D. Fanelli, Negative results are disappearing from most disciplines and countries. Scientometrics, vol.90, pp.891-904, 2012.

J. Knight, Negative results: Null and void, Nature, vol.422, pp.554-555, 2003.

E. Vance, Nurture negatives, Nature, vol.552, issue.7685, pp.302-302, 2017.

E. Granqvist, Looking at research from a new angle: why science needs to publish negative results, vol.4, 2015.

J. P. Ioannidis, Why science is not necessarily self-correcting, Perspectives on Psychological Science, vol.7, issue.6, pp.645-654, 2012.

Y. E. , Replication studies: Bad copy, Nature News, vol.485, issue.7398, p.298, 2012.

N. C. Smith, Replication studies: A neglected aspect of psychological research, American Psychologist, vol.25, issue.10, p.970, 1970.

L. K. John, G. Loewenstein, and D. Prelec, Measuring the prevalence of questionable research practices with incentives for truth telling, Psychological science, vol.23, issue.5, pp.524-532, 2012.

B. Alberts, R. J. Cicerone, and S. E. Fienberg, Self-correction in science at work, Science, vol.348, issue.6242, pp.1420-1422, 2015.

S. Firestein, Failure: Why science is so successful, 2015.

D. J. Krusienski, M. Grosse-wentrup, and F. Galán, Critical issues in state-of-the-art braincomputer interface signal processing, Journal of neural engineering, vol.8, issue.2, p.25002, 2011.

V. Jayaram and A. Barachant, Moabb: trustworthy algorithm benchmarking for bcis, Journal of neural engineering, vol.15, issue.6, p.66011, 2018.

F. Lotte, L. Bougrain, and A. Cichocki, A review of classification algorithms for eegbased brain-computer interfaces: a 10 year update, Journal of neural engineering, vol.15, issue.3, p.31005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01846433

C. Jeunet, N. Kaoua, B. , and L. F. , Advances in user-training for mental-imagery-based bci control: Psychological and cognitive factors and their neural correlates, Progress in brain research, vol.228, pp.3-35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302138

K. K. Ang, Z. Y. Chin, and C. Wang, Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b, Frontiers in neuroscience, vol.6, p.39, 2012.

M. A. Lebedev, A. Ossadtchi, and N. A. Mill, What, if anything, is the true neurophysiological significance of "rotational dynamics"? bioRxiv, 2019.

M. M. Churchland, J. P. Cunningham, and M. T. Kaufman, Neural population dynamics during reaching, Nature, vol.487, issue.7405, pp.51-57, 2012.

K. S. Button, J. Ioannidis, and C. Mokrysz, Power failure: why small sample size undermines the reliability of neuroscience, Nature Reviews Neuroscience, vol.14, issue.5, pp.365-376, 2013.

S. Zllner and J. K. Pritchard, Overcoming the Winners Curse: Estimating Penetrance Parameters from Case-Control Data, The American Journal of Human Genetics, vol.80, issue.4, pp.605-615, 2007.

M. Grosse-wentrup, What are the causes of performance variation in brain-computer interfacing?, International Journal of Bioelectromagnetism, vol.13, issue.3, pp.115-116, 2011.

F. Lotte, F. Larrue, and C. Mühl, Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design, Frontiers in human neuroscience, vol.7, p.568, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862716

A. Kübler, B. Blankertz, and K. Müller, A model of BCI-control, Proceedings of the 5th International Graz BCI conference, 2011.

C. Jeunet, N. 'kaoua, B. , and L. F. , Towards a cognitive model of MI-BCI user training, Proceedings of the International Graz BCI conference, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519476

J. Gruzelier, A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration, Cognitive processing, vol.10, issue.1, pp.101-109, 2009.

G. Wood, S. E. Kober, and M. Witte, On the need to better specify the concept of control in brain-computer-interfaces/neurofeedback research. Frontiers in systems neuroscience, vol.8, p.171, 2014.

T. S. Kuhn, The structure of scientific revolutions, 2012.

G. Wood and S. E. Kober, Eeg neurofeedback is under strong control of psychosocial factors, Applied psychophysiology and biofeedback, vol.43, issue.4, pp.293-300, 2018.

A. Roc, L. Pillette, N. 'kaoua, and B. , Would motor-imagery based bci user training benefit from more women experimenters? In: Proceedings of the International Graz BCI conference, 2019.

S. Rimbert, N. Gayraud, and L. Bougrain, Can a subjective questionnaire be used as braincomputer interface performance predictor? Frontiers in Human Neuroscience, vol.12, p.529, 2019.

A. Vuckovic and B. A. Osuagwu, Using a motor imagery questionnaire to estimate the performance of a braincomputer interface based on object oriented motor imagery, Clinical Neurophysiology, vol.124, issue.8, pp.1586-1595, 2013.

S. Marchesotti, M. Bassolino, and A. Serino, Quantifying the role of motor imagery in brain-machine interfaces, Scientific Reports, vol.6, p.24076, 201604.

P. J. Lang, M. M. Bradley, and B. N. Cuthbert, International affective picture system (IAPS): Affective ratings of pictures and instruction manual. The Center for Research in Psychophysiology, 2008.

M. M. Bradley and P. J. Lang, Measuring emotion: the self-assessment manikin and the semantic differential, vol.25, pp.49-59, 1994.

S. Rimbert, M. Zaepffel, and P. Riff, Hypnotic state modulates sensorimotor beta rhythms during real movement and motor imagery, Frontiers in Psychology, vol.10, p.2341, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02325588

N. Birbaumer, N. Ghanayim, and T. Hinterberger, A spelling device for the paralysed, Nature, vol.398, issue.6725, pp.297-298, 1999.

A. Kübler and N. Birbaumer, Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients?, Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, vol.119, issue.11, pp.2658-2666, 2008.

Y. Okahara, K. Takano, and M. Nagao, Long-term use of a neural prosthesis in progressive paralysis, Scientific Reports, vol.8, issue.1, p.16787, 2018.

C. H. Han, Y. W. Kim, and S. S. Hyun, Electroencephalography-based endogenous braincomputer interface for online communication with a completely locked-in patient, Journal of Neuroengineering and Rehabilitation, vol.16, issue.1, p.18, 2019.

M. Hohmann, T. Fomina, and V. Jayaram, Case series: Slowing alpha rhythm in late-stage als patients, Clinical Neurophysiology, vol.129, issue.2, pp.406-408, 2018.

M. Spüler, Questioning the evidence for BCI-based communication in the complete lockedin state, PLoS biology, vol.17, issue.4, p.2004750, 2019.

U. Chaudhary, S. Pathak, and N. Birbaumer, Response to:questioning the evidence for BCIbased communication in the complete locked-in state, PLoS biology, vol.17, issue.4, p.3000063, 2019.

R. Scherer, Thought-based interaction: Same data, same methods, different results? PLoS biology, vol.17, p.3000190, 2019.

A. Abbott, Prominent german neuroscientist committed misconduct in brain-reading research, Nature News, 2019.

J. Ioannidis, M. R. Munaf, and P. Fusar-poli, Publication and other reporting biases in cognitive sciences: detection, prevalence, and prevention, Trends in Cognitive Sciences, vol.18, issue.5, pp.235-241, 2014.

N. Matosin, E. Frank, and M. Engel, Negativity towards negative results: a discussion of the disconnect between scientific worth and scientific culture, Disease Models & Mechanisms, vol.7, issue.2, p.171, 2014.

J. Blachowicz, How Science Textbooks Treat Scientific Method: A Philosopher's Perspective. The British Journal for the Philosophy of Science, vol.60, pp.303-344, 2009.

C. Jeunet, S. Debener, and F. Lotte, Mind the traps! Design guidelines for rigorous BCI experiments. In: Brain-computer interfaces handbook: Technological and theoretical advance, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01620186

R. Chavarriaga, M. Fried-oken, and S. Kleih, Heading for new shores! overcoming pitfalls in BCI design, Brain-Computer Interfaces, vol.4, issue.1-2, pp.60-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01415906

B. E. Alger, Hypothesis-testing improves the predicted reliability of neuroscience research. bioRxiv, 2019.

M. Muthukrishna and J. Henrich, A problem in theory, Nature Human Behaviour, vol.3, issue.3, pp.221-229, 2019.

G. Varoquaux, P. R. Raamana, and D. A. Engemann, Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines, NeuroImage, vol.145, pp.166-179, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01332785

A. M. Brouwer, T. O. Zander, and J. B. Van-erp, Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls, Frontiers in Neuroscience, vol.9, p.136, 2015.

E. Taub, What Psychology as a Science Owes Neal Miller: The Example of His Biofeedback Research, Biofeedback, vol.38, issue.3, pp.108-117, 2010.

P. L. Smith and D. R. Little, Small is beautiful: In defense of the small-N design, Psychonomic Bulletin and Review, vol.25, issue.6, pp.2083-2101, 2018.

S. Saeedi, R. Chavarriaga, and M. Jdr, Long-Term Stable Control of Motor-Imagery BCI by a Locked, User Through Adaptive Assistance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.25, pp.380-391, 2017.

E. W. Sellers, D. B. Ryan, and C. K. Hauser, Noninvasive brain-computer interface enables communication after brainstem stroke, Sci Transl Med, vol.6, issue.257, pp.257-264, 2014.

R. E. Kass, B. S. Caffo, and M. Davidian, Ten Simple Rules for Effective Statistical Practice, PLoS Comput Biol, vol.12, issue.6, p.1004961, 2016.

D. Colquhoun, An investigation of the false discovery rate and the misinterpretation of pvalues, Royal Society Open Science, vol.1, issue.3, pp.140216-140216, 2014.

J. M. Antelis, L. Montesano, and A. Ramos-murguialday, On the usage of linear regression models to reconstruct limb kinematics from low frequency {EEG} signals, PLoS One, vol.8, issue.4, p.61976, 2013.

G. Müller-putz, R. Scherer, and C. Brunner, Better than random: {A} closer look on {BCI} results, International Journal of Bioelectromagnetism, vol.10, issue.1, pp.52-55, 2008.

E. Maris and R. Oostenveld, Nonparametric statistical testing of {EEG}-and {MEG}-data, J Neurosci Methods, vol.164, issue.1, pp.177-190, 2007.

J. Platt, Strong inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others, Science, vol.146, issue.3642, pp.347-53, 1964.

F. Bacon, Novum organum (gw kitchin, trans.), 1960.

T. C. Chamberlin, Studies for students: The method of multiple working hypotheses, Journal of Nutritional Medicine, vol.3, issue.2, pp.159-165, 1992.

R. A. Klein, M. Vianello, and F. Hasselman, Many labs 2: Investigating variation in replicability across samples and settings, Advances in Methods and Practices in Psychological Science, vol.1, issue.4, pp.443-490, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02023115

E. D. Foster and A. Deardorff, Open science framework (osf), Journal of the Medical Library Association: JMLA, vol.105, issue.2, p.203, 2017.

C. Pernet, M. Garrido, and A. Gramfort, Best practices in data analysis and sharing in neuroimaging using MEEG, 2018.

S. Enriquez-geppert, R. J. Huster, and C. S. Herrmann, EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial, Frontiers in human neuroscience, vol.11, p.51, 2017.

T. Ros, S. Enriquez-geppert, and V. Zotev, Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

. Psyrxiv, , 2019.