G. A. Anastassiou, Univariate hyperbolic tangent neural network approximation, Mathematical and Computer Modelling, vol.53, issue.5-6, pp.1111-1132, 2011.

M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, IEEE transactions on medical imaging, vol.35, issue.5, pp.1207-1216, 2016.

S. Arora, N. Cohen, and E. Hazan, On the optimization of deep networks: Implicit acceleration by overparameterization, 35th International Conference on Machine Learning (ICML), pp.244-253, 2018.

C. M. Bishop, Neural networks for pattern recognition, 1995.

L. Bottou, Large-scale machine learning with stochastic gradient descent, Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT), pp.177-186, 2010.

T. Brants, Natural language processing in information retrieval, CLIN, 2003.

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. Pietra, and J. C. Lai, Class-based n-gram models of natural language, Computational Linguistics, vol.18, issue.4, pp.467-479, 1992.

N. D. Bui and L. Jiang, Hierarchical learning of cross-language mappings through distributed vector representations for code, Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results, pp.33-36, 2018.

R. Caruana, S. Lawrence, and C. L. Giles, Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping, Advances in neural information processing systems, pp.402-408, 2001.

G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning, Advances in neural information processing systems, pp.409-415, 2001.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu et al., Natural language processing (almost) from scratch, Journal of Machine Learning Research, vol.12, pp.2493-2537, 2011.

N. Cristianini and J. Shawe-taylor, An introduction to support vector machines and other kernel-based learning methods, 2000.

G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp.8609-8613, 2013.

, Linux-stable releases

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol.1, 2016.

X. Gu, H. Zhang, D. Zhang, and S. Kim, Deep API learning, FSE, pp.631-642, 2016.

J. Guo, J. Cheng, and J. Cleland-huang, Semantically enhanced software traceability using deep learning techniques, ICSE, pp.3-14, 2017.

R. Gupta, S. Pal, A. Kanade, and S. Shevade, Deepfix: Fixing common C language errors by deep learning, AAAI, pp.1345-1351, 2017.

M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De-jesús, Neural network design, vol.20, 1996.

S. S. Haykin, Kalman filtering and neural networks, 2001.

G. E. Hinton, Deep belief networks, Scholarpedia, vol.4, issue.5, p.5947, 2009.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing coadaptation of feature detectors, 2012.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, vol.9, issue.8, pp.1735-1780, 1997.

X. Huo and M. Li, Enhancing the unified features to locate buggy files by exploiting the sequential nature of source code, IJCAI, pp.1909-1915, 2017.

X. Huo, M. Li, and Z. Zhou, Learning unified features from natural and programming languages for locating buggy source code, IJCAI, pp.1606-1612, 2016.

S. Ji, W. Xu, M. Yang, and K. Yu, 3D convolutional neural networks for human action recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.1, pp.221-231, 2013.

T. Joachims, SVM-Light support vector machine, vol.19, 1999.

D. Jurafsky and J. H. Martin, Speech and language processing. Pearson London, vol.3, 2014.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network for modelling sentences, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL), pp.655-665, 2014.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar et al., Large-scale video classification with convolutional neural networks, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.1725-1732, 2014.

Y. Kim, Convolutional neural networks for sentence classification, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp.1746-1751, 2014.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, Proceedings of 3rd International Conference on Learning Representations (ICLR), 2015.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI, vol.14, issue.2, pp.1137-1145, 1995.

B. Korbar, A. M. Olofson, A. P. Miraflor, C. M. Nicka, M. A. Suriawinata et al., Deep learning for classification of colorectal polyps on wholeslide images, Journal of pathology informatics, vol.8, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, Bug localization with combination of deep learning and information retrieval, Proceedings of the 25th International Conference on Program Comprehension (ICPC), pp.218-229, 2017.

S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, Face recognition: A convolutional neural-network approach, IEEE transactions on neural networks, vol.8, issue.1, pp.98-113, 1997.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, nature, vol.521, issue.7553, p.436, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

Y. Lecun, P. Haffner, L. Bottou, and Y. Bengio, Object recognition with gradient-based learning," in Shape, contour and grouping in computer vision, pp.319-345, 1999.

G. K. Lee and R. E. Cole, From a firm-based to a communitybased model of knowledge creation: The case of the Linux kernel development, Organization science, vol.14, issue.6, pp.633-649, 2003.

F. Letouzey, F. Denis, and R. Gilleron, Learning from positive and unlabeled examples, International Conference on Algorithmic Learning Theory (ALT, pp.71-85, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00536692

S. Levin, Building stable trees with machine learning, 2018.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, CCLearner: A deep learning-based clone detection approach, Proceedings of 33rd Software Maintenance and Evolution (ICSME), pp.249-260, 2017.

B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu, Building text classifiers using positive and unlabeled examples, Data Mining (ICDM)

J. Liu, W. Chang, Y. Wu, and Y. Yang, Deep learning for extreme multi-label text classification, Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.115-124, 2017.

R. Love, Linux kernel development, 2010.

D. Mackenzie, P. Eggert, and R. Stallman, Comparing and Merging Files With Gnu Diff and Patch. Network Theory Ltd, 2003.

S. Mcintosh and Y. Kamei, Are fix-inducing changes a moving target? a longitudinal case study of just-in-time defect prediction, IEEE Transactions on Software Engineering, vol.44, issue.5, pp.412-428, 2017.

T. Mikolov, M. Karafiát, L. Burget, J. ?ernock?, and S. Khudanpur, Recurrent neural network based language model, Eleventh Annual Conference of the International Speech Communication Association, 2010.

V. Mnih, N. Heess, and A. Graves, Recurrent models of visual attention, Advances in neural information processing systems, pp.2204-2212, 2014.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th International Conference on Machine Learning (ICML), pp.807-814, 2010.

G. H. Nguyen, A. Bouzerdoum, and S. L. Phung, Learning pattern classification tasks with imbalanced data sets, Pattern recognition. IntechOpen, 2009.

Y. Padioleau, Parsing C/C++ code without pre-processing, Compiler Construction, pp.109-125, 2009.

Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, Documenting and automating collateral evolutions in Linux device drivers, EuroSys, pp.247-260, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00123142

L. Prechelt, Automatic early stopping using cross validation: quantifying the criteria, Neural Networks, vol.11, issue.4, pp.761-767, 1998.

A. Severyn and A. Moschitti, Learning to rank short text pairs with convolutional deep neural networks, Proceedings of the 38th International Conference on Research and Development in Information Retrieval (SIGIR), pp.373-382, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

J. A. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Processing Letters, vol.9, issue.3, pp.293-300, 1999.

C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, The impact of class rebalancing techniques on the performance and interpretation of defect prediction models, IEEE Transactions on Software Engineering, 2018.

C. Tantithamthavorn, S. Mcintosh, A. E. Hassan, and K. Matsumoto, An empirical comparison of model validation techniques for defect prediction models, IEEE Transactions on Software Engineering, vol.43, issue.1, pp.1-18, 2017.

P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida et al., Who should review my code? a file location-based code-reviewer recommendation approach for modern code review, SANER, pp.141-150, 2015.

Y. Tian, J. Lawall, and D. Lo, Identifying Linux bug fixing patches, ICSE, pp.386-396, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00779857

G. Tolias, R. Sicre, and H. Jégou, Particular object retrieval with integral max-pooling of cnn activations, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01842218

S. Vijayarani, M. J. Ilamathi, and M. Nithya, Preprocessing techniques for text mining-an overview, International Journal of Computer Science & Communication Networks, vol.5, issue.1, pp.7-16, 2015.

S. Wang, T. Liu, and L. Tan, Automatically learning semantic features for defect prediction, ICSE, pp.297-308, 2016.

Y. Wen, J. Cao, and S. Cheng, PTracer a Linux kernel patch trace bot, 2019.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, Deep learning code fragments for code clone detection, ASE, pp.87-98, 2016.

Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, Identifying patch correctness in test-based program repair, ICSE, pp.789-799, 2018.

X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, Deep learning for just-in-time defect prediction, QRS, pp.17-26, 2015.

M. B. Zanjani, H. Kagdi, and C. Bird, Automatically recommending peer reviewers in modern code review, IEEE Transactions on Software Engineering, vol.42, issue.6, pp.530-543, 2016.

M. D. Zeiler and R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks, 2013.