regularizer towards special quadrics. When this constraint cannot
be satisÞed, the solution settles for a very acceptable shape.

In a further test, we include the six neighboring points of each
of seven query points to perform a standard Taubin-Þt. We call
this Taubin-42. Fig. 6a shows that while the error of our method is
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Figure 5. Synthetic evaluations. The plot depicts mean geometric errors on points (a) and mean angular errors (b) for different quadric Þtting
methods. The per point error is measured as the average point-to-mesh distance from every ground truth vertex to the Þtted quadric. The angular
error (dashed) is computed as the negated dot product between quadric gradient and the ground truth normal. Moreover, (c) shows the average
error of the gradient norm compared to the ground truth and (d) gives speed and detection rate on synthetic data.
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Figure 6. a (left). Effect of extended point neighborhood to the Þtting.
b (right). Statistical distribution of the solution-space coefÞcient and our
quantization function: PDF (red curve) and inverse CDF (dashed blue-
curve) of ! over collected data, and tan ! 1 function (green-line). Note
that our quantization function is capable of explaining the empirical data.

on par withTaubin-42, we are more robust at higher noise values
and more efÞcient with a runtime advantage of ca.22%.

Since for for a visually appealing Þt, the normal alignment is
crucial, we next present a qualitative evaluation.

6.2.2 Qualitative assessments

We synthesized a random saddle quadric and performed a random
point sampling over its surface. Next, we added Gaussian noise
on the sample points and computed the normals. To resolve the
sign ambiguity, each normal is ßipped in the direction of ground
truth gradient. We plot the results of the Þtting in Fig. 7. Even
in presence of little noise only some methods fail to estimate the
correct geometry, mostly due to the bias towards certain shape [5],
[33]. Our approach is able to recover the correct surface even in
presence of a severe noise. Also the effect of our regularization is
visible on the last column, which possesses the best visual quality.

It is of interest to see whether our regularized Þt can estimate
correct surface normals as well as direction. Thus, a second test
was performed to qualitatively observe the gradient properties in
more detail. For this, a series of randomly generated quadrics is
Þtted by TaubinÕs and our method and the gradients are analyzed
both in terms of magnitude and phase, as shown in Fig. 9. Due
to our explicit treatment of the gradients, it can be clearly seen
that the gradient direction is recovered better. Moreover, the right
side of Fig. 9 also shows that our approximate approach yields the
expected results, while the full method could sometimes generate
inconsistent gradient signs, as the scale factors are estimated
individually. Finally, it is qualitatively visible in Fig. 9 that the

magnitudes recovered by our method are compatible to the ground
truth. Such improvement without sacriÞcing gradient quality vali-
dates the regularizing nature of our approach.

6.2.3 Is atan2 a valid transformation for "
To assess the practical validity of the quantization, we collect a
set of 2.5 million oriented point triplets from several scenes and
use them as bases to form the underdetermined systemA . We
then sample the fourth point from those scenes, compute" and
establish the probability distributionp(" ) for the whole collection
to calculate the quantiles, mapping" to bins via the inverse CDF.
A similar procedure has been applied to cross ratios in [61]. We
plot the Þndings together with theatan2 function in Fig. 6b and
show that the empirical distribution andatan2 follow similar
trends, justifying that our quantizer is well suited to the data.

6.2.4 Effect of weighting on the Þt
We now investigate the effect of weighting parameterw on the
Þt. For a selection of eight noisy points, located on three different
synthetic quadrics, we varyw and plot, in Fig. 8a, the geometric
errors attained by Alg. 2, against the ground truth and Taubin Þt.
While too low of w hurts our Þt, there is a large range of values
w ! [0.08, 1.0], where we can outperform [4].

6.2.5 How do voting spaces look like?
To provide insights on the local voting spaces of the angles$,
we sample different random bases on four synthetic quadrics
as embedded in Fig. 8b, and collect the votes along with the
quantized bins. These accumulators are shown in the same Þgure,
each with a different color. It is observed that, the voting spaces are
myst-free and a only single mode emerges, thanks to the maximum
distance threshold selected between the basis and the paired point.
It is still possible to obtain multiple modes if the threshold is
unrealistically picked. The consensus votes correspond to the true
shape, and erroneous votes spread randomly.

6.3 Real experiments on quadric detection

Besides synthetic tests where self evaluation was possible, we
assess the quality of generic primitive detection, on 3 real datasets:

1) Our Dataset First, because there are no broadly accepted
datasets on quadric detection, we opt to collect our own.
To do so, we use an accurate phase-shift stereo structured
light scanner and capture 35 3D scenes of 5 different objects
within clutter and occlusions. Our objects are three bending
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