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Narrow-band Deep Filtering for
Multichannel Speech Enhancement

Xiaofei Li and Radu Horaud

Abstract—In this paper we address the problem of multichan- is dif cult due to the lack of a clear structure for phase spectra.
nel speech enhancement in the short-time Fourier transform Ajternatively, the real and image part of the speech spectra
(STFT) domain. A long short-ime memory (LSTM) network i show a clear spectral structure, which are thus used either

takes as input a sequence of STFT coef cients associated with .
a frequency bin of multichannel noisy-speech signals. The net- [0 construct a complex IRM (cIRM) [2] or directly as the

work's output is the corresponding sequence of single-channel target [3], [4]. Widely used neural architectures for speech
cleaned speech. We propose several clean-speech network targetenhancement include feed-forward neural networks (FNNSs),

namely, the magnitude ratio mask, the complex STFT coef cients convolutional neural networks (CNNs) and recurrent neural
and the (smoothed) spatial Iter. A prominent feature of the networks (RNNs). The temporal dynamics of speech can be

proposed model is that the same LSTM architecture, with iden- . . -
tical parameters, is trained across frequency bins. The proposed Modeled by stacking context frames in the FNN input, or by

method is referred to as narrow-band deep Itering. This choice dilated CNN [5], while they are automatically modeled by
stays in contrast with traditional wide-band speech enhancement RNNs. In [6], [7], the memory-enhanced RNN, i.e. LSTM,
methods. The proposed deep ltering is able to discriminate js used to learn the long-term dependencies of signals. There
between speech and noise by exploiting their different temporal 56 gnly a handful of methods that process frequency bands
and spatial characteristics: speech is non-stationary and spatially tel 8l 9 | | network is trained
coherent while noise is relatively stationary and weakly correlated separately, e.g. [8], [9], namely a neural network is traine
across channels. This is similar in spirit with unsupervised for each subband: these subband spectral features are mapped
techniques, such as spectral subtraction and beamforming. We onto subband targets.

describe extensive experiments with both mixed signals (noise is

added to clean speech) and real signals (live recordings). We As for multichannel speech enhancement, it is popular to

empirically evaluate the proposed architecture variants using mbin rvised monaural ] hes with un rvised
speech enhancement and speech recognition metrics, and we"© € Ssupervised monaural approaches unsupervise

compare our results with the results obtained with several beamforming methods, e.g. [10], [11]. The output of the
state of the art methods. In the light of these experiments we former, i.e. a TF mask, is used to discriminate between speech

conclude that narrow-band deep lItering has very good speech and noisy TF units, based on which the steering vector of
enhancement and speech recognition performance, and excellentyegirad speech and noise covariance matrices are computed
generalization capabilities in terms of speaker variability and . L
noise type. by thg latter. Thesg approachgs plont Iegrn the spatial in-
formation. To exploit the spatial information, interchannel
Index Terms—Speech enhancement, narrow-band, deep tler- features (sometimes combined with spectral features), e.g.
ing, LSTM. interaural time-, phase-, and level-difference (ITD, IPD and
ILD) and the cross-correlation function (CCF), are input to
a neural network either for full-band TF mask prediction,
I. INTRODUCTION e.g. [12], [13], [14], or for subband TF mask prediction, e.g.
, i 9], [15]. Due to the use of the interchannel features, these
This paper addrgs_ses th'e problem of multlchannel Spe‘%ﬁbthods are sensitive to the position of the speech source.
enhancement/denoising using deep learning. In recent yeaigaefore, they consider the position of the speech source to
speech enhancement based on deep neural networks Sxed or to be known. In [16], the magnitude and phase
been thoroughly and successfully investigated, see [1] for ga yhe short-time Fourier transform (STFT) coef cients of
overview. These methods are often conducted in the timg; frequency bands and microphones are directly input to a

frequency (TF) domain, and can be broadly categorized i@ o|ytional recurrent neural network (CRNN), and predict
either monaural or multichannel techniques. The monau

wise fuII'baﬁﬂaech sources and diffuse or uncorrelated sources, i.e. noise,

spectral structure associated with noisy speech. The targgh it is not sensitive to the position of the speech source.

consists of either clean speech spectral features or of idﬁ?'the above multichannel techniques, TF masks serve as a

binary/ratio masks (IBM/IRM) which are subsequently appliegyg|iminary of a beamformer-based estimator. Even though TF
to the noisy-speech input. Recovering the clean phase s qinq is able to improve the speech perceptual quality, it is
bene cial for improving the perceptual quality, which howeve{’/videly accepted that the signal artifacts created by masking,

X. Li is with Westlake University, China, and R. Horaud is with InriaMOr€ SPECi cally by.the nonlinear opgratlon of masking, is
Grenoble RbBne-Alpes and with Univ. Grenoble Alpes, France. harmful for automatic speech recognition (ASR). Therefore,



beamforming is generally used as an interface between thg also by learning a group of functions for clean speech
speech enhancement/separation front-end and the ASR badtimation. By sharing the network weights across frequencies,
end. There are several attempts to skip the masking step, #ma network is encouraged not to learn the subband spectral
directly predict the beamformer using network. In [17], astructure of siganls, but to learn the narrow-band information
FNN is designed to learn the frequency-domain beamformerentioned above, and to perform narrow-band deep Itering.
from the time-domain generalized cross correlation (GCQhe proposed method is similar to [16] in that the network
function. In [18], the time-domain spatial lters are adaptivelyearns how to discriminate between the spatial characteristics
predicted by inputting the network a segment of multichannef directional speech sources and the diffuse/uncorrelated
raw waveforms. The beamforming network proposed in [19jature of noise, hence the method is agnostic to the position
takes as input the full-band multichannel STFT coef cientsf the speech source.

d predicts the beamf for all the f bands.
and predicts the beamiormers for &l the Trequency bands. ¢ mpared to full-band techniques [2], [3], [4], [5], [6],

In this work, we propose a LSTM-based multichanndl’], [10], [11], [12], [13], [14], [15], [16], [19], the proposed
speech denoising method. Unlike the vast majority of existingethod ignores cross-band information, and focuses on learn-
approaches that perform full-band speech enhancement, ithge narrow-band information. On one hand, this indeed loses
proposed method processes each STFT frequency bin seqgame useful informations, such as the spectral information.
rately: this is referred to as narrow-band (or frequency-wis€)n the other hand, it has the following advantages: (i) it
deep ltering. The proposed LSTM training is performeds questionable whether full-band models are able to learn
with input and target sequences of noisy- and clean-speetife narrow-band information mentioned above. As shown
respectively. Each input is a sequence of multichannel STBElow, by focusing on the narrow-band signal representations,
coef cients associated with a single frequency bin. Correhe proposed method is able to learn long-term temporal
spondingly, the target is a sequence of clean speech takipendencies, e.g. on the order of 150 STFT frames; (ii) due
at the same frequency for the reference channel. Importantty,the reduced dimension of both the input and the output, the
the network weights are shared across frequency bins, whigloposed network has a smaller number of parameters than
encourages the network to learn common information accrdafi-band models, and hence it requires much less training data
frequency bins, and also leads to a dramatic reduction in thaed both training and prediction have a lower computational
complexity and computational burden of the training processost; (iii) the proposed method is not sensitive to the wide-
Our approach is grounded by the fact that a large numberlind spectral pattern of signals, since it only exploits the
unsupervised speech enhancement methods exploit frequem@rrow-band information. As a result, the proposed network
wise narrow-band information. More precisely, the proposédths a very good generalization capability in terms of speaker
method is motivated on the following grounds: variability and noise type, and (iv) experiments demonstrate

. ) that the enhanced speech obtained with the proposed method
The frequency-wise temporal evolution of the STFE4, pe directly used for ASR, which means the signal artifacts

magnitude is informative due to the non-stationary natugg,;seq by the prediction error of the proposed narrow-band
of speech against the stationarity of noise, which stanfsnyork are not detrimental for ASR.

at the foundation of unsupervised single-channel noise

power estimation, e.g. [20], [21], as well as multichannel This paper is an extended version of a recently published
relative transfer function (RTF) estimation [22], [23].conference paper [30], in which we proposed a narrow-band
Recently it was demonstrated that a LSTM network i§STM architecture for speech enhancement and we demon-
able to accomplish monaural frequency-wise noise powgirated its effectiveness when using the magnitude ratio mask
estimation [24]; as a network target. The contributions of this work over [30]
The frequency-wise spatial characteristics of the STHMclude:

coef cients fully re ect both the directionality of speech N ] ]

and the diffusion of noise and reverberation. This is the N addition to the magnitude ratio mask, we evaluate
foundation of speech enhancement methods such as the Other targets, namely the STFT complex coef cient and
coherent-to-diffuse power ratio method [25] and beam- @ Spatial Iter. These two targets are not new on the!r
forming techniques [22], [26]. Moreover, the temporal ~ OWn, as the complex STFT coef cient has been used in
dynamics of frequency-wise spatial correlation contain [3l. [4], and beamformer in [17], [18], [19]. However,
motion information associated with a speech source; the theoretical bases for estimating them in this work are
The frequency-wise representation is informative for ~Ccompletely different from the ones in other works: (i) the
clean-speech estimation. Indeed, with proper parameter Prediction of the complex STFT coefcient in [3], [4] is
estimation, single-channel spectral subtraction (Bayesian based on the fact that the real and image spectrograms

ltering) [27], [28], and multichannel spatial Itering, e.g. both have a clear structure being similar to the magnitude
beamforming [22] and multichannel Wiener ltering [29], ~ SPectrogram, and thus can be predicted based on super-
are performed independently across frequencies. vised regression. In contrast, in the proposed narrow-

band method, the spectrogram structure obviously does
Overall, the proposed LSTM architecture is expected to fully not exist. Instead, we aim to exploit the spatial features of
exploit the frequency-wise information, not only by learning  signals to estimate the complex STFT coef cient of clean
a regression from the input sequence to the output sequence, speech; (ii) in the previous deep beamforming techniques



[17], [18], [19], the beamformer of all the frequencies arevhere x; (k;t), sij(k;t) and uj(k;t) are the complex-valued
predicted together by one single network. However, suSTFT coef cients of the microphone, speech and noise signals,
setup has never been testi ed, as the unsupervised beagspectively, and where2 f 1:::1g, k 2f0::: K 1g and
former [22], [26] is usually estimated frequency-wiset 2 f 1:::Tg denote the channel (microphone), frequency-
The beamforming techniques consists of two componentsn and frame indices, respectively. In this paper the focus
i.e. parameter (such as RTF and noise covariance nis-on signal denoising task and hence the reverberation effect
trix) estimation and beamformer computation. Narrowis not addressed. Therefore, the objective is to recover the
band has rich information for parameter estimation gpossibly reverberant) speech signal of one reference channel,
discussed above, and beamformer computation is natug. s; (k;t), wherer denotes the reference channel. In the
rally conducted frequency-wise. Therefore, the propose@doposed method and as already mentioned, a single network
narrow-band spatial Itering technique appears to be ia trained using the narrow-band sequences over all frequency
supervised deep-learning implementation of unsuperviskihs, and the trained network is then used to predict a sequence
beamforming techniques. at each frequency bin. Thence, for the sake of clarity, the
The proposed method is extensively evaluated with mof@quency-bin indeX will be omitted hereafter.

experiments in terms of the speaker/noise-generalization

capability and speech enhancement. In addition, we eval-

uate the automatic speech recognition (ASR) performange Input Features

of the proposed method. We do have an important new

nding, namely the proposed narrow-band framework is For each TF bin, the real and imaginary paRg,), | () of
more suitable for ASR compared to the full-band tectthe multichannel STFT coef cients are concatenated into the
nigues, although the latter may achieve better speech gactor:

hancement evaluation scores. Different speech enhance- >

ment methods would bring different types of processingx(t) = REa@) @)z RO @) () 5 (2)
artifacts [31]. Our experiments demonstrate that the Wid@nere > denotes vector transpose&(t) 2 R2 contains

band artifacts or cross-band structured artifacts, broughformation associated with one TF bin. The input sequence

by the full-band methods are more harmful than thgf | STM is a temporal sequence of such vectors at each
narrow-band artifacts brought by the proposed methodf.requency bin, namely:

As for the spatial Iter target, to incorporate one im-
portant characteristic of beamforming, i.e. beamformer X = x@Q);:x();:5x(T) ; 3)
is somehow temporally smoothed, we propose a ne

training loss to impose the temporal smoothing on th\&\fwereT denotes the number of time steps of the LSTM

predicted spatial lter. This keeps the temporal Consiéw_etwork. To facilitate network training, the input sequence has

tence of both the enhanced speech and the residual no‘gebe normalized to equalize the input levels across channels

and thus improves the ASR performance, although t dhacrofss time. Vr\1/e emlplncallyI s.etldhe STFT magnitude
speech enhancement performance degrades. of the reference channel, namely:

(

Overall, this work comprehensively presents and evaluates the X =X= p (4)
narrow-band deep lItering method. Different targets are eval- with : = Ti Ll ixe (O]

uated, which is important and necessary since the theoretical

bases for estimating each target in narrow-band are different

from the ones in wide-band. It is also important to evaluate tiile Output Target and Training Loss

ASR performance of the proposed method, since state-of-the-

art speech enhancement networks do not necessarily improvés already mentioned, we want to recover the clean speech
ASR performance. signal of the reference channel, esg(t). To this end, we test

. . . . .the following network targets.
The remainder of this paper is organized as follows. Section 9 9

Il describes the proposed narrow-band deep ltering model 1) Magnitude Ratio Mask (MRM)For each TF bin, the

and the adopted LSTM architecture. Section Il describes thecti ed STFT magnitude ratio mask

experimental setup, the LSTM network training characteristics, s (D

the speech enhancement and speech recognition experimental M (t) = min !sr( )J_; (5)

results. Section IV concludes the paper. Supplemental material X (1))

(examples of processed noisy speech utterances) are avail@iBe target, where the function nfiirecti es the mask to fall

at https://team.inria.fr/perception/research/mse-Istm/. in the rangd0; 1]. For each frequency bin, the target sequence
is

I[I. NARROW-BAND SPEECHENHANCEMENT NETWORKS M= MQ@Q);:::;M(@):::;M(T) (6)

Let the multichannel signals be represented in the STHhe mean squared error (MSE) of MRM, i@4 (t) M (t))2,
domain: is taken as the training loss, whek&(t) denotes the MRM
Xi(k;t) = si(k;t) + ui(k;t); (1) network prediction. At test, the MRM predictidvt (t) is used



to estimate the module of the STFT coef cient while its phase 3) Spatial Filtering: The combination of TF masking

is the phase of the reference channel: and beamforming techniques often achieve state-of-the-art
S ) ) ASR performance. The beamforming techniques consists of

j8(0i = M ®ix (1)j; (") two components, i.e. parameter estimation and beamformer

arg(8(t)) = arg( x, (1)) (8) computation. For each frequency, parameters, e.g. speech

. . TF and noise covariance matrix, are estimated using the
It was demonstrated in [32] that, in the framework of monaurgy e ech-dominant and noise-dominant TF bins, respectively,

full-band ”.‘as"'”g’ th.e (';AR:)VI a(;hlevei the bﬁSt pgﬁrmall;% d then beamformer is derived based on some criteria. In
among various magmtl_J €-based masks, such as or e techniques of combining TF masking and beamforming,
Our preliminary experlm_ents within the pre_sent framewor, e monaural full-band TF masking provides an accurate
also demonstrate that this target performs slightly better th@l’&ssi cation of speech-dominant and noise-dominant TF bins,

IRM. The magnitude mask performs as a spectral SUbtr"’mti\(}?}ﬁich make a great contribution to the success of these
gain for denoising in [27], [28] and for dereverberation in [25]be

Many narrow-band informations can be used to estimate t
gain, such as the stationarity and diffuseness of signals.

chniques. This success motivates the development of deep
Samforming techniques [17], [18], [19], which leverage one
single network to directly predict the beamformer for all
2) STFT Complex Coefcient (CC):In the monaural the frequencies. Considering that beamforming is actually a
full-band speech enhancement techniques, cIRM [2] af@rrow-band method, namely its parameter estimation and
real/image spectra [3], [4] are taken as the training targetsRgamformer computation are both conducted frequency-wise,
estimate the complex spectra, since both real and image sgk&éeems not reasonable to predict the beamformer for all the
trograms have a clear structure and thus can be predictedfwuendes together. In contrast, we think the present narrow-
supervised regression. In this work, the narrow-band netwdPRnd framework is naturally consistent to beamforming. As
does not exploit the spectral structure of the signal. Instedliscussed above, narrow-band also provides rich pieces of
we estimate the Speech STFT coefcient from the mu|tii.nformati0n for speech/noise TF bins classi cation, such as the
microphone signals, which is possible: the speech imagesstationarity and spatial characteristics of signals. To explicitly
the multi-microphone signals are actually the source speegmic the beamforming-like techniques, we let the network
multiplied by the acoustic transfer functions, alternatively th@utput a multichannel spatial Iter.
speech image at the reference channel multiplied by the RTFSgq a1y for each TF bin, de ne the multichannel spatial
The RTFS are tlme-_lnvarlant (resp. slowly time-varying) forlter w(t) 2 R? by:
the static (resp. moving) speaker case, and can be (adaptively)

channel can be estimated by such as beamforming. Note that (11)
this RTF-based beamforming technique J_ust_ serves here as1%r(1a output is then used to estimate the clean speech,
example to show that, at one frequency bin, it is possible to es-

timate the speech STFT coef cient from the multi-microphone 8¢(t) = (R(&sH(1)); 1 (8 T (12)
signals. We let the network automatically learn a function to ) ) ) _

do this, by exploiting the spatial features of speech and noid¥. @PPlying the following complex-valued spatial ltering to
We have compared CC and cIRM with some prelimina’® input:

experiments, while similar performance were achieved. Xi

R(8(1)) = RWi(D)RXi(1) I (wi(t) (xi(t)) ;

Formally, the real and imaginary parts gf(t) for one TF -

bin, i.e.

s(t) = (R(s (1); 1 (s (1)) 2 R @ Gs(D)= B R(wi (D)1 (xi (1) + I (wi()R(xi(t)) :
are direCtIy used as the network target. For each frequerlfdr each frequency bin, the sequence of Spatia| lter is
bin, the target sequence is

W = w(l);::5;w(t)::;w(T) : (13)
S= s(Q);:::;s(t)::;8(T) - (10)

According to the input sequence normalization, i.e. (4), the tar—The major goal of deep spatial ltering is Fo ”.‘ake the
get signal is also normalized with like s, (k:t)= . However, enhanced 'S|.gnal more suitable for ASR. It is difcult to
we keep to uses (k:t) to denote the normalized signal forset the tra_lnlng target and loss for the speech enhance_ment
notational simplicity. The training loss is the MSE between thréetwork, since the ASR prefgrgnce on t_he enhancgd signal
S not very clear. One promising way is to optimize the

ISeT Fk-g(f)o efg(lf)nktz?f clean speech and the network IC)mdIcnmg’peech enhancement network directly by the ASR loss, as is
done in [17], [18], [19]. One dif culty for this is the joint
At test, §(t) is the predicted enhanced signal. The sign#faining of the speech enhancement network and ASR network,
normalization is conducted for each frequency independentivhich suffers from the local optima problem. To mitigate this
thence the enhanced sigrigt) should be multiplied by to problem, the speech enhancement network can be rst pre-

keep the level consistency across frequencies. trained, such as with the target of delay and sum beamformer



Notice that this gure summarizes three networks with three
size:1;22 se:l22 different targets and associated outputs, namely MRM, CC,

Activation Activation : : -
output size'1: 2 2 output size'1: 2 2 and SF. While the input sequence at frequency liis the
Dense Dense same for all three networks, nameXy(k) de ned in (4), the
output size:1; 2; 2! output size:1; 2; 2! network outputs and the output dimensions are different. The
" Backward LSTH " Backeard LSTH output sequencdﬂl'(k), S(k) andW (k), de ned' by (6), (10)
U7 outputsizer128 71T output size28 T and (13), are of dimension 1, 2, a@t, respectively.
Forward LSTM Forward LSTM Moreover, we chose different activation functions for each
output size:128 | 1 output size:128 | 1 one of these networks, namebigmoid identity and tanh
. [ BackwardLSTM | /[ | Backward LSTM | respectively. We remind that the same network (same param-
output size:256 ! 0 output size256 |/ . . . .
7777777777777777777 eters) is trained for all the frequency bik2 f 0::: K  1g.
Forward LSTM | Forward LSTM | \ The number of parameters to be learned slightly varies with

output size256 ' output size256

the number of microphones and with the dimension of the

’/ ’/ output. On an average, the LSTM and BLSTM networks have
size:2I size:2I 470,000 and 1; 200, 000 parameters, respectively.

1 t 1 t T

Fig. 1. Diagram of the proposed architecture. The unidirec-
tional (forward) LSTM is represented with solid-lines blocks HI. EXPERIMENTS
and arrows, while the additional blocks and arrows needed er

BLSTM are represented with dashed lines. Experimental Setup

1) Data Generation: We use the CHIME4 dataset [33],
. . . hich was recorded with six microphones embedded in a
(DSB) and log-magnitude spectra in [17], or with the targ? blet device. CHIME4 toolkit provides a method to simulate

e o s S aman o s aralJe mulichannel data. Houeer nsiead of using he i
. e ; ' channel frequency responses, this method only simulates the
joint training with ASR network is left for future work. We g y resp y

set the training loss to a regular speech enhancement loss mhgltichannel time delays. Our preliminary experiments show
the MSE loss of the STFT coef cierkis(t) &(t)k? (the one that training the network with this type of simulated data

: . performs poorly with real test data. Therefore, we use real
also used for the CC target). In the present spatial Itermg?ta both for training and for testing purposes. The noise-free

U\‘;;i‘;nneev:lol?é} t\r;\llz lrc;:rItsol'?hitg(laozzrgifnsrmt as trl.e mfltlcg";‘:nn%ultichannel speech data were recorded in a booth (BTH) and
' ply as spatial lter (SF). the training, development and evaluation data were recorded
This loss is optimal in the speech enhancement senbg,three different groups of four speakers. The multichannel
which however is not necessarily optimal for ASR. We thinkackground noise were recorded with four noisy environments,
one important characteristic of beamforming that makes riamely bus (BUS), cafe (CAF), pedestrian area (PED), and
good at ASR is that: the parameters, e.g. RTF and noisieet junction (STR). For each type of noise, four to ve
covariance matrix, are normally estimated with a long-tersessions were recorded at different times, with a duration of

temporal smoothing, thence the beamformer is just slow@pout 0.5 hours per session.

time-varying as well, which keeps the temporal ConSIStenceThe four speakers in BTH training set (399 utterances) are

of both the enhanced speech and the residual noise. In Otngéd for network training, and the eight speakers in BTH

words, beamforming does not cause abrupt artifacts. Base‘jcft)er\]/elopment (410 utterances) and evaluation (330 utterances)

this assertion, we revise the training loss to smooth the spaggks are used for test. Each noise session is split into two
lter as: sub-sessions used for training (60%) and for test (40%), re-
ks(t) &(t)k>+ kw(t) w(t 1)K? (14) spectively, which means that different noise instances are used
for training and for test. To generate the training data, noise
where denotes the weight for the smoothing loss. This losggments randomly extracted from the training sub-sessions
will be referred to as smoothed spatial Iter (SSF). are mixed with BTH training utterances, with signal-to-noise-
ratios (SNRs) randomly selected from the intefval; 10] dB.
Each training utterance is mixed with fteen different ran-
domly selected noise segments, and a total of about 11 hours

The architectures of the proposed LSTM and bidirectiongf training data are generated.

LSTM (BLSTM) networks are shown on Fig. 1. It maps the Two groups of data are tested, (i) MIXED data: back-
input sequence onto the output sequence. Two LSTM layemound noise segments randomly extracted from the test sub-
are stacked. Through a dense layer, the output vector of #essions are mixed with BTH test utterances, with SNRs in
second LSTM layer is mapped onto the output vector. Then &in4; 0; 4; 89 dB. For each noise type and SNR, about 200
activation is applied to obtain the network output. The outptest utterances are generated; (i) REAL data: the development
size of LSTM layers are set based on preliminary experimen{Bev) and evaluation (Eval) sets from CHIME4 real data were

C. Network Architectures



TABLE [: Network summary of WB-CRNN-MRM, WB-BLSTM1-SF, WB-BLSTM2-SF and the proposed BLSTM-SF, for

the 4CH case.

WB-CRNN-MRM [16]

WB-BLSTM1-SF [19]

WB-BLSTM2-SF [19]

BLSTM-SF (prop.)
8

Input dimension
Network

Output dimension
# Parameters
Training data

4 129 2
3 CNN @2
1 BLSTM (128)

1 Dense (512) + 1 Dense (129)

129
8.8 M
19 hours

1, 64, out: 8259)

2056
1 BLSTM (256)
1 BLSTM (128)
1 Dense (2056)
2056
59 M
11 hours

2056
2 BLSTM (1024)
1 Dense (2056)

2056
54.6 M
56 hours

1 BLSTM (256)
1 BLSTM (128)
1 Dense (8)
8
1.2 M
11 hours

recorded in the four noisy locations by the same speakerstlie close-talk signals provided in the CHIME4 dataset are not
reliable. Instead, a non-intrusive metric is used to measure

both development and evaluation BTH sets.

The signals are transformed to the STFT domain usi
a 512-sample (32 ms) Hanning window with a frame st

dhe speech enhancement performance, i.e. the normalized
eech-to-reverberation modulation energy ratio (SRMR) [39],

of 256 samples. The sequence length for training is set ich measures the amount of noise, and also re ects the

T = 192 frames (about 3 s), which means the LSTM networﬁpeeCh intelligibility. In addition, we tested the performance
is trained to learn 192 tim,e steps of memory. The trainivng;r automatig speech recognition (ASR) .obtained with_ the
sequences are picked out from the utterance-level signals Wanced signals. The ASR of [40], with already-trained

50% overlap for two adjacent sequences. In total, about 6. R models and_decodmg recipe provided in CHIME4 is
millions of training sequences are generated. For test, en as the baseline systériihis system uses mel-frequency

utterances are not cut into sequences with lengthl @2 cepstral coef cients (MFCC), a DNN-HMM acoustic model

frames but, instead, the entire utterances are directly used qud ?n RNN dlanguaghe mO?EL hThe PNN'HMI\T. aCOS.S.tIC
sequence-to-sequence prediction. model is trained using the single-channel noisy multi-condition

CHIMEA4 training data. The ASR performance is measured

2) Training Con guration: We found that the microphone yith the word error rate (WER), the lower the better.
#1 recording in the evaluation set has a much larger volume

than the volume used in other recording sets. The issue oft) Comparison MethodsWe compare with the following
microphone array mismatch is beyond the scope of this wofRUr multichannel speech enhancement methods:

thus microphone #1 is not used. Microphone #2 is not used as
well, due to its low availability. We conducted experiments
with two microphone con gurations, i.e. microphones #3,
#4, #5 and #6 (4CH), and microphones #5 and #6 (2CH).
Microphone #6 is taken as the reference channel. The network
variants are named based on the network type, i.e. LSTM or
BLSTM, on the output target, i.e. MRM, CC, SF or SSF.
For example, BLSTM-SSF refers to BLSTM with smoothed
spatial Iter as target. Based on some preliminary experiments,
we set the weight in (14) for BLSTM-SSF to 1. All these
network variants are trained individually from scratch.

The Beamformlt method of [41], based on an unsuper-
vised lter-and-sum beamforming technique;
The neural-network based generalized eigenvalue beam-
former (NN-GEV) method of [10]. A BLSTM network
is used to estimate a spectral mask, based on which
a generalized-eigenvalue beamformer is computed and
applied to speech denoising. We use the toolkit provided
by the authors of [10f,in which the BLSTM parameters
had already been trained using the CHIME4 training
dataset;
The CRNN method of [16] takes as input multichannel
We use the Keras environment [34] to implement the full-band STFT coef cients and predicts single-channel
proposed architectures and associated methods. The Adam full-band MRM, i.e. (5). Several CNN layers are em-
optimizer [35] is used with a learning rate of 0.001. The batch ployed for each STFT frame to extract the inter-channel
size is set to 512. The training sequences were shuf ed. Based information, then followed by one BLSTM layer to learn
on some preliminary experiments, all the networks are trained the inter-frame information, where two past frames and
with ten epochs. two future frames are taken as the context for each frame.

3) Performance Metrics:To evaluate and benchmark the  Since the authors’ implementation is not publicly avail-
speech enhancement performance for the MIXED data, three able, we implemented the method and used the CHIME4
intrusive metrics are used, (i) the perceptual evaluation of dataset to train and evaluate [16]. About 19 hours of
speech quality (PESQ) [36] which evaluates the quality of training data were used, from which 9.14 millions of
the enhanced signal in terms of both noise reduction and training samples were generated. The STFT is conducted
speech distortion, (ii) the short-time objective intelligibility ~ With 256-sample frame length and 128-sample frame step.
(STOI) [37], a metric that highly correlates with noisy speech ~ We refer to this method as wide-band CRNN-MRM (WB-
intelligibility; and (iii) the signal-to-distortion ratio (SDR) [38] CRNN-MRM);
in dB measures the level of noise reduction. For all the metrics, The full-band deep beamforming network of [19]. A
the larger the better. The BTH clean signal is taken as the BLSTM network takes as input the multichannel full-

reference signal. . . .
http://spandh.dcs.shef.ac.uk/chimballenge/chime2016/download.html

For REAL data, these intrusive metrics are not used becausthttps:/github.com/fgnt/nn-gev



band (real and image parts of) STFT coef cients wit
dimension of2K1 , and predicts the full-band (real and
image parts of) beamformer with the same dimensio
as input. To have a fair comparison, we don't follow|
the training setup presented in [19] — that trains th
speech enhancement network with an ASR loss. Insted
we follow the way presented in this work that uses thg
MSE loss of the enhanced STFT coef cients. The sam|
STFT con guration with the proposed method is taken]
We implemented two networks: (i) the one presented i
Fig. 1, namely two BLSTM layers are stacked, each lay
has 256 and 128 hidden units, respectively. This netwo
is trained using the same amount of data with the prgs
posed method, i.e. about 11 hours. The training sequend
with 192 frames are picked out from the utterance-leve
signals with 50% overlap for two adjacent sequence
This generates abo@g; 000training sequences. This net-
work is referred to as WB-BLSTM1-SF; (ii) the previous

n_etwork IS ObVIOUS!y too small relative to. the mput/outpg't:ig_ 2: Speech enhancement results for the MIXED data with three
dimension. We trained a more apprpprlate n_etwork W'tg\ﬁerent training con gurationsspeaker independent and noise-type

two layers stacked, and with 1024 hidden units per lay&fependen(SID-ND), speaker independent and noise-type indepen-
About 56 hours of training data were used. This networkent (SID-NID), and speaker dependent and noise-type dependent

is referred to as WB-BLSTM2-SF. Both networks aréSD-ND). These results are the averaged scores over the four envi-
trained with a batch size of 32. ronments, with a SNR of 0 dB, and for the 4CH case. The PESQ,

STOI and S_.DR of the unprocessed signals are 1.60, 73.8% and 0.4
Table | briey summarizes the four networks, i.e. WB-dB, respectively.
CRNN-MRM, WB-BLSTM1-SF, WB-BLSTM2-SF and the

proposed BLSTM-SF. Note that the proposed networks Wlthnd spatial informations. Inevitably, the network will learn

h I BLSTM-SF only with a sli . .
T e L e e i h specia paten of g, and hus i has he proem
: neralize to unseen speakers that have new spectral patterns.

tant characteristic of the proposed narrow-band network is tﬁ%ese methods generalize well in term of noisy tvoe. possibl
small network size and the low training data demand. . 9 . Y Iype, p y
since the spectral pattern of each CHIME4 noise type can be

well covered by the other three noise types.

B. Evaluation of Generalization Capabilit
P y We here only show the results for BLSTM-SF, and the pro-

The default training setup presented in Section 1lI-Al iposed network with other targets behave similarly as BLSTM-
speaker independent and noise-type depend&hD-ND): SF. The proposed narrow-band network achieves comparable
even though training and test use different noise instances, tipgyformance for all the three con gurations, which means it
both use all the four noise types. To evaluate the generalizatioms good generalization capabilities in terms of both speaker
capability in terms of speaker identity and of noise type, twand noise type. The network is trained using narrow frequency
extra training setups are also tested : §peaker independentbands, hence the wide-band spectral-pattern differences be-
and noise-type independef8ID-NID): four speakers are usedtween the training and test samples, of both speech and noise,
for training and the other eight speakers are used for test, s@t¢ not taken into account and hence they shouldn't have
three noise types are used for training and the other noise tygseimpact on the generalization capabilities of the proposed
is used for test, and (iispeaker dependent and noise-typgodel. The network is actually trained to learn some functions
dependent(SD-ND): all twelve speakers and all four noisdased on the temporal and spatial characteristics of speech and
types are used to generate training data. For each methodioise, which are independent with respect to their spectral
similar amount of training data were generated for all thesentent. In addition, in the CHIME4 data, the microphone-
three con gurations. to-speaker relative positions are time-varying for both the
ﬁjining and test data, which means that the proposed method

the MIXED data for these three training con gurations. For thﬁfeo %inggzltljze;ov(\j/(ee:l Ilga:irTesatcEJ frergomg% ;feezlzeitr;blgvaec:?gés
wide-band methods, i.e. WB-CRNN-MRM, WB-BLSTM1-SF, > PP o ! . .

and WB-BLSTM2-SF, the speaker dependent case, i.e. gtzauency bins, as well as for unseen speakers and noise types.
ND, noticeably outperforms the speaker independent caseThe wide-band methods have the speaker generalization
i.e. SID-ND. The noise-type dependent/independent con gurproblem when using only four training speakers, which can be
tions, i.e. SID-ND and SID-NID, achieve similar performancenmitigated by increasing the number of training speakers. To
The wide-band methods takes as input the full-band multichaily compare the speech enhancement capabilities regardless

nel STFT coef cients, which include all the spectral, temporalf speaker generalization, we report the SD-ND results for the

Fig. 2 shows the speech enhancement results obtained vgi



six future frames are already very effective to reduce the loss,
and about 25 future frames provide suf cient information to
e further reduce the loss to a satisfactory value. For an online
application, past information is always available. The amount
of future frames to be used can be chosen as a trade-off
between performance and processing latency: (i) 25 future
frames can be used to have the best prediction performance
that BLSTM can achieve, which however leads to a 400 ms
latency, (ii) 6 future frames can be chosen to have a good

] | performance with 96 ms latency, which is not a problem from
WJ a practical point of view.

Tables Il and Il show the experimental results obtained
00073 75 150 225 300 375 with the MIXED and REAL data, respectively. Comparing
time step (frame) the results of LSTM-SF and of BLSTM-SF, one can see that
Fig. 3: The loss evolution, i.e. MSE, as a function of time steg3LSTM performs, indeed, noticeably better than LSTM in
for the proposed BLSTM-SF (blue) and LSTM-SF (orange) methoderms of both speech enhancement and speech recognition. A
(with 4CH). larger error obtained with LSTM than with BLSTM would
lead to a larger speech distortion and to less noise reduction.
The difference in performance between LSTM and BLSTM
can easily be perceived by listening to the enhanced signals.
The comparison between LSTM and BLSTM, based on the
C. Unidirectional versus Bidirectional LSTM performance of LSTM-SF and BLSTM-SF (with 4CH), also
holds for other proposed targets and numbers of channels.
As presented in Section Ill-A, we perform sequence-tdn the following, we will only analyze the performance of
sequence network training using xed-length sequences wiL.STM networks.
T =192 frames, which means the back propagation (through
time) of gradients is truncated at 192 time steps. In other

words, the network is trained to learn 192 time steps ¢f Speech Enhancement Results with MIXED Data
memory. At test, the network predicts length-varying utter-

ances. Utterances with different lengths have different memorytapie 11 shows the speech enhancement results obtained
lengths, moreover, different time steps in one utterance haygh the MIXED data and with an SNR of 0 dB. It is not
differrent forward/backward memories. To analyze how thg,prising that the 4CH cases outperform the 2CH ones, due to
memories work, and how many time steps could be memorizggh yse of richer spatial information. In the following, we will

in the proposed narrow-band LSTM framework, Fig. 3 showgainly compare the 4CH performance scores (the comparison
the MSEs as a function of time step. To obtain this plot, we equally valid for the 2CH cases).

generated one extra group of data (we used the same data gen-

eration protocol as with the MIXED test data), which includes Over the unprocessed signals, Beamformlt improves the
1.3 million sequences with a xed length df = 375 frames Scores to a certain extent. NN-GEV, which uses a deep neural
(six seconds). The MSEs averaged over all the sequencesng@vork to classify the speech and noise TF bins, performs
shown in Fig. 3. The MSE of LSTM quickly drops from 0.3much better than Beamformit. It was demonstrated in [10]

to 0.1 in a few time steps, which means a few past fram#at the speech enhancement performance of NN-GEV is quite
are already very effective to reduce the loss. The MSE elfose to the performance of an oracle beamformer, while the
LSTM then slowly converges to 0.077 in about 150 time stepgfacle one uses the true speech/noise classi cation for the
which means that, for one time step, the frames earlier thegamformer estimation. All the other methods prominently

about 150 time steps do not contribute anymore. This is dastperforms these two beamformers. This indicates that the
to one of the following reasons (or the combination of themgechniques that directly predict the clean speech with neural
(i) the LSTM network is only able to learn the memory ohetwork have a better noise reduction capability than the
about 150 time steps, and (i) about 150 time steps alrea@gamforming techniques.

provide enough context [aiormation in terms of the temporal \yg CRNN-MRM and the proposed BLSTM-MRM both
P properties ot the sighal. predict the magnitude ratio masks (MRMs), while the latter
When future frames are used, the MSE drops from 0.0&thieves similar STOI scores and better PESQ and SDR
for LSTM to about 0.05 for BLSTM. At the two ends,scores. Better PESQ and SDR scores indicate more noise
BLSTM has a larger MSE due to the insuf cient past or futureeduction. In [16], it was stated that WB-CRNN-MRM mainly
context. At the end part, BLSTM has enough past contexxploits the wide-band spatial characteristics to distinguish
The MSE is reduced from 0.097 at the 375-th frame to 0.@®tween speech and noise, by rst extracting the inter-channel
at the 369-th frame, and to 0.05 at the 350-th frame. Thispatial) information with CNNs and then exploiting its short-
indicates that, when enough past context is being used, abtmut (ve frames) temporal dynamics with BLSTM. We can

o
w
a

mean squared error
o o o o o
= I ] N w
(= w o w =3

o
o
a

wide-band methods in the following experiments.



TABLE II: Speech enhancement results obtained with the MIXED data. SNR is of 0 dB.

PESQ" STOI (%)" SDR (dB)"
BUS CAF PED STR Average BUS CAF PED STR Average BUS CAF PED STR Average
unproc. 193 147 143 157 160| 826 695 67.2 76.0 73.8| 0.3 0.6 01 06 0.4
Beamformit [41] 203 155 151 166 169|837 716 701 77.1 75.7| 0.1 0.5 05 04 0.4
NN-GEV [10] 212 157 161 176 1.77| 86.7 751 749 818 796 | 1.8 1.9 21 23 2.0

WB-CRNN-MRM [16] | 259 1.88 1.80 214 210| 89.6 814 79.6 86.0 842| 9.6 6.8 5.6 8.1 7.5
WB-BLSTM1-SF [19] | 2.80 199 196 2.38 228 | 90.7 808 79.9 86.8 84.6 | 13.7 9.0 83 113 10.6
WB-BLSTM2-SF [19] | 3.22 241 239 284 272| 947 878 872 922 904 | 169 118 11.0 14.0 13.4

2CH BLSTM-MRM 285 215 208 244 2.38| 894 801 783 851 83.2| 125 9.2 81 104 10.1
BLSTM-CC 292 214 210 248 241| 905 804 78.9 858 83.9| 141 100 94 116 11.3
BLSTM-SF 293 215 211 249 2421 904 804 79.0 859 83.9| 143 100 95 117 11.4
BLSTM-SSF 262 200 191 223 219|889 795 775 844 82.6| 124 9.6 8.6 10.7 10.3
Beamformit [41] 207 160 156 1.68 1.72| 85.0 742 725 781 774 0.4 0.5 1.0 0.2 0.5
NN-GEV [10] 237 177 179 2.00 1.98| 90.6 833 829 89.0 86.4| 3.6 4.2 4.8 4.4 4.3

WB-CRNN-MRM [16] | 2.77 211 197 234 230| 914 864 845 891 87.9| 8.0 9.7 7.6 6.4 8.4
WB-BLSTM1-SF [19] | 292 215 210 2.49 241] 923 848 837 891 87.5| 15.0 10.7 102 129 12.2
WB-BLSTM2-SF [19] | 3.39 2.60 2.56 3.00 2.89| 95,7 904 89.6 9338 924 183 136 128 16.0 15.2

4CH BLSTM-MRM 310 242 232 271 264|913 853 83.0 888 87.1| 131 102 91 111 10.9
BLSTM-CC 3.28 253 241 287 277|923 86.2 839 905 88.3| 16.6 13.0 12.0 14.9 141
LSTM-SF 3.01 228 217 263 252| 90.7 831 810 884 85.8| 145 109 10.0 129 121
BLSTM-SF 323 252 241 285 276 | 91.7 856 834 897 88.6| 16.1 128 11.8 14.9 13.9
BLSTM-SSF 3.04 240 228 2.66 260 | 91.7 856 834 897 87.6| 151 122 11.3 13.8 131

see from this comparison that, compared to using the widBLSTM-CC are 2.38 (resp. 10.1 dB) versus 2.41 (11.3 dB),

band spatial information, fully exploiting the narrow-bandvhile these scores for the 4CH case are 2.64 (resp. 10.9 dB)
temporal-spatial information is more powerful for speech/noisersus 2.77 (resp. 14.1 dB). BLSTM-SSF smooths the spatial
discrimination. Iter to keep the temporal consistence of the enhanced signal,

which however violates the optimal estimation of clean speech.
WB-BLSTM1-SF, WB-BLSTM2-SF and the proposedyg 5 result, the speech enhancement scores are degraded
BLSTM-SF all predict a spatial Iter and minimize the MSE g ative to the ones of BLSTM-SF.

loss of the STFT coefcients. WB-BLSTM1-SF (and WB-
BLSTM2-SF) takes as input the full-band STFT coef cients Fig. 4 shows waveforms and spectrograms associated with
of the multichannel noisy signals, which attempt to fulone example. It can be seen that two beamformers (Fig.
exploit temporal-spectral-spatial information. This wide-bandl (c) and (d)) well preserve the speech spectra, while a
method requires a big network and a large amount of trainifeyrge amount of noise still remain, which corresponds to the
data to tackle the very high input/output dimensions, as WBsw speech enhancement scores presented in Table Il. Three
BLSTM2-SF (with 54.6 M parameters and 56 hours of trainingide-band methods, i.e. WB-CRNN-MRM, WB-BLSTM1-
data) achieves far better performance measures than W~ and WB-BLSTM2-SF (Fig. 4 (e), () and (g)) largely
BLSTM1-SF (with 5.9 M parameters and 11 hours of trainingemove the noise and recover the speech structure. However,
data). With the similar networks and the same amount tife recovered speech spectra look somewhat blurred along
training data, the proposed BLSTM-SF noticeably outperforntise frequency axis, and some wide-band spectra are wrongly
WB-BLSTM1-SF, since BLSTM-SF adequately learns thdeleted or inserted. These types of wide-band prediction error
narrow-band information. When the wide-band network is wedlre caused by that: for high-dimensional (full-band) regression,
trained, compared to BLSTM-SF, WB-BLSTM2-SF indeedthe networks are not fully capable of recovering the details
achieves higher performance measures, but at the cost of usihghe high-dimensional output vector, and prediction errors
a much larger network and more training data, and the costase highly correlated between vector elements (frequencies).
suffering the speaker generalization problem. The wide-band prediction errors lead to some audible abrupt
distortions/interferences by listening to the enhanced signals.
~BLSTM-CC and BLSTM-SF both target the STFT coef -\, contrast, the proposed narrow-band methods (Fig. 4 (h)-(k))
cients, and achieve comparable speech enhancement pegigiyt produce the wide-band distortions, due to the untied
mance. This indicates that the use of spatial lter does ngby encies. It is consistent to the results of Table Il that
have a signi cant impact on sp_eech enhancement performangestm-cc and BLSTM-SF perform similarly, and remove
BLSTM-CC (and BLSTM-SF) improves the performance ovef,qre noise than BLSTM-MRM and BLSTM-SSF. In the very
BLSTM-MRM by recovering the complex spectra of cleafy,, frequency region, the proposed methods failed to properly
speech. As already mentioned in Section 1I-B2, o estimglgqict the speech spectra due to the very low SNR in this
the complex spectra of clean speech in narrow-band, what ¥Wjion. For this case, the wide-band networks work well by
expect to use is the spatial features of signals. This expectatg}@dictmg all the frequencies together.
is veried by the experimental results: when using more
microphones, the prediction of the complex spectra is moreResults obtained with other SNR values are shown in Fig.
reliable, and correspondingly the superiority of BLSTM-CG. For the sake of clarity of illustration, the curves of WB-
over BLSTM-MRM is more prominent. For example, for theBLSTM1-SF, BLSTM-CC and BLSTM-SSF are not shown.
2CH case, the PESQ (resp. SDR) score of BLSTM-MRM artl can be seen that the conclusions drawn above hold for a
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(a) clean speech (b) noisy (unproc.)

(c) Beamformit (d) NN-GEV (e) WB-CRNN-MRM

(f) WB-BLSTM1-SF (g) WB-BLSTM2-SF (h) BLSTM-MRM

(i) BLSTM-CC (i) BLSTM-SF (k) BLSTM-SSF

Fig. 4: Waveforms and spectrograms of the clean-speech input, of the added noise and of the results obtained with state of the art methods
and with the proposed BLSTM models, associated with one utterance from the MIXED dataset using four channels (4CH). In this example,
CAF noise is added to the clean speech signal and the SNR is of O DB.

wide range of SNR values, except that Beamformit and NN- As already mentioned, all the proposed networks were
GEV don't improve the SDR of unprocessed signals for thieained with ten epochs, which achieves approximately the
high SNR case. best speech enhancement performance, and a few more or less
epochs don't lead to a notable performance change. However,
this is not true for the ASR performance. For ASR, we take
the network that achieves the smallest Dev WER, from the
networks trained with 6 to 10 epochs. In addition, the WER

Table 1l shows the Speech enhancement and Speech re&ﬁjjormance is not Ve.ry stable from one trial to another.
nition scores obtained with the REAL data. The Spee(;pperefore, we run ve trials for each of the proposed networks,
enhancement results, i.e. the SRMR scores, are broadly condid the averaged scores are reported in Table Ill. Even though
tent to the results of MIXED data: WB-BLSTM2-SF performdormal signi cance test has not been conducted, these WER
the best, while the proposed methods perform not as goodS&eres are quite reliable.

WB-BLSTM2-SF, but still achieve very high SRMR scores.

E. Results with REAL Data
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ods for the 2CH case. The prossible reason for this is: a
good beam-pattern of the microphone array is critical for
the beamforming techniques, which however requires a large
number of microphones. For the 2CH case, BLSTM-MRM
performs better than BLSTM-CC and BLSTM-SF, especially
achieves the smallest Eval WERs. As already analyzed, the
estimation of the clean complex spectra in narrow-band relies
on the spatial features of signals, and thus the estimation
error is highly related to the number of microphones. When
using only two microphones, the high estimation error may
degrade the ASR performance. In addition, considering that
ASR normally takes the (log-)magnitude feature, the recovery
of clean phase may be not really helpful for improving the
ASR performance. Even for the 4CH case, BLSTM-MRM
achieves a comparable performance as BLSTM-CC. For both
the 2CH and 4CH cases, BLSTM-SF consistently (across
all the conditions) performs better than BLSTM-CC, even
though the performance gap is small. This indicates that,
to a certain extent ASR indeed benets from the use of a
spatial lIter. By further smoothing the spatial Iter, BLSTM-
SSF notably improves the ASR performance over BLSTM-SF,
which veri es our analysis about the beamforming techniques
that the temporal smoothness of beamformer is important for
its good ASR performance. For the 2CH case, BLSTM-SSF
achieves the best Dev WERs, and slightly worse Eval WERs
than BLSTM-MRM. For the 4CH Eval data, BLSTM-SSF
achieves comparable average WERs with NN-GEV, especially
the WER of BUS, CAF and STR of BLSTM-SSF are all
smaller than the ones of NN-GEV.

From these experiments, regarding ASR, we would like to
Fig. 5: Speech enhancement results obtained with the MIXED dafPhasize the following important observations: (i) for both
averaged over all noise types, as a function of SNR, for the 20Mde-band and narrow-band methods, one way to improve
case (left) and the 4CH case (right). the ASR performance is to reduce the level of the network
prediction error. However, with comparable error levels, the
narrow-band processing artifacts is much less harmful for
Beamformlt largely reduces the WERs obtained with UIASR than the wide-band one, and (ii) the TF masking plus
processed signals. The ASR performance of the wide-baggamforming technique, i.e. NN-GEV, is powerful for ASR.
methods, i.e. WB-CRNN-MRM, WB-BLSTM1-SF and WB-However, one problem for this type of methods is that its
BLSTM2-SF, don't exceed the ones of Beamformit. WBmaximum ASR performance is actually determined/limited
BLSTM1-SF performs the worst, and for the 2CH case eveyy the performance of oracle beamformers. As demonstrated
degrades the performance of the unprocessed signals. It Wwag10] that NN-GEV already performs closely to the oracle
demonstrated in [31] that the processing errors of one speggfamformer, improving the TF masking performance will no
enhancement method have a big impact on the ASR pginger lead to ASR improvement. In contrast, the proposed
formance. The unsatisfactory ASR performance of the widgethods directly interface the speech enhancement network
band methods is may caused by their wide-band predictigid the ASR module, thus the ASR performance can be
errors, i.e. the blurred and wrongly deleted/inserted Wide-baﬁﬁpro\/ed by reinforcing the speech enhancement network,
spectra. This type of wide-band error has not been seen by performing joint end-to-end training. This means the
the ASR training data, and thus causes the mismatch betweedposed methods still have a large potential to be explored,
the training and test data. The WERs of WB-BLSTM2-Skyhich is left for future work.
reported here are consistent with the ones presented in [19]
that the wide-band deep beamformer does not perform as well
as Beamformit, even when it is jointly trained with the ASR IV. CONCLUSIONS

acoustic model. , i
In this paper we proposed a narrow-band deep Itering

NN-GEV and the proposed methods process frequencieethod to address the problem of multichannel speech en-
independently, and thence signi cantly outperform the widdrancement. Unsupervised methods, such as spectral subtrac-
band methods. NN-GEV averagely performs the best for thien or spatial Itering, have shown some advantages of
4CH case, while performs worse than the proposed metiarrow-band processing for discriminating between speech and
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TABLE llI: Speech enhancement and ASR results obtained with the REAL data, where the SRMR scores are averaged over
the developement and evaluation datasets.

SRMR" WER # (%) Dev WER # (%) Eval
BUS CAF PED STR Average BUS CAF PED STR Average BUS CAF PED STR Average
unproc. 1.75 2.00 218 1.97 1.98| 1477 10.74 6.83 1054 10.72 36.08 23.35 18.24 15.37 23.26
Beamformlt [41] 174 210 224 2.04 2.03]| 1412 755 504 8.44 8.79| 25.97 16.85 14.01 1257 17.35
NN-GEV [10] 2.04 226 238 224 2.23|11.30 6.55 471 7.52 7.52 | 2120 1294 9.92 9.39 13.36

WB-CRNN-MRM [16] | 2.63 2.77 275 2.69 2.71|13.78 1035 7.11 10.22 10.37 25,50 21.26 18.11 11.21 19.02
WB-BLSTM1-SF [19] | 292 295 292 2388 2.92| 18.16 13.86 8.87 13.63 13.63 39.76 31.17 26.55 15.37 28.21
WB-BLSTM2-SF [19] | 3.02 3.02 297 294 299 12.94 10.47 7.30 9.29 10.00 27.24 20.27 16.11 11.11 18.68

2CH BLSTM-MRM 277 281 282 277 2.79| 10.60 5.68 512 6.33 6.93 | 18.46 10.52 959 7.71 11.57
BLSTM-CC 290 294 293 2.89 291| 1170 6.10 526 6.51 7.39| 20.88 10.85 10.97 8.32 12.75
BLSTM-SF 2.88 294 288 2.86 2.89| 1145 6.06 518 6.23 7.23| 20.66 10.54 10.18 7.97 12.33
BLSTM-SSF 275 278 279 274 2.77| 1097 546 4.86 6.13 6.86 | 19.37 10.36 9.68 8.07 11.87
Beamformlt [41] 177 219 231 210 2.09| 9.01 6.30 441 6.99 6.68| 19.61 11.84 11.64 1052 13.40
NN-GEV [10] 236 256 261 252 251| 541 4.03 360 4.32 4.34| 11.39 6.57 7.32 6.95 8.06

WB-CRNN-MRM [16] | 2.65 2.82 275 2.74 2.74] 1055 6.67 572 752 7.61| 15.67 12.92 17.21 9.39 13.80
WB-BLSTM1-SF [19] | 2.82 293 2388 285 2.87|13.32 10.60 7.27 10.66 10.44 30.53 24.34 20.95 13.30 22.28
WB-BLSTM2-SF [19] | 2.93 299 292 2.93 2941028 757 633 821 8.10| 21.91 17.58 15.92 10.57 16.49

4CH BLSTM-MRM 281 288 282 281 2.83| 741 407 424 459 5.08| 10.44 6.77 1129 6.55 8.76
BLSTM-CC 291 296 289 2.87 291| 6.62 434 422 472 497| 1131 6.97 10.33 6.40 8.75
LSTM-SF 271 278 276 274 275 726 4.62 439 532 540| 11.92 7.48 11.11 6.80 9.32
BLSTM-SF 289 293 289 2.86 2.89| 650 429 416 4.65 490| 10.93 6.80 10.22 6.26 8.55
BLSTM-SSF 282 287 282 281 2.83| 640 4.03 392 453 472 | 11.23 6.17 959 5381 8.20

noise. The proposed LSTM-based method is able to expltdie 2CH case. The proposed BLSTM-SSF network achieves
rich narrow-band features and it outperforms the methodemparable WERs with the advanced beamforming technique,
mentioned above. Interestingly, narrow-band LSTM preservies. NN-GEV [10], especially for the Eval data.

one of the most prominent merits of unsupervised models

namely it is agnostic to speaker identity and to noise type. It is interesting to note that by ignoring wide-band patterns,

o . the proposed model has several merits: there is a large reduc-

Four targets were used for training: the magnitude ratigy in hoth the number of network parameters and the amount
mask (MRM), the complex coef cients (CC), the spatial Iterof training dataset, it has excellent generalization capabilities,
(SF) and the smoothed SF (SSF). Most of these targets Ragy it avoids wide-band processing artifacts. It is however
already been studied in the wide-band speech enhancemgii that wide-band patterns contain interesting features that
framework. However, estimating these targets in narrow-baggh not used with narrow-band models and which are worth
has completely different theoretical bases and behaviours frggnpe included in order to further improve the performance
the wide-band cases. We evaluated the proposed narrow-bgaghe proposed model. Therefore, it would be interesting
deep ltering method in terms of both speech enhancemegt investigate new architectures that can incorporate wide-

and speech recognition. CC and SF achieve better speechigfi features while preserving the advantages of narrow-band
hancement performance than MRM by recovering the complgipdels, most notably their excellent generalization capabilities

spectra. This superiority is more prominent for the 4CH casgnq their robustness against wide-band processing artifacts.
since which provides more spatial features that the estimation

of complex spectra can rely on. As for ASR, compared to CC

and SF, MRM performs better for the 2CH case and slightly REFERENCES
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