M. Boullé, Functional data clustering via piecewise constant nonparametric density estimation, Pattern Recognition, vol.45, issue.12, pp.4389-4401, 2012.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control, 2015.

P. J. Brockwell, R. A. Davis, and M. V. Calder, Introduction to time series and forecasting, vol.2, 2002.

V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, Arbitrated ensemble for time series forecasting, Proceedings of the Joint European conference on machine learning and knowledge discovery in databases, pp.478-494, 2017.

R. B. Cleveland, W. S. Cleveland, J. E. Mcrae, and I. Terpenning, STL: A seasonaltrend decomposition, Journal of official statistics, vol.6, issue.1, pp.3-73, 1990.

M. Cuturi, Fast global alignment kernels, Proceedings of the International Conference on Machine Learning (ICML), pp.929-936, 2011.

F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to forget: Continual prediction with LSTM, 1999.

E. Ghysels, D. R. Osborn, and P. M. Rodrigues, Chapter 13 forecasting seasonal time series, Handbook of Economic Forecasting, vol.1, pp.659-711, 2006.

R. Hyndman, Time series data library (TSDL, 2011.

T. Jaka?a, I. Andro?ec, and P. Spr?i?, Electricity price forecasting -ARIMA model approach, Proceedings of the International Conference on the European Energy Market (EEM), pp.222-225, 2011.

R. G. Kavasseri and K. Seetharaman, Day-ahead wind speed forecasting using f-ARIMA models, Renewable Energy, vol.34, issue.5, pp.1388-1393, 2009.

C. Leverger, V. Lemaire, S. Malinowski, T. Guyet, and L. Rozé, Day-ahead time series forecasting: application to capacity planning, Proceedings of the 3rd workshop on Advanced Analytics and Learning of Temporal Data (AALTD), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912002

S. Lloyd, Least squares quantization in PCM, Transactions on information theory, vol.28, issue.2, pp.129-137, 1982.

C. O. Melbourne, Pedestrian counting system, 2016.

P. F. Pai and C. S. Lin, A hybrid ARIMA and support vector machines model in stock price forecasting, Omega, vol.33, issue.6, pp.497-505, 2005.

J. Paparrizos and L. Gravano, k-shape: Efficient and accurate clustering of time series, Proceedings of the International Conference on Management of Data (SIG-MOD), pp.1855-1870, 2015.

F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping, with applications to clustering, Pattern Recognition, vol.44, issue.3, pp.678-693, 2011.

V. Vahidinasab, S. Jadid, and A. Kazemi, Day-ahead price forecasting in restructured power systems using artificial neural networks, Electric Power Systems Research, vol.78, issue.8, pp.1332-1342, 2008.

G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, vol.50, pp.159-175, 2003.