
HAL Id: hal-02378761
https://inria.hal.science/hal-02378761

Submitted on 25 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing Computational Thinking Without Using
Computers

Tim Bell, Michael Lodi

To cite this version:
Tim Bell, Michael Lodi. Constructing Computational Thinking Without Using Computers. Con-
structivist foundations, 2019, Special Issue “Constructionism and Computational Thinking”, 14 (3),
pp.342-351. �hal-02378761�

https://inria.hal.science/hal-02378761
https://hal.archives-ouvertes.fr

1

Constructing computational thinking without
using computers1

Tim Bell • University of Canterbury, New Zealand • tim.bell/at/canterbury.ac.nz

Michael Lodi • University of Bologna & INRIA Focus, Italy •
michael.lodi/at/unibo.it

Structured Abstract

Paper type: application.

Background(s): computer science; educational research.

Approach: Our approach is very practical: we are focused on pedagogy and improved
classroom practices – what Matthews (1997: 8) calls “pedagogical constructivism.”
Moreover, we discuss the relationships between our work and Papert’s
constructionism.

Context: The meaning and implications of “computational thinking” (CT) are only now
starting to be clarified, and the applications of the CS Unplugged approach are
becoming clearer as research is appearing; now is a good time to consider how these
relate, and what the opportunities and issues are for teachers using this approach.

Problem: The goal here is to connect computational thinking explicitly to the CS
Unplugged pedagogical approach, and to identify the context where Unplugged can
be used effectively.

Method: We take a theoretical approach, selecting a representative sample of CS
Unplugged activities and mapping them to CT concepts.

Results: The CS Unplugged activities map well onto commonly accepted CT concepts,
although caution must be taken not to regard CS Unplugged as being a complete
approach to CT education.

Implications: There is evidence that CS Unplugged activities have a useful role to help
students and teachers engage with CT, and to support hands-on activities with digital
devices.

Constructivist content: A constructivist approach to teaching computer science
concepts can be particularly valuable at present because the public (and many
teachers who are likely to have to become engaged with the subject) don’t see CS as
something they are likely to understand; providing a clear way for anyone to

1 This is an authors’ pre-print version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in Constructivist Foundations 14, 3 (2019), 342–351.
https://constructivist.info/14/3/342.bell

2

construct this knowledge for themselves provides an opportunity to empower them
when it might otherwise have been regarded as a domain that is open to only a select
few.

Key Words: computational thinking; CS Unplugged; Papert; teacher PLD; integrated
learning; computation; algorithms; kinesthetic learning.

Introduction

1. Computer Science Unplugged (csunplugged.org) was originally intended as an
outreach tool to explain computer science to young students, without the overhead of
having to learn programming first. However, it is now used in a variety of contexts, and
with the recent adoption of elements of computer science into school curricula around
the world (Heintz et al. 2016, Webb et al. 2019), the Unplugged approach has often
found a role in the classroom. The new curricula are commonly based around the idea
of computational thinking, an idea that came to prominence after the publication of a
paper by Jeannette Wing (2006), although the term was used by Papert as early as 1980
in his widely read “Mindstorms” book (Papert 1980), and the general concept predates
Papert’s work (Tedre and Denning 2016).

2. Here we look at what computational thinking is, how it relates to Computer
Science Unplugged activities, and how this connects to previous research on the use of
CS Unplugged for teachers and students.

3. There are many “unplugged” activities that aren’t necessarily based on
csunplugged.org (sometimes under titles such as kinesthetic activities), with some
contributed by an international community of educators, but the key elements in the
approaches we are exploring here are that computers aren’t required despite all of the
concepts being from the computer science canon, that students are engaged in
kinesthetic activities, and any equipment needed is readily available at low cost (and
would often be on hand in a classroom). The term “unplugged” is sometimes used to
refer to the curated activities on the open-source CS Unplugged website
(csunplugged.org), but in other contexts refers to any activity relating to computer
science carried out away from a computer. In this paper we will use the full title (“CS
Unplugged”) to refer to the collection on the website2, and “unplugged” when referring
to the general concept of teaching computer science away from a computer.

4. In K-12 Computer Science education, constructivism (and especially
constructionism) might normally be associated with computer programming. Other
areas such as algorithm analysis, computability, formal languages, graphics and AI
could be seen as theoretical knowledge that can be acquired as needed, potentially at a
later stage. However, the CS Unplugged approach inverts a traditional “programming
first” view by throwing students directly into advanced concepts in topics like graph
theory, error correcting codes and computational complexity. Instead of taking a

2 csunplugged.org

3

theoretical approach, students are usually given a kinesthetic experience in which they
explore the issues in a way that is age-appropriate, and can engage with the ideas using
a constructivist pedagogy. The purpose isn’t primarily for students to acquire theoretical
knowledge, but to appreciate the richness of the subject, and to give a meaningful
experience those students who may not find programming to be engaging, but are
interested in exploring some of the deeper issues that come up when they have access to
computation through programming.

5. In this paper we explore the relationship (or rather, relationships) between
computational thinking and the CS Unplugged material. We first consider what is meant
by computational thinking, and then review the origins and intention of the “unplugged”
approach. A central reason for linking them is identifying the computational thinking
elements in a sample of CS Unplugged activities, and reflecting on how the activities
can be applied effectively in practice.

Computational thinking

6. The term “computational thinking” (CT) is commonly used in the context of
introducing computer science into primary and secondary school (K-12) education. A
popular definition is the “Cuny-Snyder-Wing” formulation that dates from 2010:

“Computational Thinking is the thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that can be effectively carried out by an
information-processing agent.” (Wing 2010)

7. Being able to explain and implement CT in a K-12 context is important because it
has been used as the basis of new curriculum material being introduced in several
countries. The term “computational thinking” gained significant visibility through
Jeannette Wing’s writing in 2006 (Wing 2006), although the concepts pre-date that
work significantly (Tedre and Denning 2016). There have been a variety of views about
the full meaning and implications of the term “computational thinking”, particularly
around what an “information-processing agent” might be (Denning 2017), how much it
hinges on the skill of computer programming (Curzon et al. 2019), and also any claims
around the value to school students of learning CT (Tedre and Denning 2016). Curzon
et al. (2019) point out that despite the diverse views about CT, there is considerable
overlap, and it is best to focus on the points of agreement.

8. To understand CT, it is helpful to focus on what computation is. The notion of
computation and computability has been explored in depth over the years, with
fundamental ideas being based on Turing’s work in the 1930s about what he called an
“automatic machine” (Turing, 1937), which is now commonly referred to as a Turing
machine. The limitations of a Turing machine still define the boundaries of digital
computation today (with the possible exception of the new developments in quantum
computing), so both the power and limitations of computing are reflected in any Turing-
complete programming language, which includes many widely used educational
languages such as Scratch and Python (Aho 2011). From this point of view, it could be
argued that CT is centered around learning to use such languages to their full extent
(Denning 2017), since these dictate exactly what can and can’t be done in computation;

4

for example, Aho (2011) argues that computational thinking should be based on clearly
defined models. It is reasonable to be concerned that analogies to computation (such as
cooking recipes) are imperfect and might even teach against some of the deeper
principles, but we need to acknowledge that beginners in any subject are often given
simplified models to help scaffold their learning, such as the Rutherford-Bohr model of
the atom, Newtonian physics, or the division of history into discrete periods. The
important thing is for curriculum designers be clear on the usefulness of an inaccurate
model if it is being used as a “stepping stone” (Duncan and Rivet 2013). Denning and
Tedre (2019) explicitly note that computational thinking for a professional will be quite
different to that for a beginner; beginners can “barely scratch the surface” of the
richness and depth that is offered by computation. A spiral approach to curriculum is
normal, and the challenge is to provide beginners with computationally meaningful
encounters without the burden of having to fully understand the nuances of
computation. Of course, if a teacher does not already have a clear understanding of a
concept, then there is a risk that their teaching of the concept will lean too heavily on
the analogy rather than their understanding of the concept itself.

9. Returning to the Cuny-Snyder-Wing definition, it opens the possibility that the
information processing agent might be a human, but working within some constraints or
scaffolding to ensure that the student experience is providing a valid foundation for
working with more mechanically deterministic digital systems. It is also possible to
enforce computationally authentic elements of computing without using a digital
device. For example, the CS Unplugged resources (Bell et al. 2009, Bell, Rosamond and
Casey 2012) have an activity on sorting algorithms that puts a simple rule in place that
only two values can be compared at once using a balance scale, and the comparison is
done by a third party so that there is no memory of previous comparisons, other than
placement of the weights. This forces students to explore the same kinds of algorithms
that a digital device would have to use when sorting by comparison (based on if
statements and arrays), so it isn’t just an analogy, but an alternative physical
implementation of the kind of computation that is possible if one could program a
digital device (although the restriction isn’t strictly enforced, and a student might
choose to stretch the “rules”, for example, by comparing more than two items at a time).
The unplugged approach has the advantage that students don’t need to learn about
programming first before engaging with the algorithm, although ultimately a computer
program is needed to fully experience all of the limitations encountered when
implementing the algorithm, as well as the benefit of the ability to reliably follow many
instructions in a short time. It provides a constructivist environment that allows students
to come up with their own algorithms for sorting, including evaluating how efficient an
approach is, and comparing different approaches.

10. Despite different views about the purpose of using CT as a basis for curriculum,
and how much it should be focused on physical digital devices, there is general
agreement about the underlying skills for CT, whether it is to support a student learning
to program, or is more broadly helping students to “think like a computer scientist”
(Wing 2006, 2010). Lists of skills have been produced by national organizations
supporting new curricula, including Computing at School in England (Csizmadia et al.
2015) and the Computer Science Teachers Association (CSTA 2011). Selby and

5

Woollard (2013) examine a number of such definitions, and argue that the most relevant
and useful elements are abstraction, decomposition, algorithmic design, evaluation, and
generalization. An element that is missing from their list, but commonly appears in
others, is “logical thinking”, which they argue is too broad and not well defined. This is
a fair comment, since logic is fundamental to other disciplines too and also could be
seen as subsumed by the other elements in CT. In this work we use the elements that
they found most relevant, but have also included logical thinking in our analysis so that
it can be related to other definitions, although we acknowledge that it isn’t always
considered to be a defining aspect of CT.

11. Denning (2017) warns against over-generalizing these underlying skills; for
example, decomposition can be applied to many situations, such as breaking down a
large (non-computer) project into components, but in a computational context such an
activity has constraints imposed by the nature of a computing environment, as well as
good practice (such as decomposing a large program into modules with meaningful
functions). In the end, as Nardelli (2019) points out, the key reason for using the term
“computational thinking” is pragmatic:

“… we probably need the expression as an instrument, as a shorthand reference to a well-
structured concept, but it might be dangerous to insist too much on it and to try to precisely
characterize it. It should serve just as a brief explanation of why computer science ... is a novel and
independent scientific subject and to argue for the need of teaching informatics in schools.”
(Nardelli 2019: 32)

12. Here we focus on the most widely used concepts, and applying them in the context
of computer science, which helps us to connect the general ideas with their meaning in a
computational context. They are used in the sections below to identify the connections
between CS Unplugged and CT. The list of elements that will be used are based on
Selby and Woollard’s analysis (but with logical thinking included), and are briefly
defined in Table 1. These definitions have been synthesized from a number of sources,
including the papers on CT referenced above, and the “Exploring Computational
Thinking” website.3

Abstraction Identifying what the most important aspects of a problem are and hiding the

other specific details that we don’t need to focus on.

Decomposition Breaking down problems into smaller, more manageable, parts, and then
focusing on solving each of these smaller problems.

Algorithmic
design

Creating step-by-step processes that solve a problem or complete a task.

Evaluation Identifying the possible solutions to a problem and judging which is the best
to use, if they will work in some situations but not others, and how they can
be improved. In computing this can involve a range of criteria, including
time and space used for computation, usability and correctness.

3 https://edu.google.com/resources/programs/exploring-computational-thinking/

6

Generalization Taking a solution (or part of a solution) to a problem and generalizing it so
it can be applied to other similar problems and tasks.

(Logical
thinking)

Trying to make sense of things by observing, collecting data, thinking about
the facts you know, and then figuring things out based on what you already
know.

Table 1: CT thought processes (based on Selby and Woollard 2013)

CS Unplugged

13. The Computer Science Unplugged resources originated from academics who had
been asked to share what they did as a career with their children’s peers, who at the time
were around 5 or 6 years old (Bell, Rosamond and Casey 2012). Rather than talk about
computer science, they chose to do computer science with the children, and from this
point of view, CS Unplugged relates directly to helping students “think like a computer
scientist” (Wing 2006, 2010). Ideas were taken from university courses – often
advanced courses – and repackaged as physical activities where information such as
graphs and binary digits were represented tangibly.

14. A simple example is the “parity” card trick, where a two-dimensional forward error
correction code is introduced as a way for the presenter to somehow determine which
card has been flipped over by a member of the audience. Students explore ideas for how
the trick might be done, and once they discover the concept of parity, they can explore
questions like whether or not two flipped cards can be identified, if it will still work
with larger numbers of cards, whether a 3-dimensional version is better, and so on.
Students are physically manipulating two-sided cards which (from a computer
scientist’s point of view) are binary digits, but for the student they need only consider
their physical appearance – cards that are a different color on each side.

15. Another example is a game exploring routing and deadlock based on passing
colored objects around, with the goal of getting the correct colors to the corresponding
player. The processes required to solve this quickly end up requiring backtracking and
logical arguments to achieve the group’s goals.

16. It is important to be clear at this point that CS Unplugged isn’t a curriculum, and
isn’t intended to replace the opportunity for students to write programs on digital
devices, but it is an adjunct pedagogy to enable learners to become aware of bigger
ideas in computing without having the overhead of learning to program first, and also to
engage in big ideas through physical movement rather than expecting all computing
classes to be sitting in front of a screen. CS Unplugged is also useful for communicating
succinctly to students – and more significantly, teachers and education officials – that
there is a depth to computation beyond stereotypes of “cutting code.” In a modern
classroom environment, the Unplugged approach is intended to be integrated with
learning to program, and this can be more effective than spending all of the available
time on programming alone (Hermans and Aivaloglou 2017). When Unplugged
originated, classroom computers were either too rare for students to be likely to have

7

access to them, or the focus was on teaching students how to use the computer for
standard productivity tasks rather than explore computational ideas with it. This
situation has changed in many classrooms, and where digital devices are available, the
CS Unplugged material can now be explicitly linked to programming through a
“plugging it in” follow-up to the activities (Bell and Vahrenhold 2018).

17. The CS Unplugged approach does not usually spell out algorithms to students, but
rather, a problem is given, and students explore potential algorithms for themselves. For
small instances of a problem (such as converting a number to a 4-bit binary
representation, finding the shortest path in a layout with only a few vertices, or
searching for an item hidden under one of a few cups) an ad-hoc or brute-force
approach may find the solution easily, but as the size of the problem increases students
start to encounter the need for more efficient and rigorous approaches. When asked to
search for a value hidden under one of 30 cups, students often switch from a sequential
search to (an approximation of) binary search, and when converting numbers to a binary
representation they may discover that a greedy approach gets results, but with other
challenges (such as minimal spanning trees or sorting) they may only come to
appreciate that a better algorithm is needed; and for NP-complete problems, not only do
we not expect them to find a fast algorithm, but they end up grappling with the idea that
no-one has (yet!) found a fast solution.

18. The main goal of taking a constructivist approach like this isn’t that students learn
particular algorithms and techniques, but that they learn that there are deep issues to be
resolved in these contexts, and that they can feel empowered when they discover
concepts for themselves, which can break stereotypes about what the qualities of a
successful computer scientist might be.

CS Unplugged, constructivism and constructionism

19. Although the unplugged approach clearly differs from Papert’s constructionism
because the latter recognizes programming as having a leading role as a meta-tool for
constructing knowledge, we can point out some relationships. First of all, unplugged
activities are concrete rather than formal, and aim to teach complex CS ideas to
children, ideas that are usually postponed until they become adult/formal/abstract
thinkers. CS concepts are not simplified, but instead made accessible with practical
experiences. Second, unplugged activities generally have children using their bodies or
the physical manipulation of objects to perform them.

20. Similarly, Papert aimed to teach deep mathematical ideas long before children had
the abstraction competence to grasp them formally: “My conjecture is that much of
what we now see as too ‘formal’ or ‘too mathematical’ will be learned just as easily
when children grow up in the computer-rich world of the very near future” (Papert
1980: 7). Moreover, he designed LOGO to be “body syntonic”: children could use their
body to impersonate the Turtle drawing on the screen: “working with the Turtle
mobilizes the child’s expertise and pleasure in motion. It draws on the child’s well-
established knowledge of ‘body-geometry’ as a starting point for the development of
bridges into formal geometry” (Papert 1980: 58).

8

21. Thus, unplugged activities are a play space in which ideas from computer science
can be explored, and the direction students take can be unpredictable. A constructivist
— as opposed to instructionist (Papert 1993: 137-156) — approach is strongly
advocated, as the primary goal is not for students to learn the concepts, but for them to
discover that there are concepts that they may find interesting, and are worthy of study.
Nevertheless, as computer science (and computational thinking) have started to enter
school curricula, teachers have looked for ways to engage their students with specific
ideas. The original activities were presented by CS researchers who were used to asking
questions and exploring problems that may not have solutions, but in a classroom
situation, teachers may not be experts, and aren’t necessarily in a position to recognize
the value of a direction a student might be taking an idea in. For this reason, the main
version of CS Unplugged that is available gives considerable guidance on scaffolding
the students’ exploration of the ideas (Wood et al. 1976: 90), and provides questions for
the teacher to ask, which can create a kind of Socratic method that enables students co-
construct the meaning by following fruitful paths in their exploration (Wells 1999).

22. The degree of freedom left to students for exploration, and the role assumed by the
teacher in guiding the activity (not as an expert delivering knowledge, but as a
facilitator helping students experiment with ideas and constructing their own
knowledge) plays, of course, a central role in the constructivist application of
Unplugged material. This approach embraces the view that constructivism is a blend of
more structured guidance and exploration, so it is not minimally guided, but optimally
guided (Taber 2011), since the teacher has a path in mind, but nevertheless, the student
is constructing the knowledge for themselves, and not having the ideas given to them
directly.

Computational thinking and CS Unplugged

23. As pointed out in paragraph 13, CS Unplugged was intended to help children to
understand what a computer scientist does, and CT has been referred to as “thinking
like a computer scientist” (Wing 2006, 2010), matching Unplugged activities with CT
ideas is useful to show how they are both serving a similar purpose. In fact, Wing’s
2010 article specifically cites CS Unplugged under the heading of “Computational
Thinking in Education.”

24. Here we will show more explicit links using three contrasting activities: the binary
representation activity (about data), searching (about algorithms), and sorting networks
(applying a parallel algorithm to data). The CS Unplugged activities provide an
environment that is intended to be used in a constructivist manner to scaffold learning,
so that students are discovering patterns and rules for themselves based on a very short
description of a challenge, rather than being told algorithms or solutions and then
applying them. This means that they are exercising the CT skills themselves as they
solve the challenges that they are given. The three activities were chosen as they span
the range of approaches in CS Unplugged, including indoor vs. outdoor activities,
working with and without given algorithms, and covering data and algorithms.

9

Figure 1: Representing 5-bit binary values using cards

25. In the binary representation activity, students manipulate cards that represent the
powers of two (Figure 1). They follow the simple rule that the dots on a card may either
be completely visible or not (depending on whether or not the card is flipped over), and
are asked questions that lead them to find ways to display a given number of dots,
counting, and exploring patterns in the representation. The constructivist approach
means that the students are given little more instruction than the constraint that dots on
a card are entirely visible or not (this is enforcing a constraint that a physical computing
device would have); even the number of dots on each card should be deduced by the
students after being shown the first three.

26. This activity is exercising the CT skills as follows; note that these observations
could also be used to evaluate how well a student is applying the skills.

§ Abstraction: Although binary representations are commonly said to be made of
zeroes and ones, there are no such physical digits on a computer, only abstract
representations. Students can experiment with a variety of abstractions; the activity
starts by eliciting “yes” and “no” for the visibility of each card, but can then ask the
students to be creative with other binary symbols, such as using two different
musical pitches, dance moves, or even animal sounds. This then progresses to
having them come up with more abstraction – binary symbols represent numbers,
and then the numbers can represent other symbols, such as letters of the alphabet,
months of the year, or colors of pixels in an image. And of course, the binary
symbols are an abstraction for electrical signals; a feature of computer science is
that it regularly deals with “multiple levels of abstraction” (Wing 2006).

§ Decomposition: the problem of working out a number representation can be
overwhelming at first, but students can use a left-to-right algorithm that
decomposes it in simpler steps (“should this card be visible?”), and make it a lot
simpler to comprehend. Another way of viewing this is that the concept of number
is decomposed into a series of yes-no questions, where the first question (for 5-bit
numbers) is “Is the value greater than or equal to 16?”

§ Algorithmic design: Although this activity is about data, students are applying
algorithms to the bits. Working out the representation of a decimal value can be
done using the already-mentioned greedy algorithm working from left to right
(“Should the 16-dot card be included?” etc.) Initially students may take a haphazard
approach, but by scaffolding the idea of working from left to right, it becomes clear
that the decisions can be easy to make. Other algorithms that come up are
incrementing the displayed value by one (students can be scaffolded to discover that
this can be done by flipping cards from right to left until a white card comes up),

10

doubling a value (shift left), and determining if a number is odd or even (simply
check the right-hand bit!)

§ Evaluation: Being able to convert between decimal and binary numbers isn’t a
widely used skill, but being able to evaluate the limits of a representation is. For
example, students can evaluate the largest number possible with, say, 5 bits, and
then with 6 bits, and with scaffolding, realize that each extra bit doubles the range
of possibilities. This can lead to reasoning about the effectiveness of, say, a 256-bit
security key vs. a 512-bit key; or an 8-bit character representation vs. 16-bit. In both
cases the increase in representation is considerably more than the factor of 2 that
might appear on the surface.

§ Generalization: Starting from concrete examples, there are many patterns for
students to explore here; the first generalization is working out the number of dots
on the n-th card, but students can also discover many other patterns, for example,
that the maximum value that can be represented with k bits is one less than the
value of bit k+1, or that when counting, each card is being flipped with half the
frequency of the one to its right. In doing this, students are moving from specific
examples to general laws.

§ Logical thinking: There are several rules that students can deduce using logical
reasoning. A useful one is the uniqueness of a binary representation, based on the
greedy algorithm used to find the representation. For example, suppose they have
found the representation 01001 for the number 9. The students can then be asked “is
it possible to have a representation of 9 where the first bit is 1?” They are likely to
argue that it’s not possible because you would have 16 dots – too many. The first bit
must be 0. They then consider if the second bit could be a 0. Students will soon
realize that there are only 7 dots left in that case, and can argue themselves that the
second bit must be 1. This reasoning can be applied to all the bits of any binary
representation, and students will have created an informal proof that a particular
value has a unique representation.

Figure 2: CS Unplugged “Number hunt” searching algorithms activity

Instructions
Step 1: Choose a number in your boxes for your
opponent to find.

The number my opponent is looking for: _____

Step 2: Write down the number your opponent
has chosen for you to find.

The number of the box I'm looking for: _____

Step 3: Ask your opponent for the number
stored in a random box. For example: "What is
the number in the dotted circle?". Write the
number your opponent says in the box you
asked about on the right. Remember to listen
for the number you are looking for.

Step 4: Each time your opponent guesses a
box, cross out that box. Keep taking turns until
each person's number is found.

Step 5: Write down the total number of guesses
for each person below.

My total guesses: _____
Opponent's total guesses: _____

 - Number Hunt - csunplugged.org

Instructions
Step 1: Choose a number in your boxes for your
opponent to find.

The number my opponent is looking for: _____

Step 2: Write down the number your opponent
has chosen for you to find.

The number of the box I'm looking for: _____

Step 3: Ask your opponent for the number
stored in a random box. For example: "What is
the number in the dotted circle?". Write the
number your opponent says in the box you
asked about on the right. Remember to listen
for the number you are looking for.

Step 4: Each time your opponent guesses a
box, cross out that box. Keep taking turns until
each person's number is found.

Step 5: Write down the total number of guesses
for each person below.

My total guesses: _____
Opponent's total guesses: _____

 - Number Hunt - csunplugged.org

11

27. In the searching algorithms activity, students are given hidden values to search in
several contexts: for example, it could be hidden numbers held by a friend who will
reveal the contents only one at a time (Figure 2), or cups that have values hidden under
them that can only be revealed one at a time. In both cases, the goal is to find a value
without looking at more items than necessary, and enforces the model of memory in
which only one item can be looked up at a time. At first the values are unsorted, but
students are later given a series of values that are sorted, which they can constructively
use to apply a form of binary search to avoid frustratingly long searches.

28. Computational thinking appears in the searching activities as follows.

§ Abstraction: The algorithms used apply to any kind of sorted and unsorted list, and
depend only on the ability to impose an order on the keys. The hidden values
themselves represent a sorted (or unsorted) list, and so has a property that isn’t
physically visible, but is crucial to the algorithm used for the searching. The
algorithm abstracts from the actual numbers in a list; for example, in binary search,
the concrete values on the cards to the left of the midpoint may not be known, but
the student can know that the key value isn’t on any of them.

§ Decomposition: Each key comparison is decomposing the solution space into
smaller parts; in the case of a sequential search it is a small gain (the solution space
is reduced one by one), but students can explore the power of divide-and-conquer
through binary search, where a half of the problem space is eliminated in one step.

§ Algorithmic design: Students constructively discover a (variation of) the binary
search algorithm motivated by minimizing the cost to them of finding a given object
or value. They can also recognize a sequential search will work on any list –
including a sorted list!

§ Evaluation: This is a key reason for students to explore searching algorithms;
sequential and binary search have quite different performance, and although
students may not use mathematical language like “logarithms,” they can appreciate
that even billions of items can be searched in a very small time with binary search,
and that sequential search becomes arbitrarily worse than binary search as the size
of the list increases. Initially when a teacher suggests performing a binary search on
twice as many objects, students can appear quite disheartened, until they evaluate
the algorithm and realize that only one extra step is required.

§ Generalization: The different guises of searching (numbers on cards, cups,
envelopes and so on) are all the same problem with the same possible solutions, but
presented in different ways. This enables students to recognize what the general
algorithm is, rather than just a specific application of it. The algorithm can also be
applied to text and dates; students should recognize that binary search can work
with any keys as long as they can be sorted into order (i.e. are from a binary relation
that is a total order).

§ Logical thinking: There are a number of ideas that can be reasoned about here: for
example, that binary search can only work on a sorted list, and that binary search is
guaranteed to find what the student is looking for even though many items are never
inspected.

12

Figure 3. The CS Unplugged sorting network activity

29. In the sorting network activity, students traverse a network drawn on the ground,
making a simple comparison of values at each node and taking the left or right exit
based on the comparison (Figure 3). At the end they discover that the values have been
sorted into ascending order. Again, the instructions given are very simple (compare
values and go left or right), but the activity allows the students to construct a range of
understandings based on their experience, and engage with CT concepts.

§ Abstraction: The sorting network is a physical representation of what happens
inside a computer. The way the network is drawn (e.g. large or small boxes, long
paths, and paths that take roundabout-routes) doesn’t matter as long as the topology
of the network is maintained. The values being compared (keys) are also an
abstraction of some item that is being sorted, which may have more data than just
the sort key.

§ Decomposition: In this activity students aren’t doing decomposition, but are
experiencing the result of it. A key aspect of this activity is that the complex task is
decomposed into a very simply described task; in a physical computer this relates to
the most complex algorithms being performed by combinations of just a few simple
instructions. In this case, students are often surprised that such simple instructions
result in a powerful outcome. When comparing words or large numbers, these are
further decomposed into a character-by-character or digit-by-digit comparison to
determine which value comes first.

§ Algorithmic design: The students are physically engaging with a parallel algorithm,
and seeing how a complex outcome (sorting) can be achieved by the combination of
many simple steps (in this case, comparisons of pairs of values). They also have the
opportunity to design their own parallel algorithms for smaller sorting networks. If
there is an opportunity to dig deeper, students are able to realize that the parallel
algorithm can in turn be designed by an algorithm, which raises some interesting
philosophical issues about algorithm design!

§ Evaluation: A sorting network can be evaluated in terms of the number of nodes
required (three at a time in the case of a 6-way network), but also in terms of the
number of parallel steps required (the length of the network, and therefore time
required). Two different networks for the same number of inputs can be compared
based on these metrics.

13

§ Generalization: The sorting network can be used to sort any values that form a
binary relation that is a total order (i.e. values that can be consistently compared for
inequality); numbers are in order of increasing value, while words are in
alphabetical order, but the comparisons can also be used for other types of data,
such as musical notes (higher and lower), and stories (which plot element comes
before another?)

§ Logical thinking: Students are able to reason about the correctness of the
configuration by applying logic (an exhaustive test would take n! time). A first step
is to apply logic to reason that the smallest item must end up in the correct place,
regardless of where it starts. A full proof of correctness is likely beyond students,
but for small sorting networks there is a lot of opportunity to reason about what will
happen.

30. These activities have been used as examples; on the CS Unplugged website CT
skills are made explicit for every activity to help teachers see the bigger picture of why
a particular activity is relevant, to help them appreciate which finer details of an activity
are important to fully engage students in CT, and to support them to recognize when a
student is showing CT skills. The descriptions on the website have been informed by
the reasoning above.

Integrated multidisciplinary learning

31. Although computing may be taught as an independent subject, it makes more sense
when it is used in context. In the same way, computational thinking (and computer
science) isn’t an end in itself, and is applied in many practical contexts. When taught in
schools it can be used effectively in multidisciplinary contexts, where CT concepts are
applied in other subjects to support learning in both at the same time. With “plugged in”
approaches this may be easier to see, as students can write programs to simulate
situations they are learning about, to capture and analyze scientific data, to generate
music and artwork, to make sense of health information captured by personal fitness
devices, and so on. However, even with an unplugged approach there are many
possibilities for integrated learning.

32. For example, the binary representation activity includes the possibility of threading
beads chosen from two colors into bracelets, necklaces or bag-tags. Making up chains
of beads gives students the chance to think about language, and what they would like to
communicate with the beads; it also happens to exercise fine motor skills. More
generally, the activity can be extended to art, where two symbols or images are used to
embed information in a picture; or music, where the two values can be used as note
pitches or lengths. Both of these can be used to introduce the idea of steganography,
where a message is communicated in plain sight through an artefact that appears to have
a different purpose. Topics like binary numbers can also be integrated with history and
writing – where did the idea come from, and how have people communicated in the past
over distance? Looking into representations like Braille and Morse code can reveal how
communication has influenced history, but also how it is natural for humans to develop
codes for communication over distance or for efficient storage. Students can construct
their own codes based on their new understanding, and this provides a richer experience

14

than simply learning standard codes (such as ASCII and Unicode), as they will face the
questions that arise for themselves, such as special characters, using digits as text, and
so on.

33. Teachers may not think to connect a “modern” subject like computation with
traditional subjects such as history. However, there are a number of ways this can be
done, and articulating a few examples can inspire teachers to find their own. Sorting
networks can be integrated with topics that students are exploring in other areas of the
curriculum; for example, they might be used to compare dates in history, words in
alphabetical order, note pitches in music, or numbers written in a foreign language.
They provide motivation for students to repeatedly compare the values that they are
learning, and to see them in situations other than the sequence normally presented. At
the same time, they are becoming familiar with a computational model.

34. Searching algorithms can also be explored in terms of history – how did people
look up information in pre-computer times, and who had access to such information?
Who are the people who developed these computer algorithms, and what motivated
them? There is also the possibility of acting out such algorithms; and a binary search
can even be used to compare an unknown pitch with the notes on the piano to determine
what it is.

35. It is challenging, in a traditional school setting, to always propose activities that are
interesting and meaningful for every student. However, connection with real-world
applications of CS (e.g. understanding what’s behind a query in a search engine, or how
data is physically transmitted online, and so on) helps to create engagement and
meaning, because it links to previous knowledge, and personal and social experiences of
students, which are essential in constructivist learning.

Applying CS Unplugged

36. An important feature of this style of teaching is to give minimal instructions (often
just one or two sentences are sufficient to get students started), and allow students to
construct the knowledge for themselves. Once they have done this, it is important to
then relate what they have done to the broader context of computing, and what happens
on physical devices. Two early studies discovered that without this connection “the
program [based on CS Unplugged] had no statistically significant impact on student
attitudes toward computer science or perceived content understanding” (Feaster et al.
2011) and that “the students’ attitudes and intentions regarding CS did not change in the
desired direction” (Taub, Armoni and Ben-Ari 2012). In terms of conveying knowledge
using this approach compared with more conventional approaches, Thies and
Vahrenhold (2013) found that “… it is indeed possible to weave Computer Science
Unplugged activities into lower secondary computer science classes without a negative
effect on factual, procedural, or conceptual knowledge”, and that it could have some
benefit in that “the Computer Science Unplugged materials can prove helpful for ability
grouping within a class, since, on average, more students are enabled to reach a higher
operational stage.”

15

37. Gains from using an unplugged approach were reported by Hermans and
Aivaloglou (2017), who combined it with teaching programming for one group, while
having a second group spend the same total amount of time learning only programming;
they found that “…the group taught using CS Unplugged material showed higher self-
efficacy and used a wider vocabulary of Scratch blocks.”

38. Looking at these different contexts, we see that CS Unplugged is best used in
combination with “plugged in” work. This is not surprising, given that getting a
program to work correctly is an excellent way for a student to show that they have
understood the computational concepts they are working with, since the computational
agent (the computer running the program) will do exactly what the program says to do.
Moreover, this will give students the opportunity to experience in a tangible (in some
sense) environment the effects of their instructions, with immediate and
unexceptionable feedback (rather than delayed feedback from another person, typically
the teacher). Based on this, the CS Unplugged website now offers a range of “Plugging
it in” exercises to provide follow-up activities that allow students to link their
unplugged learning with computation on a digital device.

39. An unplugged approach seems to have promise for helping student learning if used
effectively, but another important value of it is for teachers. Teachers need to be
confident in a topic so that they can build student confidence, and given that the new
computing curricula appearing around the world are often taught by people new to the
subject, ways to build teacher confidence will be important (Gutiérrez and Sanders
2009). Often teachers are intimidated by new terminology – words such as “algorithm”
and “binary” appear in curricula, but looking up definitions of such terms often results
in a description that is meaningless to the layperson, whereas the CS Unplugged
material gives an opportunity to engage with the concept, and then learn what its name
is, which is a much more meaningful way to learn new terminology.

40. CS Unplugged has been used in a variety of teacher professional learning and
development (PLD) initiatives, and the research available on this is reporting positive
outcomes. For example, Curzon et al. (2014) report on teacher professional
development that had a substantial “unplugged” component, and noted that it was
“inspiring, confidence building and gave [the teachers] a greater understanding of the
concepts involved.” An important feature of the constructivist approach of Unplugged
activities is that they allow very quick wins, where teachers can understand a new
concept (such as binary numbers) very quickly, in the context of a hands-on first-person
experience, without the overhead of having to learn to program first. Smith et al. (2015)
reported that teachers who were training other teachers (through the UK Master teachers
system) commonly included CS Unplugged when providing professional development
for colleagues, and both Morreale and Joiner (2011) and Sentance and Csizmadia
(2017) found that after attending their workshop, CS Unplugged was widely adopted by
teachers.

16

Conclusion

41. CS Unplugged activities can provide scaffolding to support a constructivist
approach to introduce computer science without computers, helping students construct
their own initial knowledge about key ideas behind deep computational thinking
concepts through kinesthetic experiences. Given the genesis of the CS Unplugged
material, it isn’t surprising that it strongly engages students in computational thinking,
and the examples above illustrate how both CS Unplugged and CT (which have
independent origins) are aligned. These links can also be used in the classroom to
identify when students are exhibiting CT skills.

42. Nevertheless, to be effective, unplugged approaches should be used thoughtfully –
any pedagogical approach can be delivered badly with little effort! The constructivist
character of the activities needs to be maintained, and we know that unplugged
activities are effective when used in a context where they will be ultimately linked to
implementation on a digital device, either through programming, or by helping students
to see where these ideas impinge on their daily life. By using CS Unplugged early to
introduce concepts, both students and teachers new to the subject can have early success
without the overhead of becoming proficient enough at programming to engage
properly with ideas that can have an impact in our digital world. This then provides a
useful platform to motivate learning the skill of programming, but also a way to connect
computer science with other subjects.

References

Aho, A. V. (2011). What is Computation? Computation and computational thinking.
Ubiquity Symposium, (January), 1–10.

Bell, T., Alexander, J., Freeman, I., and Grimley, M. (2009). Computer science
unplugged: school students doing real Computing without computers. New Zealand
Journal of Applied Computing and Information Technology, 13(1), 20-29.

Bell, T., Rosamond, F., and Casey, N. (2012). Computer Science Unplugged and related
projects in math and computer science popularization. In H. L. Bodlaender, R.
Downey, F. V Fomin, and D. Marx (Eds.), The Multivariate Algorithmic Revolution
and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th
Birthday, LNCS 7370, pp. 398–456. Springer-Verlag.

Bell, T., and Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It
Work? In Adventures Between Lower Bounds and Higher Altitudes (pp. 497–521).
Springer.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., and
Woollard, J. (2015). Computational thinking: a guide for teachers. Available from
http://computingatschool.org.uk/computationalthinking.

CSTA. Operational Definition of Computational Thinking. 2011;
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.
pdf

Curzon, P., Bell, T., Waite, J., and Dorling, M. (2019). Computational thinking. In S.
Fincher and A. Robins (Eds.), The Cambridge Handbook of Computing Education
Research (pp. 513–546). Cambridge University Press.

17

Curzon, P., McOwan, P. W., Plant, N., and Meagher, L. R. (2014). Introducing teachers
to computational thinking using unplugged storytelling. Proceedings of the 9th
Workshop in Primary and Secondary Computing Education – WiPSCE ’14, 89–92.

Denning, P. (2017) Remaining trouble spots with computational thinking,
Communications of the ACM. 60(6): 33-39, June.

Denning, P., and Tedre, M. (2019). Computational Thinking. Boston, MA: MIT Press
Essential Knowledge series.

Duncan, R. G., and Rivet, A. E. (2013). Science learning progressions. Science,
339(6118), 396-397.

Feaster, Y., Segars, L., Wahba, S. K., and Hallstrom, J. O. (2011). Teaching CS
unplugged in the high school (with limited success). In G. Rößling, T. L. Naps, and
C. Spannagel (Eds.), Proceedings of the 16th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, ITiCSE 2011,
Darmstadt, Germany, June 27-29, 2011 (pp. 248–252). ACM.

Gutiérrez, J. M., and Sanders, I. D. (2009). Computer Science education in Perú: a new
kind of monster? ACM SIGCSE Bulletin, 41(2), 86–89.

Heintz, F., Mannila, L., and Färnqvist, T. (2016). A review of models for introducing
computational thinking, computer science and computing in K-12 education. In
Proceedings – Frontiers in Education Conference (FIE) (pp. 1–9).

Hermans, F., and Aivaloglou, E. (2017). To Scratch or Not to Scratch?: A Controlled
Experiment Comparing Plugged First and Unplugged First Programming Lessons. In
Proceedings of the 12th Workshop on Primary and Secondary Computing Education
(pp. 49–56). New York, NY, USA: ACM. http://doi.org/10.1145/3137065.3137072

Matthews, M. R. (1997). Introductory comments on philosophy and constructivism in
science education. Science & Education, 6(1-2), 5-14.

Morreale, P., and Joiner, D. (2011). Reaching future computer scientists.
Communications of the ACM, 54(4), 121.

Nardelli, E. (2019). Do we really need computational thinking? Communications of the
ACM, 62(2), 32–35. http://doi.org/10.1145/3231587

Papert, S. (1980) Mindstorms: Children, Computers and Powerful ideas. Basic Books.
Papert, S. (1993). The Children's Machine: Rethinking School in the Age of the

Computer. Basic Books.
Selby, C. C., and Woollard, J. (2013). Computational Thinking: The Developing

Definition. University of Southampton (E-prints) 6pp.
https://eprints.soton.ac.uk/356481/

Sentance, S., and Csizmadia, A. (2017). Computing in the curriculum: Challenges and
strategies from a teacher’s perspective. Education and Information Technologies,
22(2), 469–495. http://doi.org/10.1007/s10639-016-9482-0

Smith, N., Allsop, Y., Caldwell, H., Hill, D., Dimitriadi, Y., and Csizmadia, A. P.
(2015). Master teachers in computing: What have we achieved? In Proceedings of the
Workshop in Primary and Secondary Computing Education (pp. 21–24).

Taber, K. S. (2011). Constructivism as educational theory: Contingency in learning, and
optimally guided instruction. In J. Hassaskhah (Ed.), Educational Theory.
Hauppauge, NY: Nova Science Publishers, Inc., pp. 39-61.

Taub, R., Armoni, M., and Ben-Ari, M. (2012). CS Unplugged and Middle-School
Students’ Views, Attitudes, and Intentions Regarding CS. Trans. Comput. Educ.,
12(2), 8:1–8:29. http://doi.org/10.1145/2160547.2160551

18

Tedre, M., and Denning, P. J. (2016). The Long Quest for Computational Thinking. In
Proceedings of the 16th Koli Calling Conference on Computing Education Research,
pp. 120–129.

Thies, R., and Vahrenhold, J. (2013). On Plugging “Unplugged’’ into CS Classes. In
SIGCSE ’13: Proceedings of the 44th ACM technical symposium on Computer
Science Education (pp. 365–370).

Turing, A. M. (1937). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London mathematical society, 2(1), 230-
265.

Webb, M., Bottino, R. M., Passey, D., Kalas, I., Bescherer, C., Smith, J. M., …
Fuschek, G. (2019). Coding , Programming and the Changing Curriculum for
Computing in Schools: Report of UNESCO/IFIP TC3 Meeting at OCCE –
Wednesday 27th of June 2018, Linz, Austria.

Wells, G. (1999). Dialogic Inquiry: Towards a Sociocultural Practice and Theory of
Education. New York: Cambridge University Press

Wing, J.M., (2006) Computational Thinking, Communications of the ACM. 49 (3)
Wing, J.M. (2010). Computational Thinking: What and Why? The Link Magazine

(Carnegie Mellon University), Spring. Retrieved from
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-
why

Wood, D., Bruner, J., and Ross, G. (1976). The role of tutoring in problem solving.
Journal of Child Psychology and Child Psychiatry, 17, 89−100.

The authors

Tim Bell is a full professor in the Department of Computer Science
and Software Engineering at the University of Canterbury in
Christchurch, New Zealand. His main current research interest is
computer science education; in the past he has been also worked on
computers and music, and data compression. His “Computer
Science Unplugged” project is widely used internationally, and its
books and videos have been translated into about 25 languages. He
has received several awards for his work in CS communication,

including the 2018 ACM SIGCSE Outstanding Contribution to Computer Science
Education award, and he is an ACM Distinguished Member. He has co-authored four
books, and around 140 academic papers.

Michael Lodi is a PhD student in Computer Science, in the
Department of Computer Science and Engineering, University of
Bologna, Italy. He has also received a BS, MS and High school
teaching license in CS from the same University. He works on
computer science education, with a particular focus on teacher
training about computational thinking and epistemological aspects
of Computer Science as a discipline. In particular, he studies
“Computer Science Growth Mindset”. He has published some
papers in international conferences on computer science education,

19

and a book in Italian for primary school teachers. He is actively involved in nationwide
initiatives to introduce CS in Italian K-12 curriculum. https://lodi.ml

