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Narrow-band Deep Filtering for
Multichannel Speech Enhancement

Xiaofei Li and Radu Horaud

Abstract—In this paper we address the problem of multichan-
nel speech enhancement in the short-time Fourier transform
(STFT) domain and in the framework of sequence-to-sequence
deep learning. A long short-time memory (LSTM) network takes
as input a sequence of STFT coefficients associated with a
frequency bin of multichannel noisy-speech signals. The net-
work’s output is a sequence of single-channel cleaned speech
at the same frequency bin. We propose several clean-speech
network targets, namely, the magnitude ratio mask, the complex
ideal ratio mask, the STFT coefficients and spatial filtering.
A prominent feature of the proposed model is that the same
LSTM architecture, with identical parameters, is trained across
frequency bins. The proposed method is referred to as narrow-
band deep filtering. This choice stays in contrast with traditional
wide-band speech enhancement methods. The proposed deep
filter is able to discriminate between speech and noise by
exploiting their different temporal and spatial characteristics:
speech is non-stationary and spatially coherent while noise is
relatively stationary and weakly correlated across channels. This
is similar in spirit with unsupervised techniques, such as spectral
subtraction and beamforming. We describe extensive experiments
with both mixed signals (noise is added to clean speech) and real
signals (live recordings). We empirically evaluate the proposed
architecture variants using speech enhancement and speech
recognition metrics, and we compare our results with the results
obtained with several state of the art methods. In the light of these
experiments we conclude that narrow-band deep filtering has
very good performance, and excellent generalization capabilities
in terms of speaker variability and noise type.

Index Terms—Speech enhancement, speech denoising, deep
fitlering, recurrent neural networks, LSTM.

I. INTRODUCTION

This paper addresses the problem of multichannel speech
enhancement/denoising using deep learning. In recent years,
speech enhancement based on deep neural networks has
been thoroughly and successfully investigated, see [1] for an
overview. These methods are often conducted in the time-
frequency (TF) domain, and can be broadly categorized into
either monaural or multichannel techniques. The monaural
techniques use a neural network to map noisy-speech spec-
tral feature onto clean speech targets. The input features,
e.g. (logarithm) signal spectra, cepstral coefficients, or linear
prediction based features, generally represent the frame-wise
full-band spectral structure associated with noisy speech. The
target consists of either clean speech spectral features or of
ideal binary/ratio masks (IBM/IRM) which are subsequently
applied to the noisy-speech input sequence. There is only a
handful of methods that process frequency bands separately,

X. Li and R. Horaud are with Inria Grenoble Rhone-Alpes and with Univ.
Grenoble Alpes, France.

e.g. [2], [3], namely a neural network is trained for each
subband: these subband spectral features are mapped onto
subband targets. Widely used neural architectures for speech
enhancement include feed-forward neural networks (FNNs),
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). The temporal dynamics of speech can be
modeled by stacking context frames in the FNN input, or by
dilated CNN [4], while it is automatically modeled by RNNs.
In [5], [6], the memory-enhanced RNN, i.e. LSTM, is used to
learn the long-term dependencies of signals.

As for multichannel speech enhancement, it is popular to
combine supervised monaural approaches with unsupervised
beamforming methods, e.g. [7], [8]. The output of the former,
ie. a TF mask, is used to discriminate between speech
and noisy TF units, based on which the steering vector of
desired speech and noise covariance are computed by the
latter. These approaches don’t learn the spatial information. To
exploit the spatial information, interchannel features (some-
times combined with spectral features), e.g. interaural time-
, phase-, and level-difference (ITD, IPD and ILD) and the
cross-correlation function (CCF), provide input to a neural
network either for full-band TF mask prediction, e.g. [9],
[10], [11], or for subband TF mask prediction, e.g. [3], [12].
Due to the use of the interchannel features, these methods
are sensitive to the position of the speech source. Therefore,
either they consider the position of the speech source to
be fixed or to be known, or they are able to discriminate
between speech sources. In [13], the magnitude and phase
of the short-time Fourier transform (STFT) coefficients of
all frequency bands and microphones are directly input to a
convolutional recurrent neural network (CRNN), and predict
the monaural full-band TF masks, where the convolutional
layers extract the inter-channel information and the recurrent
layers learn the temporal dynamics. This method is designed to
discriminate between the spatial characteristics of directional
speech sources and diffuse or uncorrelated sources, i.e. noise,
and it is not sensitive to the position of the speech source.
In the above multichannel techniques, TF masks serve as a
preliminary of a beamformer-based estimator. Even though TF
masking is able to improve the speech perceptual quality, it is
widely accepted that the signal artifacts created by masking,
more specifically by the nonlinear operation of masking, is
harmful for automatic speech recognition (ASR). Therefore,
beamforming is generally used as an interface between the
speech enhancement/separation front-end and the ASR back-
end. In [14], skipping the masking step, an FNN is designed
to learn the beamformer directly form the time-domain multi-
channel CCF. In [15], the raw waveform is used as input and



a number of multichannel convolutional kernels are learned to
perform the spatial filtering.

In this work, we propose an LSTM-based multichannel
speech denoising method. Unlike the vast majority of existing
approaches that perform wide-band speech enhancement, the
proposed method processes each STFT frequency bin sepa-
rately: this is referred to as narrow-band (or frequency-wise)
deep filtering. The proposed LSTM training is performed
with input and target sequences of noisy- and clean-speech,
respectively. Each input is a sequence of multichannel STFT
coefficients associated with a single frequency bin. Corre-
spondingly, the target is a sequence of clean speech taken
at the same frequency for the reference channel. We propose
to train four architecture variants using the following clean-
speech targets: the STFT magnitude mask, the STFT complex
mask, the STFT coefficients and the spatial filter. Importantly,
the network weights are shared across frequency bins, which
encourages the network to learn common information accross
frequency bins, and also leads to a dramatic reduction in the
complexity and computational burden of the training process.
Our approach is grounded by the fact that a large number of
unsupervised speech enhancement methods exploit frequency-
wise narrow-band information. More precisely, the proposed
method is motivated on the following grounds:

o The frequency-wise temporal evolution of the STFT
magnitude is informative due to the non-stationary nature
of speech against the stationarity of noise, which stands
at the foundation of unsupervised singlechannel noise
power estimation, e.g. [16], [17], as well as multichannel
relative transfer function (RTF) estimation [18], [19].
Recently it was demonstrated that a LSTM network is
able to accomplish monaural frequency-wise noise power
estimation [20];

o The frequency-wise spatial characteristics of the STFT
coefficients fully reflect both the directionality of speech
and the diffusion of noise. This is the foundation of
speech enhancement methods such as the coherent-
to-diffuse power ratio method [21] and beamforming
techniques [18]. Moreover, the temporal dynamics of
frequency-wise spatial correlation contain motion infor-
mation associated with a speech source;

o The frequency-wise representation is informative for
clean-speech estimation; Indeed, singlechannel spectral
subtraction (Bayesian filtering) [22], [23], multichannel
spatial filtering, e.g. beamforming [18], and multichannel
Wiener filtering [24], are performed frequency-wise.

Overall, the proposed LSTM architecture is expected to fully
exploit the frequency-wise information, not only by learning
a regression from the input sequence to the output sequence,
but also by learning a group of functions for clean speech
estimation. By sharing the network weights across frequencies,
the network is encouraged not to learn the subband spectral
structure of siganls, but to learn the narrow-band information
mentioned above, and to perform narrow-band deep filtering.
The proposed method is similar to [13] in that the network
learns how to discriminate between the spatial characteristics

of directional speech sources and the diffuse/uncorrelated
nature of noise, hence the method is agnostic to the position
of the speech source.

Compared to full-band techniques [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], the proposed method ignores cross-band
information, and focuses on learning narrow-band information.
This has the following advantages: (i) it is questionable
whether full-band models are able to learn the narrow-band
information mentioned above. As shown below, by focusing on
the narrow-band signal representations, the proposed method
is able to learn long-term temporal dependencies, e.g. on the
order of 150 STFT frames; (ii) due to the reduced dimension
of both the input and the output, the proposed network has
a smaller number of parameters than full-band models, and
hence it requires much less training data and both training and
prediction have a lower computational cost; (iii) the proposed
method is not sensitive to the wide-band spectral pattern of
signals, since it only exploits the narrow-band information. As
a result, the proposed network has a very good generalization
capability in terms of speaker variability and noise type,
and (iv) experiments demonstrate that the enhanced speech
obtained with the proposed method can be directly used for
ASR, which means the signal artifacts caused by the prediction
error of the proposed narrow-band network are not detrimental
for ASR. The reason for this will be explained in Section III.

This paper is an extended version of a recently published
conference paper [25], in which we proposed a narrow-band
LSTM architecture for speech enhancement and we demon-
strated its effectiveness when using the magnitude ratio mask
as a network target. In this paper we extend this approach by
using other possible targets, namely the complex ideal ratio
mask and the STFT complex coefficient, as well as a spatial-
filtering target. In addition to the experimental validation using
mixed data (multichannel noise recordings of various kinds
are mixed with multichannel clean speech recordings), we de-
scribe and discuss experiments performed with real data (live
recordings). We empirically evaluate the proposed architecture
variants and compare their performance with several state of
the art methods, based on speech enhancement and speech
recognition scores.

The remainder of this paper is organized as follows. Section
IT describes the proposed narrow-band deep filtering model
and the proposed LSTM architectures. Section III describes the
experimental setup, the LSTM network training characteristics,
the speech enhancement and speech recognition metrics that
we used, and describes the experiments performed with the
mixed and real datasets. Section IV concludes the paper.
Supplemental material (examples of processed noisy speech
utterances) are available online.!

II. NARROW-BAND SPEECH ENHANCEMENT NETWORKS

Let the multichannel signals be represented in the STFT
domain:
xz(kat) :Sz(kat)+uz(kat)7 (1)

Uhttps://team.inria.fr/perception/research/mse-Istm/



where x;(k,t), s;(k,t) and w;(k,t) are the complex-valued
STFT coefficients of the microphone, speech and noise signals,
respectively, and where ¢ € {1...I}, k € {0... K — 1} and
t € {1...T} denote the channel (microphone), frequency-
bin and frame indices, respectively. In this paper the focus is
on signal denoising task and hence the reverberation effect is
not addressed. Therefore, the speech signals are assumed to
be reverberation free, even though we experiment with real-
recorded multichannel data that may include some reverber-
ation. The objective is to recover a monaural speech signal,
e.g. s.(k,t), where r denotes the reference channel. In the
proposed method and as already mentioned, a single network
is trained using the narrow-band sequences over all frequency
bins, and the trained network is then used to predict a sequence
at each frequency bin. Thence, for the sake of clarity, the
frequency-bin index k& will be omitted hereafter.

A. Input Features

For each TF bin, the real and imaginary parts, R(-), Z(-) of
the multichannel STFT coefficients are concatenated into the
vector:

x(t) = (R(x1 (1)), Z(x1 (1)), . ., Rz (1), Z(z1(t)) |, @)

where T denotes vector transpose. x(t) € R2?! contains
information associated with one TF bin. The input sequence
of LSTM is a temporal sequence of such vectors at each
frequency bin, namely:

X = (x(1),...,x(t),...,x(T)), 3)

where T denotes the number of time steps of the LSTM
network. To facilitate network training, the input sequence has
to be normalized to equalize the input levels across channels
and across time. We empirically set to 1 the STFT magnitude
of the reference channel, namely:

{X=X/u

_ )
with: p= % ZtT=1 |z (8)].

B. Output Target and Training Loss

As already mentioned, we want to recover the clean speech
signal of the reference channel, e.g. s,.(t). To this aim, we test
the following network targets.

1) Magnitude Ratio Mask (MRM): For each TF bin, the
rectified STFT magnitude ratio mask

M(#) = min (;((?)|| : 1) )

is the target, where the function min(-) rectifies the mask to fall
in the range [0, 1]. For each frequency bin, the target sequence
is

M = (M(1),...,M(t)..., M(T)). ©6)

The mean squared error (MSE) of MRM, i.e. (M (t) —M(t))?,
is taken as the training loss, where M (t) denotes the MRM
network prediction. At test, the MRM prediction M (¢) is used

to estimate the module of the STFT coefficient while its phase
is the phase of the reference channel:

13(t)] = M ()] (1)), (7
arg(8(t)) = arg(z,(t)) ®)

It was demonstrated in [26] that, in the framework of monaural
full-band masking, the MRM achieves the best performance
among various magnitude-based masks, such as IBM or IRM.
Our preliminary experiments within the present framework
also demonstrate that this target performs slightly better than
IRM.

2) Complex Ideal Ratio Mask: In order to estimate the
phase of clean speech, [27] proposed the complex ideal ratio
mask (cIRM), defined as the ratio of the STFT coefficients
between the expected clean speech and the signal associated
with the reference microphone. Indeed, it was shown in [27]
that a better performance is achieved by exploiting the phase
of the expected clean-speech signal. We tested this target in
the framework of our model by exactly following the protocol
presented in [27].

3) STFT Complex Coefficient: It was mentioned in [27] that
the monaural full-band masking network is not able to directly
estimate the clean phase. In this work, we test the capability of
the proposed network to directly estimate the STFT complex
coefficient (CC) of clean speech. For one TF bin, the real and
imaginary parts of s,(t), i.e.

s(t) = (R(s:(t)), Z(sr(1))) € R? )

are directly used as the network target. For each frequency
bin, the target sequence is

S = (s(1),...,s(t)...,s(T)).

According to the input sequence normalization, i.e. (4), the
target sequence is also normalized with p:

(10)

S=S/u (11)

The training loss is the MSE between the normalized STFT
coefficient of clean speech and the STFT predicted by the
network, i.e. ||s(t)/u — 8(t)||?. At test, us(t) corresponds the
predicted enhanced signal.

4) Spatial Filtering: The combination of TF masking and
beamforming techniques often achieve state-of-the-art ASR
performance. Beamforming, or spatial filtering (SF), is per-
formed in narrow-band wise, including parameters estimation
and filter derivation, which is naturally consistent to the
present framework. In this work, we propose to estimate a
spatial filter to mimic beamforming-like techniques. Formally,
for each TF bin, let the output of the multichannel spatial filter
network, w(t) € R?*! be defined by:

w(t) = (R(wl(t)),I(wl(t))7 e ,R(wI(t)),I(wI(t)))T.
12)

For each frequency bin, the output sequence is
W = (w(1),... ,w(T)).

w(t)... (13)



Output Output
size: 1,2,21 size: 1,2,21
f f

Activation Activation
output size: 1,2,27 output size: 1,2,21
t 1
Dense Dense
output size: 1,2.2[‘ output size: 1.2,2[‘
A A

,,,,,,, Lo e

1 Backward LSTM 1 Backward LSTM

7777777777777777777777777777777

Forward LSTM W
output size: 128 R
T ro

! .
,,,,,,, Lo

|
! Backward LSTM |/

,,,,,,,,

Forward LSTM Y
output size: 128 R
T S

|

******* it !

_ ! Backward LSTM 1 L
! output size: 256 |

Forward LSTM | |
output size: 256 '

Forward LSTM
output size: 256

JEE——

Input x(¢ — 1)

Input x(t)
size: 21 size: 21
1 t—1 t T

Fig. 1: Diagram of the proposed architecture. The unidirec-
tional (forward) LSTM is represented with solid-lines blocks
and arrows, while the additional blocks and arrows needed for
BLSTM are represented with dashed lines.

The output is then used to estimate the clean speech,
Su(t) = (R(34(t)), Z(34(t)))"

by applying the following complex-valued spatial filtering to
the input:

(14)

I
Z(3s(t)) = Z (R(wi()Z(xi(t)) + Z(wi(t))R(x;(t)))-

Rather than imposing a specific beamformer as the training
target, we let the network learn to predict an output that
minimizes the error between the clean speech and the esti-
mated speech, which is in the same spirit as the multichannel
Wiener filter. In practice, the estimated speech (14) is explicitly
computed from the network output (12) and input (2). Then,
the training loss is the MSE between the estimated speech
(14) and the clean-speech target (normalized with p), namely

|(s(t) = 8e(t))/ ul*.

C. Network Architectures

The architectures of the proposed LSTM and bidirectional
LSTM (BLSTM) networks are shown on Fig. 1. The sequence-
to-sequence scheme is adopted to map the input sequence onto
the output sequence. Two LSTM layers are stacked. Through
a dense layer, the output vector of the second LSTM layer is
mapped onto the output vector. Then an activation is applied to
obtain the network output. The output size of LSTM layers are
set based on preliminary experiments. Notice that this figure
summarizes three networks with three different targets and
associated outputs, namely, MRM, CC, and SF. While the

input sequence at frequency bin £ is the same for all three
networks, namely X (k) defined in (4), the network outputs
and the output dimensions are different. The output sequences
M(k), S(k) and W (k), defined by (6), (11) and (13), are of
dimension 1, 2, and 21, respectively.

Moreover, we chose different activation functions for each
one of these networks, namely sigmoid, identity and tanh,
respectively. We remind that the same network (same param-
eters) is trained for all the frequency bins k € {0... K — 1}.
The number of parameters to be learned slightly varies with
the number of microphones and with the dimension of the
output. On an average, the LSTM and BLSTM networks have
470,000 and 1,200,000 parameters, respectively.

III. EXPERIMENTS

A. Experimental Setup

1) Data Generation: We use the CHiME4 dataset [28],
which was recorded with six microphones embedded in a
tablet device. CHIME4 toolkit provides a method to simulate
the multichannel data. However, instead of using the multi-
channel frequency responses, this method only simulates the
multichannel time delays. Our preliminary experiments show
that training the network with this type of simulated data
performs poorly with real test data. Therefore, we use real data
both for training and and for testing purposes. The noise-free
multichannel speech data were recorded in a booth (BTH) and
the training, development and evaluation data were recorded
by three different groups of four speakers. The multichannel
background noise were recorded with four noisy environments,
namely bus (BUS), cafe (CAF), pedestrian area (PED), and
street junction (STR). For each type of noise, four to five
sessions were recorded at different times, with a duration of
about 0.5 hours per session.

The four speakers in BTH training set (399 utterances) are
used for network training, and the eight speakers in BTH
development (410 utterances) and evaluation (330 utterances)
sets are used for test. Each noise session is split into two
sub-sessions used for training (60%) and for test (40%), re-
spectively, which means that different noise instances are used
for training and for test. To generate the training data, noise
segments randomly extracted from the training sub-sessions
are mixed with BTH training utterances, with signal-to-noise-
ratios (SNRs) randomly selected from the interval[—5, 10] dB.
Each training utterance is mixed with fifteen different ran-
domly selected noise segments, and a total of about 11.3 hours
of training data are generated.

Two groups of data are tested, (i) MIXED data: back-
ground noise segments randomly extracted from the test sub-
sessions are mixed with BTH test utterances, with SNRs in
{—4,0,4,8} dB. For each noise type and SNR, about 200
test utterances are generated; (ii) REAL data: the development
(Dev) and evaluation (Eval) sets from CHiME4 real data were
recorded in the four noisy locations by the same speakers in
both development and evaluation BTH sets.



The signals are transformed to the STFT domain using a
512-sample (32 ms) Hamming window with a frame step
of 256 samples. The sequence length for training is set to
T = 192 frames (about 3 s), which means the LSTM network
is trained to learn 192 time steps of memory. The training
sequences are picked out from the utterance-level signals
with 50% overlap for two adjacent sequences. In total, about
6.55 million training sequences are generated. For test, the
utterances are not cut into sequences with length of 192
frames but, instead, the entire utterances are directly used for
sequence-to-sequence prediction.

2) Training Configuration: We found that the microphone
#1 recording in the evaluation set has a much larger volume
than the volume used in other recording sets. The issue of
microphone array mismatch is beyond the scope of this work,
thus microphone #1 is not used. Microphone #2 is not used as
well, due to its low availability. We conducted experiments
with two microphone configurations, i.e. microphones #3,
#4, #5 and #6 (4CH), and microphones #5 and #6 (2CH).
Microphone #6 is taken as the reference channel. The network
variants are named based on the network type, i.e. LSTM
or BLSTM, on the output target, i.e. MRM, cIRM, CC or
SF, and on the microphone configuration, i.e. 2CH or 4CH.
For example, BLSTM-SF-4CH refers to BLSTM with spatial
filtering as target and with four microphones as input. All these
network variants are trained individually from scratch.

We use the Keras environment [29] to implement the
proposed architectures and associated methods. The Adam
optimizer [30] is used with a learning rate of 0.001. The batch
size is set to 512. The training sequences were shuffled. Based
on some preliminary experiments, the BLSTM-CC and -SF
are trained with ten epochs, while all the other networks are
trained with five epochs.

3) Performance Metrics: To evaluate and benchmark the
performance of the proposed speech enhancement methods,
three metrics are used, including two intrusive metrics, (i) the
perceptual evaluation of speech quality (PESQ) [31] which
evaluates the quality of the enhanced signal in terms of
both noise reduction and speech distortion, (ii) the short-
time objective intelligibility (STOI) [32], a metric that highly
correlates with noisy speech intelligibility; and a non-intrusive
metric, (iii) the normalized speech-to-reverberation modulation
energy ratio (SRMR) [33], which measures the amount of
noise, and also reflects the speech intelligibility. For all the
metrics, the larger the better. For MIXED data, in order to
measure PESQ and STOI, the BTH clean signal is taken as
the reference signal. PESQ and STOI are not used for REAL
data because the close-talk signals provided in the CHiME4
dataset are not reliable.

For REAL data, in addition to speech enhancement per-
formance, we tested the performance of automatic speech
recognition (ASR) obtained with the enhanced signals. The
ASR of [34], with already-trained ASR models and decoding
recipe provided in CHiME4 is taken as the baseline system.?

Zhttp://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/download.html

This system uses mel-frequency cepstral coefficients (MFCC),
a DNN-HMM acoustic model and an RNN language model.
The DNN-HMM acoustic model is trained using the single-
channel noisy multi-condition CHiME4 training data. The
ASR performance is measured with the word error rate (WER),
the lower the better.

4) Comparison with the State of the Art: We compare
the proposed methods with three methods, (i) Beamformlt
[35], based on an unsupervised filter-and-sum beamforming
technique; (ii) the neural network based generalized eigenvalue
beamformer (NN-GEV) [7] that uses an BLSTM network
to estimate a spectral mask, based on which a generalized-
eigenvalue beamformer is computed and applied to speech
denoising. We use the toolkit provided by the authors of [7],3
in which the BLSTM parameters had already been trained
using the CHiME4 training dataset, and (iii) the multichannel
CRNN method [13] which takes as input multichannel full-
band STFT coefficients and which predicts single-channel
TF MRMs, i.e. (5). Several CNN layers are employed for
each STFT frame to extract the inter-channel information,
then followed by one LSTM layer to learn the inter-frame
information, where two past frames and two future frames
are taken as the context for each frame. Since the authors’
implementation is not publicly available, we implemented
the method and used the CHiME4 dataset to train, test and
evaluate [13]. We use the twelve BTH different speakers
from which we generated 9.14 million samples for training
this CRNN-based model. We did not evaluate the speaker
generalization capability since this was demonstrated in [13].

B. Evaluation of Generalization Capability

The default training setup presented in Section III-Al is
speaker independent and noise-type dependent (SID-ND):
even though training and test use different noise instances, they
both use all four noise types. To evaluate the generalization
capability of the proposed network in terms of speaker identity
and of noise type, two extra training setups are also tested :
(1) speaker independent and noise-type independent (SID-
NID): four speakers are used for training and the other eight
speakers are used for test, and three noise types are used
for training and the other noise type is used for test, and
(i) speaker dependent and noise-type dependent (SD-ND): all
twelve speakers and all four noise types are used to generate
training data. In both these cases, 6.55 million sequences were
generated.

Fig. 2 shows the speech enhancement results obtained
with the MIXED data for these three training configurations:
interestingly, they yield comparable PESQ and SRMR scores
and slightly different STOI scores. Fig. 3 shows the ASR
results obtained with the REAL data for these three training
setups. The associated WER scores are also quite similar,
except for the Eval PED data for which SD-ND training
noticeably outperform SID-NID training. Note that the SRMR

3https://github.com/fgnt/nn-gev



scores obtained with the REAL data and with the three training
setups (not included in the paper) are also quite similar.

These results empirically show that the proposed methods
are not too sensitive with respect to speaker identity and noise
type, therefore they have good generalization capabilities. The
reason for which this doesn’t extend to the Eval PED data is
not clear. The networks are trained using narrow frequency
bands, hence the wide-band spectral-pattern differences be-
tween the training and test samples, of both speech and noise,
are not taken into account and hence they shouldn’t have
an impact on the generalization capabilities of the proposed
model. The networks are actually trained to learn some
functions based on the temporal and spatial characteristics
of speech and noise, which are independent with respect to
their spectral content. In addition, in the CHiME4 data, the
microphone-to-speaker relative positions are time-varying for
both the training and test data, which means that the proposed
method also generalizes well in terms of moving speakers.
Overall, the proposed models learn features that are suitable
across frequency bins, as well as for unseen speakers and noise

types.

C. Unidirectional versus Bidirectional LSTM

As presented in Section III-A, we perform sequence-to-
sequence network training using fixed-length sequences with
T = 192 frames, which means the back propagation (through
time) of gradients is truncated at 192 time steps. In other
words, the network is trained to learn 192 time steps of
memory. At test, the network predicts length-varying utter-
ances. Utterances with different lengths have different memory
lengths, moreover, different time steps in one utterance have
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Fig. 2: Speech enhancement results obtained with the MIXED
data for the proposed BLSTM-SF-4CH method with three different
training setups, speaker independent and noise-type dependent (SID-
ND), speaker independent and noise-type independent (SID-NID),
and speaker dependent and noise-type dependent (SD-ND). The SNR
is of 0 dB.

—— [ IsiD-ND [SID-NID JHlllSD-ND

TR [mR in

m

CAF PED
noise type

Dev WER (%)
FNENT N

BUS
Fig. 3: Speech recognition results obtained with the REAL data

for the proposed BLSTM-SF-4CH method and with three different
training setups: SID-ND, SID-NID, and SD-ND.
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Fig. 4: The loss evolution, i.e. MSE, as a function of time step, for
the proposed BLSTM-SF-4CH (blue) and LSTM-SF-4CH (orange)
methods.

differrent forward/backward memories. To analyze how the
memories work, and how many time steps could be memorized
in the proposed narrow-band LSTM framework, Fig. 4 shows
the MSEs as a function of time step. To obtain this plot, we
generated one extra group of data (we used the same data gen-
eration protocol as with the MIXED test data), which includes
1.3 million sequences with a fixed length of T' = 375 frames
(six seconds). The MSEs averaged over all the sequences are
shown in Fig. 4. The MSE of LSTM quickly drops from 0.3
to 0.1 in a few time steps, which means a few past frames
are already very effective to reduce the loss. The MSE of
LSTM then slowly converges to 0.077 in about 150 time steps,
which means that, for one time step, the frames earlier than
about 150 time steps do not contribute anymore. This is due
to one of the following reasons (or the combination of them):
(i) the LSTM network is only able to learn the memory of
about 150 time steps, and (ii) about 150 time steps already
provide enough context information in terms of the temporal
and spatial properties of the signal.

When future frames are used, the MSE drops from 0.077
for LSTM to about 0.05 for BLSTM. At the two ends,



TABLE I: Speech enhancement results obtained with the MIXED data. SNR is of 0 dB.

PESQ 1 STOI (%) T SRMR 7t
BUS CAF PED STR Average | BUS CAF PED STR Average | BUS CAF PED STR Average
unproc. 197 147 143 1.55 1.61 834 69.1 672 757 73.9 234 197 1775 203 2.02
Beamformlt [35] | 2.06 1.54 1.51 1.65 1.69 84.6 71.1 705 77.0 75.8 239 203 191 213 2.16
NN-GEV [7] 215 156 161 1.73 1.76 873 746 753 8l4 79.7 254 225 215 240 2.34
CRNN [13] 259 186 1.78 2.07 2.07 899 80,5 794 853 83.8 291 285 281 287 2.86
2CH BLSTM-MRM 286 208 205 236 2.34 899 79.6 788 847 833 294 293 288 291 291
BLSTM-cIRM 3.00 212 210 248 242 90.6 792 79.0 850 83.4 299 300 297 298 2.99
BLSTM-CC 3.02 216 212 249 2.44 91.0 802 79.6 855 84.1 299 3.03 299 299 3.00
BLSTM-SF 3.03 216 213 249 2.45 90.8 802 79.5 855 84.0 299 3.03 299 3.00 3.01
Beamformlt [35] | 2.09 159 156 1.67 1.73 855 737 731 78.0 71.6 237 205 198 210 2.12
NN-GEV [7] 240 176 178 198 1.98 91.0 829 834 889 86.6 278 262 256 275 2.68
CRNN [13] 278 205 195 229 227 91.7 858 845 8838 87.7 292 291 286 290 2.90
4CH BLSTM-MRM 310 238 227 2.63 2.59 916 852 83.8 888 87.3 295 297 291 292 2.94
BLSTM-cIRM 329 247 237 283 2.74 923 853 843 89.6 87.9 299 3.04 299 299 3.00
BLSTM-CC 328 253 243 284 2.77 93.0 863 853 90.6 88.8 298  3.04 299 298 3.00
LSTM-SF 3.07 229 219 2.64 2.55 912 830 81.7 88.1 86.0 293 287 282 290 2.88
BLSTM-SF 331 253 243 285 2.78 928 864 854 904 88.7 298  3.04 299 299 3.00

BLSTM has a larger MSE due to the insufficient past or future
context. At the end part, BLSTM has enough past context.
The MSE is reduced from 0.097 at the 375-th frame to 0.06
at the 369-th frame, and to 0.05 at the 350-th frame. This
indicates that, when enough past context is being used, about
six future frames are already very effective to reduce the loss,
and about 25 future frames provide sufficient information to
further reduce the loss to a satisfactory value. For an online
application, past information is always available. The amount
of future frames to be used can be chosen as a trade-off
between performance and processing latency: (i) 25 future
frames can be used to have the best prediction performance
that BLSTM can achieve, which however leads to a 400 ms
latency, (ii) 6 future frames can be chosen to have a good
performance with 96 ms latency, which is not a problem from
a practical point of view.

Tables I and II show the experimental results obtained with
the MIXED and REAL data, respectively. Comparing the re-
sults of LSTM-SF-4CH and of BLSTM-SF-4CH (the last two
rows), one can see that BLSTM achieves, indeed, noticeably
better than LSTM in terms of both speech enhancement and
speech recognition. A larger error obtained with LSTM than
with BLSTM would lead to a larger speech distortion and to
less noise reduction. The difference in performance between
LSTM and BLSTM can easily be perceived by listening to
the enhanced signals.* The comparison between LSTM and
BLSTM, based on the performance of LSTM-SF-4CH and
BLSTM-SF-4CH, also holds for other proposed targets and
numbers of channels. Thence, in the following, we will only
analyze the performance of BLSTM networks.

D. Results with MIXED Data

Table I shows the speech enhancement results obtained with
the MIXED data and with an SNR of 0 dB. It is not surprising
that, except for some SRMR scores, the 4CH cases perform
better than the 2CH ones, since richer spatial information
is available. We will explain the SRMR exceptions later. In

“https://team.inria.fr/perception/research/mse-lstm/

the following, we compare the 4CH performance scores (the
comparison is equally valid for the 2CH cases).

Over the unprocessed signals, Beamformlt improves the
three scores to a certain extent. NN-GEV, which uses a deep
neural network to classify the speech and noise TF bins,
performs much better than Beamformit. It was demonstrated
in [7] that the speech enhancement performance of NN-GEV
is quite close to the performance of an oracle beamformer.
> CRNN yields much higher PESQ and SRMR scores and
slightly higher STOI scores than NN-GEV. This indicates that,
for speech denoising, masking-based methods have a better
potential (oracle) than beamforming methods.

BLSTM-MRM and CRNN both predict magnitude ratio
masks (MRMs). Compared to CRNN, BLSTM-MRM achieves
similar STOI and SRMR scores and better PESQ scores. Better
PESQ scores indicate better speech quality. By listening to the
enhanced signals, one may notice the dramatic noise reduction
of both CRNN and BLSTM-MRM. However, some speech
distortions can be heard in the CRNN outputs, while the
BLSTM-MRM outputs are less distorted and more natural. The
possible reason for this is that when TF masks are predicted for
all the frequencies together, some structured prediction errors
may lead to audible distortions. By structured prediction errors
it is meant that the prediction errors are correlated between
frequencies.

By recovering the phase of clean speech, BLSTM-cIRM,
BLSTM-CC and BLSTM-SF improve the performance over
BLSTM-MRM. Listening to the enhanced signals, more re-
maining noise can be perceived in the BLSTM-MRM output
than in the methods that predict the phase. These results
demonstrate that the proposed narrow-band LSTM network is
able to predict the complex STFT coefficients of clean speech,
since (i) the complex STFT coefficients of multichannel noisy
speech are taken as the network input, (ii) the network is able
to find the cues to recover the clean phase. We believe that
the spatial coherence of directional speech is an important
cue that is taken into account by the network. BLSTM-CC

5The oracle uses the true speech/noise classification for the estimation of
the beamforming parameters.
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Fig. 5: Waveforms and spectrograms of the clean-speech input, of the added noise and of the results obtained with state of the art methods
and with the proposed BLSTM models, associated with one utterance from the MIXED dataset using four channels (4CH). In this example,
CAF noise is added to the clean speech signal and the SNR is of 0 DB.

and BLSTM-SF yield comparable performance, which means
that the spatial filtering scheme used in BLSTM-SF does
not help to improve the speech enhancement performance.
BLSTM-cIRM performs slightly worse than BLSTM-CC and
BLSTM-SF, and the performance loss may be caused by
the nonlinear transformation of the original cIRM, which is
applied to compress the range of the original cIRM. The
difference between these three methods are not audible by
listening to the enhanced signals. For both the 2CH and 4CH
cases, the SRMR scores of BLSTM-cIRM, BLSTM-CC and
BLSTM-SF reach the value of clean speech, i.e. about 3.0,
which means the remaining noise in the enhanced signals of
these methods can not be well measured with SRMR anymore.

Fig. 5 shows waveforms and spectrograms associated with
one example. It can be seen that two beamformers (Fig. 5 (c)

and (d)), the speech spectra are well preserved, while a large
amount of noise still remain, which corresponds to the low
speech scores presented in Table I. CRNN (Fig. 5 (e)) largely
removes the noise and recovers the speech structure. However,
the recovered spectral pattern look somewhat blurred along the
frequency axis, which reflects the structured prediction errors
mentioned above. This phenomenon can be widely observed
with other full-band techniques, e.g. [4]-[13], which indicates
that the networks are not fully capable of recovering the details
of the (full-band) high-dimensional output vector. In contrast,
the proposed narrow-band methods (Fig. 5 (f)-(i)) are able to
recover frequency details, due to the untied frequencies and the
reliable network prediction. This is consistent to the results of
Table I, namely that BLSTM-cIRM, BLSTM-CC and BLSTM-
SF perform similarly, and remove more noise than BLSTM-
MRM by exploiting the predicted phase. In the very low
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TABLE II: Speech enhancement and ASR results obtained with the REAL data, where the SRMR scores are averaged over

the developement and evaluation datasets.

SRMR 1 WER | (%) Dev WER | (%) Eval
BUS CAF PED STR Average | BUS CAF PED STR Average | BUS CAF PED STR Average
unproc. 1.75 2,00 218 197 1.98 1435 10.55 6.56 10.57  10.51 3543 2310 17.71 1490  22.78
Beamformlt [35] | 1.75 2.11 225 2.05 2.04 13775 724 507 842 8.62 2556 16.06 13.57 1225 16.86
NN-GEV [7] 204 226 238 224 223 10.84 645 445 7.11 7.21 20.15 12.68 9.79 9.17 12.95
CRNN [13] 257 2798 272 270 2.69 - - - - - - - - - -
2CH BLSTM-MRM 282 2.84 285 280 2.83 10.56 543 471 6.06 6.69 17.82 10.14 947 1755 11.24
BLSTM-cIRM 288 291 291 286 2.89 10.86 571 5.02 6.55 7.03 19.72 1070 1052 7.92 12.21
BLSTM-CC 289 293 293 2.88 291 1193 577 466 6.15 7.13 2042 9.84 1041 775 12.10
BLSTM-SF 292 295 294 2.88 2.92 11.85 593 471 6.25 7.18 20.86 9.77 9.73 7.84 12.05
Beamformlt [35] | 1.78 220 232 2.11 2.10 895 6.12 4.06 681 6.49 18.70 11.49 1123 10.12  12.88
NN-GEV [7] 236 256 261 252 2.51 512 391 344 4.16 4.16 1092 639 710 6.71 7.78
CRNN [13] 264 281 276 274 2.74 - - - - - - - - - -
4CH BLSTM-MRM 281 2.87 281 280 2.82 742 416 412 4.65 5.08 10.23 650 11.08 7.96 8.94
BLSTM-cIRM 2.85 292 287 284 2.87 640 419 4.07 4.84 4.87 10.66 699 826  6.69 8.15
BLSTM-CC 288 293 287 285 2.88 721 401 4.09 4.70 5.00 11.50  7.13  10.74 6.78 9.04
LSTM-SF 271 278 276 274 2.75 642 420 432 5.06 5.00 1131 695 983 6091 8.75
BLSTM-SF 289 293 289 286 2.89 592 397 401 442 4.58 1038 6.89 854 5.96 7.94

frequency region, the proposed methods failed to properly
predict the speech spectra due to the very low SNR in this
region. For this case, CRNN works well by predicting all the
frequencies together. Results obtained with other SNR values
are shown in Fig. 6. For the sake of clarity of illustration, the
curves of BLSTM-cIRM and of BLSTM-CC are not shown as
they are very close to the BLSTM-SF curves. It can be seen
that the conclusions drawn above hold for a wide range of
SNR values.

E. Results with REAL Data

Table II shows the speech enhancement and speech recogni-
tion scores obtained with the REAL data. The proposed meth-
ods largely improve the SRMR scores over the unprocessed
signals, which means that the proposed networks that are
trained with mixed signals generalize well to signals recorded
in real situations and for which the ground-truth clean-speech
signals are not available.

Beamformlt considerably reduces the WER scores obtained
with unprocessed signals. For beamforming techniques, the
beam pattern of a microphone array is highly corrrelated to
the number of microphones, i.e. larger the better. Thence, with
only two microphones, NN-GEV does not yield a good beam
pattern, and performs worse than the proposed methods. For
the 2CH case, the WER scores of BLSTM-cIRM, BLSTM-CC
and BLSTM-SF are comparable, and it is surprising that the
ASR performance of BLSTM-MRM is considerably higher. It

is not clear why BLSTM-MRM yields better (smaller) WER
scores than the other proposed variants.

For the 4CH case, NN-GEV performs the best. The WER
scores obtained with BLSTM-SF are close to the ones ob-
tained with NN-GEV, and are better than the ones obtained
with BLSTM-MRM, BLSTM-cIRM and BLSTM-CC. These
results testify that, when a large number of microphones are
used, linear spatial filtering, e.g. NN-GEV and BLSTM-SF, is
the method of choice in conjunction with speech recognition.

The results and experiments that were just described provide
empirical evidence that the proposed narrow-band TF masking
methods are well suited to enhance the speech signals prior to
speech recognition tasks. The belief that the nonlinear masking
process is harmful in the case of speech recognition may be
due to the presence of structured signal artifacts associated
with full-band speech enhancement methods.

In this work, the reverberation effect is not taken into
account. The training speech, i.e. BTH speech, is inconsistent
to the REAL test speech in which reverberation presents,
especially in the BUS environments. However, the network
still preforms quite well. In this experiment, it is infeasible to
evaluate how the network treats reverberation due to the lack
of reference clean speech. The dereverberation topic will be
studied in the future.



IV. CONCLUSIONS

In this paper we proposed a narrow-band deep filtering
method to address the problem of multichannel speech en-
hancement. Unsupervised methods, such as spectral subtrac-
tion or spatial filtering, have shown some advantages of
narrow-band processing for discriminating between speech and
noise. The proposed LSTM-based method is able to exploit
rich narrow-band features and it outperforms the methods
mentioned above. Interestingly, narrow-band LSTM preserves
one of the most prominent merits of unsupervised models,
namely it is agnostic to speaker identity and to noise type.

Four targets were used for training: the magnitude ratio
mask (MRM), the complex ideal ratio mask (cIRM), the
complex coefficients (CC) and the spatial filter (SF). We
empirically evaluated the merits of these targets and their cor-
responding architecture variants, using both speech enhance-
ment and speech recognition scores, namely STOI, PESQ,
SRMR, and WER. In terms of speech enhancement, cIRM-
, CC- and SF-based networks outperform the MRM-based
network in terms of speech enhancement. Using only two
microphones (2CH) MRM yields the best speech recognition
scores, while in the case of four microphones (4CH) MRM is
outperformed by the other models. The best WER scores are
obtained with four microphones and with the spatial-filtering
BLSTM network. Compared with the state-of-the-art methods,
the proposed architectures yield the best speech enhancement
results, while the speech recognition results are comparable
with the results obtained by NN-GEV [7].

It is interesting to note that by ignoring wide-band spectral
and spatial patterns, the proposed model has several mer-
its: there is a dramatic reduction in both the number of
network parameters and in the size of the training dataset,
thus considerably reducing the computational burden, it has
excellent generalization capabilities, and it avoids structured
signal artifacts. It is however true that wide-band patterns
contain interesting features that are not used with narrow-band
models and which are worth to be included in order to further
improve the performance of the proposed model. Therefore, it
would be interesting to investigate new architectures that can
incorporate wide-band spectral and spatial features while pre-
serving the advantages of narrow-band models, most notably
their excellent generalization capabilities and their robustness
against signal artifacts that correlate across the spectrum.
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