Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

metric-learn: Metric Learning Algorithms in Python

William de Vazelhes 1 Cj Carey 2 Yuan Tang 3 Nathalie Vauquier 1 Aurélien Bellet 1
1 MAGNET - Machine Learning in Information Networks
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : metric-learn is an open source Python package implementing supervised and weakly-supervised distance metric learning algorithms. As part of scikit-learn-contrib, it provides a unified interface compatible with scikit-learn which allows to easily perform cross-validation, model selection, and pipelining with other machine learning estimators. metric-learn is thoroughly tested and available on PyPi under the MIT licence.
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal.inria.fr/hal-02376986
Contributor : Aurélien Bellet <>
Submitted on : Friday, November 22, 2019 - 7:31:49 PM
Last modification on : Monday, November 25, 2019 - 9:06:56 AM

File

1908.04710.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02376986, version 1
  • ARXIV : 1908.04710

Citation

William de Vazelhes, Cj Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet. metric-learn: Metric Learning Algorithms in Python. 2019. ⟨hal-02376986⟩

Share

Metrics

Record views

62

Files downloads

320