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Structured Abstract 

Paper type: application. 

Background(s): computer science; educational research. 

Approach: Our approach is very practical: we are focused on pedagogy and improved 
classroom practices – what Matthews (1997: 8) calls “pedagogical constructivism.” 
Moreover, we discuss the relationships between our work and Papert’s 
constructionism. 

Context: The meaning and implications of “computational thinking” (CT) are only now 
starting to be clarified, and the applications of the CS Unplugged approach are 
becoming clearer as research is appearing; now is a good time to consider how these 
relate, and what the opportunities and issues are for teachers using this approach. 

Problem: The goal here is to connect computational thinking explicitly to the CS 
Unplugged pedagogical approach, and to identify the context where Unplugged can 
be used effectively.  

Method: We take a theoretical approach, selecting a representative sample of CS 
Unplugged activities and mapping them to CT concepts. 

Results: The CS Unplugged activities map well onto commonly accepted CT concepts, 
although caution must be taken not to regard CS Unplugged as being a complete 
approach to CT education. 

Implications: There is evidence that CS Unplugged activities have a useful role to help 
students and teachers engage with CT, and to support hands-on activities with digital 
devices. 

Constructivist content: A constructivist approach to teaching computer science 
concepts can be particularly valuable at present because the public (and many 
teachers who are likely to have to become engaged with the subject) don’t see CS as 
something they are likely to understand; providing a clear way for anyone to 

 
1 This is an authors’ pre-print version of the work. It is posted here for your personal use. Not for 
redistribution. The definitive version was published in Constructivist Foundations 14, 3 (2019), 342–351.  
https://constructivist.info/14/3/342.bell 
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construct this knowledge for themselves provides an opportunity to empower them 
when it might otherwise have been regarded as a domain that is open to only a select 
few. 

Key Words: computational thinking; CS Unplugged; Papert; teacher PLD; integrated 
learning; computation; algorithms; kinesthetic learning. 

 

Introduction 

1. Computer Science Unplugged (csunplugged.org) was originally intended as an 
outreach tool to explain computer science to young students, without the overhead of 
having to learn programming first. However, it is now used in a variety of contexts, and 
with the recent adoption of elements of computer science into school curricula around 
the world (Heintz et al. 2016, Webb et al. 2019), the Unplugged approach has often 
found a role in the classroom. The new curricula are commonly based around the idea 
of computational thinking, an idea that came to prominence after the publication of a 
paper by Jeannette Wing (2006), although the term was used by Papert as early as 1980 
in his widely read “Mindstorms” book (Papert 1980), and the general concept predates 
Papert’s work (Tedre and Denning 2016). 

2. Here we look at what computational thinking is, how it relates to Computer 
Science Unplugged activities, and how this connects to previous research on the use of 
CS Unplugged for teachers and students. 

3. There are many “unplugged” activities that aren’t necessarily based on 
csunplugged.org (sometimes under titles such as kinesthetic activities), with some 
contributed by an international community of educators, but the key elements in the 
approaches we are exploring here are that computers aren’t required despite all of the 
concepts being from the computer science canon, that students are engaged in 
kinesthetic activities, and any equipment needed is readily available at low cost (and 
would often be on hand in a classroom). The term “unplugged” is sometimes used to 
refer to the curated activities on the open-source CS Unplugged website 
(csunplugged.org), but in other contexts refers to any activity relating to computer 
science carried out away from a computer. In this paper we will use the full title (“CS 
Unplugged”) to refer to the collection on the website2, and “unplugged” when referring 
to the general concept of teaching computer science away from a computer. 

4. In K-12 Computer Science education, constructivism (and especially 
constructionism) might normally be associated with computer programming. Other 
areas such as algorithm analysis, computability, formal languages, graphics and AI 
could be seen as theoretical knowledge that can be acquired as needed, potentially at a 
later stage. However, the CS Unplugged approach inverts a traditional “programming 
first” view by throwing students directly into advanced concepts in topics like graph 
theory, error correcting codes and computational complexity. Instead of taking a 

 
2 csunplugged.org 
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theoretical approach, students are usually given a kinesthetic experience in which they 
explore the issues in a way that is age-appropriate, and can engage with the ideas using 
a constructivist pedagogy. The purpose isn’t primarily for students to acquire theoretical 
knowledge, but to appreciate the richness of the subject, and to give a meaningful 
experience those students who may not find programming to be engaging, but are 
interested in exploring some of the deeper issues that come up when they have access to 
computation through programming.  

5. In this paper we explore the relationship (or rather, relationships) between 
computational thinking and the CS Unplugged material. We first consider what is meant 
by computational thinking, and then review the origins and intention of the “unplugged” 
approach. A central reason for linking them is identifying the computational thinking 
elements in a sample of CS Unplugged activities, and reflecting on how the activities 
can be applied effectively in practice. 

Computational thinking 

6. The term “computational thinking” (CT) is commonly used in the context of 
introducing computer science into primary and secondary school (K-12) education. A 
popular definition is the “Cuny-Snyder-Wing” formulation that dates from 2010: 

“Computational Thinking is the thought processes involved in formulating problems and their 
solutions so that the solutions are represented in a form that can be effectively carried out by an 
information-processing agent.” (Wing 2010) 

7. Being able to explain and implement CT in a K-12 context is important because it 
has been used as the basis of new curriculum material being introduced in several 
countries. The term “computational thinking” gained significant visibility through 
Jeannette Wing’s writing in 2006 (Wing 2006), although the concepts pre-date that 
work significantly (Tedre and Denning 2016). There have been a variety of views about 
the full meaning and implications of the term “computational thinking”, particularly 
around what an “information-processing agent” might be (Denning 2017), how much it 
hinges on the skill of computer programming (Curzon et al. 2019), and also any claims 
around the value to school students of learning CT (Tedre and Denning 2016).  Curzon 
et al. (2019) point out that despite the diverse views about CT, there is considerable 
overlap, and it is best to focus on the points of agreement.  

8. To understand CT, it is helpful to focus on what computation is. The notion of 
computation and computability has been explored in depth over the years, with 
fundamental ideas being based on Turing’s work in the 1930s about what he called an 
“automatic machine” (Turing, 1937), which is now commonly referred to as a Turing 
machine. The limitations of a Turing machine still define the boundaries of digital 
computation today (with the possible exception of the new developments in quantum 
computing), so both the power and limitations of computing are reflected in any Turing-
complete programming language, which includes many widely used educational 
languages such as Scratch and Python (Aho 2011). From this point of view, it could be 
argued that CT is centered around learning to use such languages to their full extent 
(Denning 2017), since these dictate exactly what can and can’t be done in computation; 
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for example, Aho (2011) argues that computational thinking should be based on clearly 
defined models. It is reasonable to be concerned that analogies to computation (such as 
cooking recipes) are imperfect and might even teach against some of the deeper 
principles, but we need to acknowledge that beginners in any subject are often given 
simplified models to help scaffold their learning, such as the Rutherford-Bohr model of 
the atom, Newtonian physics, or the division of history into discrete periods. The 
important thing is for curriculum designers be clear on the usefulness of an inaccurate 
model if it is being used as a “stepping stone” (Duncan and Rivet 2013). Denning and 
Tedre (2019) explicitly note that computational thinking for a professional will be quite 
different to that for a beginner; beginners can “barely scratch the surface” of the 
richness and depth that is offered by computation. A spiral approach to curriculum is 
normal, and the challenge is to provide beginners with computationally meaningful 
encounters without the burden of having to fully understand the nuances of 
computation. Of course, if a teacher does not already have a clear understanding of a 
concept, then there is a risk that their teaching of the concept will lean too heavily on 
the analogy rather than their understanding of the concept itself. 

9. Returning to the Cuny-Snyder-Wing definition, it opens the possibility that the 
information processing agent might be a human, but working within some constraints or 
scaffolding to ensure that the student experience is providing a valid foundation for 
working with more mechanically deterministic digital systems. It is also possible to 
enforce computationally authentic elements of computing without using a digital 
device. For example, the CS Unplugged resources (Bell et al. 2009, Bell, Rosamond and 
Casey 2012) have an activity on sorting algorithms that puts a simple rule in place that 
only two values can be compared at once using a balance scale, and the comparison is 
done by a third party so that there is no memory of previous comparisons, other than 
placement of the weights. This forces students to explore the same kinds of algorithms 
that a digital device would have to use when sorting by comparison (based on if 
statements and arrays), so it isn’t just an analogy, but an alternative physical 
implementation of the kind of computation that is possible if one could program a 
digital device (although the restriction isn’t strictly enforced, and a student might 
choose to stretch the “rules”, for example, by comparing more than two items at a time). 
The unplugged approach has the advantage that students don’t need to learn about 
programming first before engaging with the algorithm, although ultimately a computer 
program is needed to fully experience all of the limitations encountered when 
implementing the algorithm, as well as the benefit of the ability to reliably follow many 
instructions in a short time. It provides a constructivist environment that allows students 
to come up with their own algorithms for sorting, including evaluating how efficient an 
approach is, and comparing different approaches. 

10. Despite different views about the purpose of using CT as a basis for curriculum, 
and how much it should be focused on physical digital devices, there is general 
agreement about the underlying skills for CT, whether it is to support a student learning 
to program, or is more broadly helping students to “think like a computer scientist” 
(Wing 2006, 2010). Lists of skills have been produced by national organizations 
supporting new curricula, including Computing at School in England (Csizmadia et al. 
2015) and the Computer Science Teachers Association (CSTA 2011). Selby and 
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Woollard (2013) examine a number of such definitions, and argue that the most relevant 
and useful elements are abstraction, decomposition, algorithmic design, evaluation, and 
generalization. An element that is missing from their list, but commonly appears in 
others, is “logical thinking”, which they argue is too broad and not well defined. This is 
a fair comment, since logic is fundamental to other disciplines too and also could be 
seen as subsumed by the other elements in CT. In this work we use the elements that 
they found most relevant, but have also included logical thinking in our analysis so that 
it can be related to other definitions, although we acknowledge that it isn’t always 
considered to be a defining aspect of CT. 

11. Denning (2017) warns against over-generalizing these underlying skills; for 
example, decomposition can be applied to many situations, such as breaking down a 
large (non-computer) project into components, but in a computational context such an 
activity has constraints imposed by the nature of a computing environment, as well as 
good practice (such as decomposing a large program into modules with meaningful 
functions). In the end, as Nardelli (2019) points out, the key reason for using the term 
“computational thinking” is pragmatic: 

“… we probably need the expression as an instrument, as a shorthand reference to a well-
structured concept, but it might be dangerous to insist too much on it and to try to precisely 
characterize it. It should serve just as a brief explanation of why computer science ... is a novel and 
independent scientific subject and to argue for the need of teaching informatics in schools.” 
(Nardelli 2019: 32) 

12. Here we focus on the most widely used concepts, and applying them in the context 
of computer science, which helps us to connect the general ideas with their meaning in a 
computational context. They are used in the sections below to identify the connections 
between CS Unplugged and CT. The list of elements that will be used are based on 
Selby and Woollard’s analysis (but with logical thinking included), and are briefly 
defined in Table 1. These definitions have been synthesized from a number of sources, 
including the papers on CT referenced above, and the “Exploring Computational 
Thinking” website.3 

 
Abstraction Identifying what the most important aspects of a problem are and hiding the 

other specific details that we don’t need to focus on.  

Decomposition Breaking down problems into smaller, more manageable, parts, and then 
focusing on solving each of these smaller problems. 

Algorithmic 
design 

Creating step-by-step processes that solve a problem or complete a task. 

Evaluation Identifying the possible solutions to a problem and judging which is the best 
to use, if they will work in some situations but not others, and how they can 
be improved. In computing this can involve a range of criteria, including 
time and space used for computation, usability and correctness. 

 
3 https://edu.google.com/resources/programs/exploring-computational-thinking/ 
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Generalization Taking a solution (or part of a solution) to a problem and generalizing it so 
it can be applied to other similar problems and tasks. 

(Logical 
thinking) 

Trying to make sense of things by observing, collecting data, thinking about 
the facts you know, and then figuring things out based on what you already 
know. 

Table 1: CT thought processes (based on Selby and Woollard 2013) 

CS Unplugged 

13. The Computer Science Unplugged resources originated from academics who had 
been asked to share what they did as a career with their children’s peers, who at the time 
were around 5 or 6 years old (Bell, Rosamond and Casey 2012). Rather than talk about 
computer science, they chose to do computer science with the children, and from this 
point of view, CS Unplugged relates directly to helping students “think like a computer 
scientist” (Wing 2006, 2010). Ideas were taken from university courses – often 
advanced courses – and repackaged as physical activities where information such as 
graphs and binary digits were represented tangibly.  

14. A simple example is the “parity” card trick, where a two-dimensional forward error 
correction code is introduced as a way for the presenter to somehow determine which 
card has been flipped over by a member of the audience. Students explore ideas for how 
the trick might be done, and once they discover the concept of parity, they can explore 
questions like whether or not two flipped cards can be identified, if it will still work 
with larger numbers of cards, whether a 3-dimensional version is better, and so on. 
Students are physically manipulating two-sided cards which (from a computer 
scientist’s point of view) are binary digits, but for the student they need only consider 
their physical appearance – cards that are a different color on each side. 

15. Another example is a game exploring routing and deadlock based on passing 
colored objects around, with the goal of getting the correct colors to the corresponding 
player. The processes required to solve this quickly end up requiring backtracking and 
logical arguments to achieve the group’s goals. 

16. It is important to be clear at this point that CS Unplugged isn’t a curriculum, and 
isn’t intended to replace the opportunity for students to write programs on digital 
devices, but it is an adjunct pedagogy to enable learners to become aware of bigger 
ideas in computing without having the overhead of learning to program first, and also to 
engage in big ideas through physical movement rather than expecting all computing 
classes to be sitting in front of a screen. CS Unplugged is also useful for communicating 
succinctly to students – and more significantly, teachers and education officials – that 
there is a depth to computation beyond stereotypes of “cutting code.” In a modern 
classroom environment, the Unplugged approach is intended to be integrated with 
learning to program, and this can be more effective than spending all of the available 
time on programming alone (Hermans and Aivaloglou 2017). When Unplugged 
originated, classroom computers were either too rare for students to be likely to have 
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access to them, or the focus was on teaching students how to use the computer for 
standard productivity tasks rather than explore computational ideas with it. This 
situation has changed in many classrooms, and where digital devices are available, the 
CS Unplugged material can now be explicitly linked to programming through a 
“plugging it in” follow-up to the activities (Bell and Vahrenhold 2018). 

17. The CS Unplugged approach does not usually spell out algorithms to students, but 
rather, a problem is given, and students explore potential algorithms for themselves. For 
small instances of a problem (such as converting a number to a 4-bit binary 
representation, finding the shortest path in a layout with only a few vertices, or 
searching for an item hidden under one of a few cups) an ad-hoc or brute-force 
approach may find the solution easily, but as the size of the problem increases students 
start to encounter the need for more efficient and rigorous approaches. When asked to 
search for a value hidden under one of 30 cups, students often switch from a sequential 
search to (an approximation of) binary search, and when converting numbers to a binary 
representation they may discover that a greedy approach gets results, but with other 
challenges (such as minimal spanning trees or sorting) they may only come to 
appreciate that a better algorithm is needed; and for NP-complete problems, not only do 
we not expect them to find a fast algorithm, but they end up grappling with the idea that 
no-one has (yet!) found a fast solution. 

18. The main goal of taking a constructivist approach like this isn’t that students learn 
particular algorithms and techniques, but that they learn that there are deep issues to be 
resolved in these contexts, and that they can feel empowered when they discover 
concepts for themselves, which can break stereotypes about what the qualities of a 
successful computer scientist might be.  

CS Unplugged, constructivism and constructionism 

19. Although the unplugged approach clearly differs from Papert’s constructionism 
because the latter recognizes programming as having a leading role as a meta-tool for 
constructing knowledge, we can point out some relationships. First of all, unplugged 
activities are concrete rather than formal, and aim to teach complex CS ideas to 
children, ideas that are usually postponed until they become adult/formal/abstract 
thinkers.  CS concepts are not simplified, but instead made accessible with practical 
experiences. Second, unplugged activities generally have children using their bodies or 
the physical manipulation of objects to perform them. 

20. Similarly, Papert aimed to teach deep mathematical ideas long before children had 
the abstraction competence to grasp them formally: “My conjecture is that much of 
what we now see as too ‘formal’ or ‘too mathematical’ will be learned just as easily 
when children grow up in the computer-rich world of the very near future” (Papert 
1980: 7). Moreover, he designed LOGO to be “body syntonic”: children could use their 
body to impersonate the Turtle drawing on the screen: “working with the Turtle 
mobilizes the child’s expertise and pleasure in motion. It draws on the child’s well-
established knowledge of ‘body-geometry’ as a starting point for the development of 
bridges into formal geometry” (Papert 1980: 58).  
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21. Thus, unplugged activities are a play space in which ideas from computer science 
can be explored, and the direction students take can be unpredictable. A constructivist  
— as opposed to instructionist (Papert 1993: 137-156) — approach is strongly 
advocated, as the primary goal is not for students to learn the concepts, but for them to 
discover that there are concepts that they may find interesting, and are worthy of study. 
Nevertheless, as computer science (and computational thinking) have started to enter 
school curricula, teachers have looked for ways to engage their students with specific 
ideas. The original activities were presented by CS researchers who were used to asking 
questions and exploring problems that may not have solutions, but in a classroom 
situation, teachers may not be experts, and aren’t necessarily in a position to recognize 
the value of a direction a student might be taking an idea in. For this reason, the main 
version of CS Unplugged that is available gives considerable guidance on scaffolding 
the students’ exploration of the ideas (Wood et al. 1976: 90), and provides questions for 
the teacher to ask, which can create a kind of Socratic method that enables students co-
construct the meaning by following fruitful paths in their exploration (Wells 1999).  

22. The degree of freedom left to students for exploration, and the role assumed by the 
teacher in guiding the activity (not as an expert delivering knowledge, but as a 
facilitator helping students experiment with ideas and constructing their own 
knowledge) plays, of course, a central role in the constructivist application of 
Unplugged material. This approach embraces the view that constructivism is a blend of 
more structured guidance and exploration, so it is not minimally guided, but optimally 
guided (Taber 2011), since the teacher has a path in mind, but nevertheless, the student 
is constructing the knowledge for themselves, and not having the ideas given to them 
directly. 

Computational thinking and CS Unplugged 

23. As pointed out in paragraph 13, CS Unplugged was intended to help children to 
understand what a computer scientist does, and CT has been referred to as “thinking 
like a computer scientist” (Wing 2006, 2010), matching Unplugged activities with CT 
ideas is useful to show how they are both serving a similar purpose. In fact, Wing’s 
2010 article specifically cites CS Unplugged under the heading of “Computational 
Thinking in Education.” 

24. Here we will show more explicit links using three contrasting activities: the binary 
representation activity (about data), searching (about algorithms), and sorting networks 
(applying a parallel algorithm to data). The CS Unplugged activities provide an 
environment that is intended to be used in a constructivist manner to scaffold learning, 
so that students are discovering patterns and rules for themselves based on a very short 
description of a challenge, rather than being told algorithms or solutions and then 
applying them. This means that they are exercising the CT skills themselves as they 
solve the challenges that they are given. The three activities were chosen as they span 
the range of approaches in CS Unplugged, including indoor vs. outdoor activities, 
working with and without given algorithms, and covering data and algorithms.  
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Figure 1: Representing 5-bit binary values using cards 

25. In the binary representation activity, students manipulate cards that represent the 
powers of two (Figure 1). They follow the simple rule that the dots on a card may either 
be completely visible or not (depending on whether or not the card is flipped over), and 
are asked questions that lead them to find ways to display a given number of dots, 
counting, and exploring patterns in the representation. The constructivist approach 
means that the students are given little more instruction than the constraint that dots on 
a card are entirely visible or not (this is enforcing a constraint that a physical computing 
device would have); even the number of dots on each card should be deduced by the 
students after being shown the first three. 

26. This activity is exercising the CT skills as follows; note that these observations 
could also be used to evaluate how well a student is applying the skills. 

§ Abstraction: Although binary representations are commonly said to be made of 
zeroes and ones, there are no such physical digits on a computer, only abstract 
representations. Students can experiment with a variety of abstractions; the activity 
starts by eliciting “yes” and “no” for the visibility of each card, but can then ask the 
students to be creative with other binary symbols, such as using two different 
musical pitches, dance moves, or even animal sounds. This then progresses to 
having them come up with more abstraction – binary symbols represent numbers, 
and then the numbers can represent other symbols, such as letters of the alphabet, 
months of the year, or colors of pixels in an image. And of course, the binary 
symbols are an abstraction for electrical signals; a feature of computer science is 
that it regularly deals with “multiple levels of abstraction” (Wing 2006). 

§ Decomposition: the problem of working out a number representation can be 
overwhelming at first, but students can use a left-to-right algorithm that 
decomposes it in simpler steps (“should this card be visible?”), and make it a lot 
simpler to comprehend. Another way of viewing this is that the concept of number 
is decomposed into a series of yes-no questions, where the first question (for 5-bit 
numbers) is “Is the value greater than or equal to 16?” 

§ Algorithmic design: Although this activity is about data, students are applying 
algorithms to the bits. Working out the representation of a decimal value can be 
done using the already-mentioned greedy algorithm working from left to right 
(“Should the 16-dot card be included?” etc.) Initially students may take a haphazard 
approach, but by scaffolding the idea of working from left to right, it becomes clear 
that the decisions can be easy to make. Other algorithms that come up are 
incrementing the displayed value by one (students can be scaffolded to discover that 
this can be done by flipping cards from right to left until a white card comes up), 
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doubling a value (shift left), and determining if a number is odd or even (simply 
check the right-hand bit!) 

§ Evaluation: Being able to convert between decimal and binary numbers isn’t a 
widely used skill, but being able to evaluate the limits of a representation is. For 
example, students can evaluate the largest number possible with, say, 5 bits, and 
then with 6 bits, and with scaffolding, realize that each extra bit doubles the range 
of possibilities. This can lead to reasoning about the effectiveness of, say, a 256-bit 
security key vs. a 512-bit key; or an 8-bit character representation vs. 16-bit. In both 
cases the increase in representation is considerably more than the factor of 2 that 
might appear on the surface. 

§ Generalization: Starting from concrete examples, there are many patterns for 
students to explore here; the first generalization is working out the number of dots 
on the n-th card, but students can also discover many other patterns, for example, 
that the maximum value that can be represented with k bits is one less than the 
value of bit k+1, or that when counting, each card is being flipped with half the 
frequency of the one to its right. In doing this, students are moving from specific 
examples to general laws. 

§ Logical thinking: There are several rules that students can deduce using logical 
reasoning. A useful one is the uniqueness of a binary representation, based on the 
greedy algorithm used to find the representation. For example, suppose they have 
found the representation 01001 for the number 9. The students can then be asked “is 
it possible to have a representation of 9 where the first bit is 1?” They are likely to 
argue that it’s not possible because you would have 16 dots – too many. The first bit 
must be 0. They then consider if the second bit could be a 0. Students will soon 
realize that there are only 7 dots left in that case, and can argue themselves that the 
second bit must be 1. This reasoning can be applied to all the bits of any binary 
representation, and students will have created an informal proof that a particular 
value has a unique representation. 

 

Figure 2: CS Unplugged “Number hunt” searching algorithms activity 

 

Instructions
Step 1: Choose a number in your boxes for your
opponent to find. 

The number my opponent is looking for: _____ 

Step 2: Write down the number your opponent
has chosen for you to find. 

The number of the box I'm looking for: _____ 

Step 3: Ask your opponent for the number
stored in a random box. For example: "What is
the number in the dotted circle?". Write the
number your opponent says in the box you
asked about on the right. Remember to listen
for the number you are looking for. 

Step 4: Each time your opponent guesses a
box, cross out that box. Keep taking turns until
each person's number is found. 

Step 5: Write down the total number of guesses
for each person below. 

My total guesses: _____
Opponent's total guesses: _____ 

 - Number Hunt - csunplugged.org 
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Step 3: Ask your opponent for the number
stored in a random box. For example: "What is
the number in the dotted circle?". Write the
number your opponent says in the box you
asked about on the right. Remember to listen
for the number you are looking for. 

Step 4: Each time your opponent guesses a
box, cross out that box. Keep taking turns until
each person's number is found. 

Step 5: Write down the total number of guesses
for each person below. 

My total guesses: _____
Opponent's total guesses: _____ 

 - Number Hunt - csunplugged.org 
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27. In the searching algorithms activity, students are given hidden values to search in 
several contexts: for example, it could be hidden numbers held by a friend who will 
reveal the contents only one at a time (Figure 2), or cups that have values hidden under 
them that can only be revealed one at a time. In both cases, the goal is to find a value 
without looking at more items than necessary, and enforces the model of memory in 
which only one item can be looked up at a time. At first the values are unsorted, but 
students are later given a series of values that are sorted, which they can constructively 
use to apply a form of binary search to avoid frustratingly long searches. 

28. Computational thinking appears in the searching activities as follows. 

§ Abstraction: The algorithms used apply to any kind of sorted and unsorted list, and 
depend only on the ability to impose an order on the keys. The hidden values 
themselves represent a sorted (or unsorted) list, and so has a property that isn’t 
physically visible, but is crucial to the algorithm used for the searching. The 
algorithm abstracts from the actual numbers in a list; for example, in binary search, 
the concrete values on the cards to the left of the midpoint may not be known, but 
the student can know that the key value isn’t on any of them.  

§ Decomposition: Each key comparison is decomposing the solution space into 
smaller parts; in the case of a sequential search it is a small gain (the solution space 
is reduced one by one), but students can explore the power of divide-and-conquer 
through binary search, where a half of the problem space is eliminated in one step. 

§ Algorithmic design: Students constructively discover a (variation of) the binary 
search algorithm motivated by minimizing the cost to them of finding a given object 
or value. They can also recognize a sequential search will work on any list – 
including a sorted list! 

§ Evaluation: This is a key reason for students to explore searching algorithms; 
sequential and binary search have quite different performance, and although 
students may not use mathematical language like “logarithms,” they can appreciate 
that even billions of items can be searched in a very small time with binary search, 
and that sequential search becomes arbitrarily worse than binary search as the size 
of the list increases. Initially when a teacher suggests performing a binary search on 
twice as many objects, students can appear quite disheartened, until they evaluate 
the algorithm and realize that only one extra step is required. 

§ Generalization: The different guises of searching (numbers on cards, cups, 
envelopes and so on) are all the same problem with the same possible solutions, but 
presented in different ways. This enables students to recognize what the general 
algorithm is, rather than just a specific application of it. The algorithm can also be 
applied to text and dates; students should recognize that binary search can work 
with any keys as long as they can be sorted into order (i.e. are from a binary relation 
that is a total order). 

§ Logical thinking: There are a number of ideas that can be reasoned about here: for 
example, that binary search can only work on a sorted list, and that binary search is 
guaranteed to find what the student is looking for even though many items are never 
inspected. 
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Figure 3. The CS Unplugged sorting network activity 

29. In the sorting network activity, students traverse a network drawn on the ground, 
making a simple comparison of values at each node and taking the left or right exit 
based on the comparison (Figure 3). At the end they discover that the values have been 
sorted into ascending order. Again, the instructions given are very simple (compare 
values and go left or right), but the activity allows the students to construct a range of 
understandings based on their experience, and engage with CT concepts. 

§ Abstraction: The sorting network is a physical representation of what happens 
inside a computer. The way the network is drawn (e.g. large or small boxes, long 
paths, and paths that take roundabout-routes) doesn’t matter as long as the topology 
of the network is maintained. The values being compared (keys) are also an 
abstraction of some item that is being sorted, which may have more data than just 
the sort key. 

§ Decomposition: In this activity students aren’t doing decomposition, but are 
experiencing the result of it. A key aspect of this activity is that the complex task is 
decomposed into a very simply described task; in a physical computer this relates to 
the most complex algorithms being performed by combinations of just a few simple 
instructions. In this case, students are often surprised that such simple instructions 
result in a powerful outcome. When comparing words or large numbers, these are 
further decomposed into a character-by-character or digit-by-digit comparison to 
determine which value comes first. 

§ Algorithmic design: The students are physically engaging with a parallel algorithm, 
and seeing how a complex outcome (sorting) can be achieved by the combination of 
many simple steps (in this case, comparisons of pairs of values). They also have the 
opportunity to design their own parallel algorithms for smaller sorting networks. If 
there is an opportunity to dig deeper, students are able to realize that the parallel 
algorithm can in turn be designed by an algorithm, which raises some interesting 
philosophical issues about algorithm design! 

§ Evaluation: A sorting network can be evaluated in terms of the number of nodes 
required (three at a time in the case of a 6-way network), but also in terms of the 
number of parallel steps required (the length of the network, and therefore time 
required). Two different networks for the same number of inputs can be compared 
based on these metrics. 



13 

§ Generalization: The sorting network can be used to sort any values that form a 
binary relation that is a total order (i.e. values that can be consistently compared for 
inequality); numbers are in order of increasing value, while words are in 
alphabetical order, but the comparisons can also be used for other types of data, 
such as musical notes (higher and lower), and stories (which plot element comes 
before another?) 

§ Logical thinking: Students are able to reason about the correctness of the 
configuration by applying logic (an exhaustive test would take n! time). A first step 
is to apply logic to reason that the smallest item must end up in the correct place, 
regardless of where it starts. A full proof of correctness is likely beyond students, 
but for small sorting networks there is a lot of opportunity to reason about what will 
happen. 
 

30. These activities have been used as examples; on the CS Unplugged website CT 
skills are made explicit for every activity to help teachers see the bigger picture of why 
a particular activity is relevant, to help them appreciate which finer details of an activity 
are important to fully engage students in CT, and to support them to recognize when a 
student is showing CT skills. The descriptions on the website have been informed by 
the reasoning above. 

Integrated multidisciplinary learning 

31. Although computing may be taught as an independent subject, it makes more sense 
when it is used in context. In the same way, computational thinking (and computer 
science) isn’t an end in itself, and is applied in many practical contexts. When taught in 
schools it can be used effectively in multidisciplinary contexts, where CT concepts are 
applied in other subjects to support learning in both at the same time. With “plugged in” 
approaches this may be easier to see, as students can write programs to simulate 
situations they are learning about, to capture and analyze scientific data, to generate 
music and artwork, to make sense of health information captured by personal fitness 
devices, and so on. However, even with an unplugged approach there are many 
possibilities for integrated learning. 

32. For example, the binary representation activity includes the possibility of threading 
beads chosen from two colors into bracelets, necklaces or bag-tags. Making up chains 
of beads gives students the chance to think about language, and what they would like to 
communicate with the beads; it also happens to exercise fine motor skills. More 
generally, the activity can be extended to art, where two symbols or images are used to 
embed information in a picture; or music, where the two values can be used as note 
pitches or lengths. Both of these can be used to introduce the idea of steganography, 
where a message is communicated in plain sight through an artefact that appears to have 
a different purpose. Topics like binary numbers can also be integrated with history and 
writing – where did the idea come from, and how have people communicated in the past 
over distance? Looking into representations like Braille and Morse code can reveal how 
communication has influenced history, but also how it is natural for humans to develop 
codes for communication over distance or for efficient storage. Students can construct 
their own codes based on their new understanding, and this provides a richer experience 
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than simply learning standard codes (such as ASCII and Unicode), as they will face the 
questions that arise for themselves, such as special characters, using digits as text, and 
so on. 

33. Teachers may not think to connect a “modern” subject like computation with 
traditional subjects such as history. However, there are a number of ways this can be 
done, and articulating a few examples can inspire teachers to find their own. Sorting 
networks can be integrated with topics that students are exploring in other areas of the 
curriculum; for example, they might be used to compare dates in history, words in 
alphabetical order, note pitches in music, or numbers written in a foreign language. 
They provide motivation for students to repeatedly compare the values that they are 
learning, and to see them in situations other than the sequence normally presented. At 
the same time, they are becoming familiar with a computational model. 

34. Searching algorithms can also be explored in terms of history – how did people 
look up information in pre-computer times, and who had access to such information? 
Who are the people who developed these computer algorithms, and what motivated 
them? There is also the possibility of acting out such algorithms; and a binary search 
can even be used to compare an unknown pitch with the notes on the piano to determine 
what it is. 

35. It is challenging, in a traditional school setting, to always propose activities that are 
interesting and meaningful for every student. However, connection with real-world 
applications of CS (e.g. understanding what’s behind a query in a search engine, or how 
data is physically transmitted online, and so on) helps to create engagement and 
meaning, because it links to previous knowledge, and personal and social experiences of 
students, which are essential in constructivist learning. 

Applying CS Unplugged 

36. An important feature of this style of teaching is to give minimal instructions (often 
just one or two sentences are sufficient to get students started), and allow students to 
construct the knowledge for themselves. Once they have done this, it is important to 
then relate what they have done to the broader context of computing, and what happens 
on physical devices. Two early studies discovered that without this connection “the 
program [based on CS Unplugged] had no statistically significant impact on student 
attitudes toward computer science or perceived content understanding” (Feaster et al. 
2011) and that “the students’ attitudes and intentions regarding CS did not change in the 
desired direction” (Taub, Armoni and Ben-Ari 2012). In terms of conveying knowledge 
using this approach compared with more conventional approaches, Thies and 
Vahrenhold (2013) found that “… it is indeed possible to weave Computer Science 
Unplugged activities into lower secondary computer science classes without a negative 
effect on factual, procedural, or conceptual knowledge”, and that it could have some 
benefit in that “the Computer Science Unplugged materials can prove helpful for ability 
grouping within a class, since, on average, more students are enabled to reach a higher 
operational stage.” 
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37. Gains from using an unplugged approach were reported by Hermans and 
Aivaloglou (2017), who combined it with teaching programming for one group, while 
having a second group spend the same total amount of time learning only programming; 
they found that “…the group taught using CS Unplugged material showed higher self-
efficacy and used a wider vocabulary of Scratch blocks.” 

38. Looking at these different contexts, we see that CS Unplugged is best used in 
combination with “plugged in” work. This is not surprising, given that getting a 
program to work correctly is an excellent way for a student to show that they have 
understood the computational concepts they are working with, since the computational 
agent (the computer running the program) will do exactly what the program says to do. 
Moreover, this will give students the opportunity to experience in a tangible (in some 
sense) environment the effects of their instructions, with immediate and 
unexceptionable feedback (rather than delayed feedback from another person, typically 
the teacher). Based on this, the CS Unplugged website now offers a range of “Plugging 
it in” exercises to provide follow-up activities that allow students to link their 
unplugged learning with computation on a digital device. 

39. An unplugged approach seems to have promise for helping student learning if used 
effectively, but another important value of it is for teachers. Teachers need to be 
confident in a topic so that they can build student confidence, and given that the new 
computing curricula appearing around the world are often taught by people new to the 
subject, ways to build teacher confidence will be important (Gutiérrez and Sanders 
2009). Often teachers are intimidated by new terminology – words such as “algorithm” 
and “binary” appear in curricula, but looking up definitions of such terms often results 
in a description that is meaningless to the layperson, whereas the CS Unplugged 
material gives an opportunity to engage with the concept, and then learn what its name 
is, which is a much more meaningful way to learn new terminology.  

40. CS Unplugged has been used in a variety of teacher professional learning and 
development (PLD) initiatives, and the research available on this is reporting positive 
outcomes. For example, Curzon et al. (2014) report on teacher professional 
development that had a substantial “unplugged” component, and noted that it was 
“inspiring, confidence building and gave [the teachers] a greater understanding of the 
concepts involved.” An important feature of the constructivist approach of Unplugged 
activities is that they allow very quick wins, where teachers can understand a new 
concept (such as binary numbers) very quickly, in the context of a hands-on first-person 
experience, without the overhead of having to learn to program first. Smith et al. (2015) 
reported that teachers who were training other teachers (through the UK Master teachers 
system) commonly included CS Unplugged when providing professional development 
for colleagues, and both Morreale and Joiner (2011) and Sentance and Csizmadia 
(2017) found that after attending their workshop, CS Unplugged was widely adopted by 
teachers. 
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Conclusion 

41. CS Unplugged activities can provide scaffolding to support a constructivist 
approach to introduce computer science without computers, helping students construct 
their own initial knowledge about key ideas behind deep computational thinking 
concepts through kinesthetic experiences. Given the genesis of the CS Unplugged 
material, it isn’t surprising that it strongly engages students in computational thinking, 
and the examples above illustrate how both CS Unplugged and CT (which have 
independent origins) are aligned. These links can also be used in the classroom to 
identify when students are exhibiting CT skills. 

42. Nevertheless, to be effective, unplugged approaches should be used thoughtfully – 
any pedagogical approach can be delivered badly with little effort! The constructivist 
character of the activities needs to be maintained, and we know that unplugged 
activities are effective when used in a context where they will be ultimately linked to 
implementation on a digital device, either through programming, or by helping students 
to see where these ideas impinge on their daily life. By using CS Unplugged early to 
introduce concepts, both students and teachers new to the subject can have early success 
without the overhead of becoming proficient enough at programming to engage 
properly with ideas that can have an impact in our digital world. This then provides a 
useful platform to motivate learning the skill of programming, but also a way to connect 
computer science with other subjects. 

References 

Aho, A. V. (2011). What is Computation? Computation and computational thinking. 
Ubiquity Symposium, (January), 1–10.  

Bell, T., Alexander, J., Freeman, I., and Grimley, M. (2009). Computer science 
unplugged: school students doing real Computing without computers. New Zealand 
Journal of Applied Computing and Information Technology, 13(1), 20-29. 

Bell, T., Rosamond, F., and Casey, N. (2012). Computer Science Unplugged and related 
projects in math and computer science popularization. In H. L. Bodlaender, R. 
Downey, F. V Fomin, and D. Marx (Eds.), The Multivariate Algorithmic Revolution 
and Beyond: Essays Dedicated to Michael R. Fellows on the Occasion of His 60th 
Birthday, LNCS 7370, pp. 398–456. Springer-Verlag. 

Bell, T., and Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It 
Work? In Adventures Between Lower Bounds and Higher Altitudes (pp. 497–521). 
Springer. 

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., and 
Woollard, J. (2015). Computational thinking: a guide for teachers. Available from 
http://computingatschool.org.uk/computationalthinking. 

CSTA. Operational Definition of Computational Thinking. 2011; 
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.
pdf 

Curzon, P., Bell, T., Waite, J., and Dorling, M. (2019). Computational thinking. In S. 
Fincher and A. Robins (Eds.), The Cambridge Handbook of Computing Education 
Research (pp. 513–546). Cambridge University Press. 



17 

Curzon, P., McOwan, P. W., Plant, N., and Meagher, L. R. (2014). Introducing teachers 
to computational thinking using unplugged storytelling. Proceedings of the 9th 
Workshop in Primary and Secondary Computing Education –  WiPSCE ’14, 89–92. 

Denning, P. (2017) Remaining trouble spots with computational thinking, 
Communications of the ACM. 60(6): 33-39, June. 

Denning, P., and Tedre, M. (2019). Computational Thinking. Boston, MA: MIT Press 
Essential Knowledge series.  

Duncan, R. G., and Rivet, A. E. (2013). Science learning progressions. Science, 
339(6118), 396-397. 

Feaster, Y., Segars, L., Wahba, S. K., and Hallstrom, J. O. (2011). Teaching CS 
unplugged in the high school (with limited success). In G. Rößling, T. L. Naps, and 
C. Spannagel (Eds.), Proceedings of the 16th Annual SIGCSE Conference on 
Innovation and Technology in Computer Science Education, ITiCSE 2011, 
Darmstadt, Germany, June 27-29, 2011 (pp. 248–252). ACM. 

Gutiérrez, J. M., and Sanders, I. D. (2009). Computer Science education in Perú: a new 
kind of monster? ACM SIGCSE Bulletin, 41(2), 86–89. 

Heintz, F., Mannila, L., and Färnqvist, T. (2016). A review of models for introducing 
computational thinking, computer science and computing in K-12 education. In 
Proceedings – Frontiers in Education Conference (FIE) (pp. 1–9). 

Hermans, F., and Aivaloglou, E. (2017). To Scratch or Not to Scratch?: A Controlled 
Experiment Comparing Plugged First and Unplugged First Programming Lessons. In 
Proceedings of the 12th Workshop on Primary and Secondary Computing Education 
(pp. 49–56). New York, NY, USA: ACM. http://doi.org/10.1145/3137065.3137072 

Matthews, M. R. (1997). Introductory comments on philosophy and constructivism in 
science education. Science & Education, 6(1-2), 5-14. 

Morreale, P., and Joiner, D. (2011). Reaching future computer scientists. 
Communications of the ACM, 54(4), 121. 

Nardelli, E. (2019). Do we really need computational thinking? Communications of the 
ACM, 62(2), 32–35. http://doi.org/10.1145/3231587 

Papert, S. (1980) Mindstorms: Children, Computers and Powerful ideas. Basic Books. 
Papert, S. (1993). The Children's Machine: Rethinking School in the Age of the 

Computer. Basic Books. 
Selby, C. C., and Woollard, J. (2013). Computational Thinking: The Developing 

Definition. University of Southampton (E-prints) 6pp. 
https://eprints.soton.ac.uk/356481/ 

Sentance, S., and Csizmadia, A. (2017). Computing in the curriculum: Challenges and 
strategies from a teacher’s perspective. Education and Information Technologies, 
22(2), 469–495. http://doi.org/10.1007/s10639-016-9482-0 

Smith, N., Allsop, Y., Caldwell, H., Hill, D., Dimitriadi, Y., and Csizmadia, A. P. 
(2015). Master teachers in computing: What have we achieved? In Proceedings of the 
Workshop in Primary and Secondary Computing Education (pp. 21–24). 

Taber, K. S. (2011). Constructivism as educational theory: Contingency in learning, and 
optimally guided instruction. In J. Hassaskhah (Ed.), Educational Theory. 
Hauppauge, NY: Nova Science Publishers, Inc., pp. 39-61. 

Taub, R., Armoni, M., and Ben-Ari, M. (2012). CS Unplugged and Middle-School 
Students’ Views, Attitudes, and Intentions Regarding CS. Trans. Comput. Educ., 
12(2), 8:1–8:29. http://doi.org/10.1145/2160547.2160551 



18 

Tedre, M., and Denning, P. J. (2016). The Long Quest for Computational Thinking. In 
Proceedings of the 16th Koli Calling Conference on Computing Education Research, 
pp. 120–129. 

Thies, R., and Vahrenhold, J. (2013). On Plugging “Unplugged’’ into CS Classes. In 
SIGCSE ’13: Proceedings of the 44th ACM technical symposium on Computer 
Science Education (pp. 365–370). 

Turing, A. M. (1937). On computable numbers, with an application to the 
Entscheidungsproblem. Proceedings of the London mathematical society, 2(1), 230-
265. 

Webb, M., Bottino, R. M., Passey, D., Kalas, I., Bescherer, C., Smith, J. M., … 
Fuschek, G. (2019). Coding , Programming and the Changing Curriculum for 
Computing in Schools: Report of UNESCO/IFIP TC3 Meeting at OCCE – 
Wednesday 27th of June 2018, Linz, Austria. 

Wells, G. (1999). Dialogic Inquiry: Towards a Sociocultural Practice and Theory of 
Education. New York: Cambridge University Press 

Wing, J.M., (2006) Computational Thinking, Communications of the ACM. 49 (3) 
Wing, J.M. (2010). Computational Thinking: What and Why? The Link Magazine 

(Carnegie Mellon University), Spring. Retrieved from 
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-
why 

Wood, D., Bruner, J., and Ross, G. (1976). The role of tutoring in problem solving. 
Journal of Child Psychology and Child Psychiatry, 17, 89−100. 

The authors 

 
Tim Bell is a full professor in the Department of Computer Science 
and Software Engineering at the University of Canterbury in 
Christchurch, New Zealand. His main current research interest is 
computer science education; in the past he has been also worked on 
computers and music, and data compression. His “Computer 
Science Unplugged” project is widely used internationally, and its 
books and videos have been translated into about 25 languages. He 
has received several awards for his work in CS communication, 

including the 2018 ACM SIGCSE Outstanding Contribution to Computer Science 
Education award, and he is an ACM Distinguished Member. He has co-authored four 
books, and around 140 academic papers. 

Michael Lodi is a PhD student in Computer Science, in the 
Department of Computer Science and Engineering, University of 
Bologna, Italy. He has also received a BS, MS and High school 
teaching license in CS from the same University. He works on 
computer science education, with a particular focus on teacher 
training about computational thinking and epistemological aspects 
of Computer Science as a discipline. In particular, he studies 
“Computer Science Growth Mindset”. He has published some 
papers in international conferences on computer science education, 



19 

and a book in Italian for primary school teachers.  He is actively involved in nationwide 
initiatives to introduce CS in Italian K-12 curriculum. https://lodi.ml  
 


